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Abstract

We investigate possible formation and propagation of localized, shape-preserving nonlinear optical pulse in a resonant, lifetime-broadened
four-level tripod atomic system via electromagnetically induced transparency (EIT). We prove both analytically and numerically that although
in anomalous dispersion regimes near resonance a superluminal optical soliton may appear, such soliton suffers serious absorption. However, by
choosing appropriate parameters to make the system work in normal dispersion regimes and within an EIT transparency window, ultraslow optical
solitons with very low light intensity can form and propagate stably in the system.
© 2008 Elsevier B.V. All rights reserved.

PACS: 42.50.Gy; 42.65.Tg

Keywords: Electromagnetically induced transparency; Ultraslow optical solitons
1. Introduction

Solitons, i.e. localized nonlinear excitations that are shape-
preserving during propagation, have been studied in many
branches of physics and states of matter ranging from solid
media, such as optical fibers (optical solitons [1]), to Bose–
Einstein condensed atomic vapors (matter wave solitons [2,3]).
Optical solitons are of special interest because of their im-
portant applications for information processing and transmis-
sion [1]. However, most optical solitons found up to now are
produced in passive media such as glass-based optical fibers, in
which far-off resonance excitation schemes are employed in or-
der to avoid serious optical absorption. Because the nonlinear
effect in such passive media is extremely weak, to form an op-
tical soliton a high input light intensity and a long propagation
distance are required. In addition, optical solitons generated in
this way generally travel with a speed very close to c (the light
speed in vacuum).
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In recent years, considerable interest has focused on the
wave propagation in highly resonant optical media via elec-
tromagnetically induced transparency (EIT) [4]. Due to the
quantum interference effect induced by a control field, the
propagation of a weak probe field in a three-level atomic sys-
tem displays many striking features, including a large sup-
pression of optical absorption, a significant reduction of probe
field group velocity [5,6], and a giant enhancement of Kerr
nonlinearities [7–9], which are beneficial to certain impor-
tant nonlinear optical processes under weak very drive condi-
tions, such as highly efficient four-wave mixing and precision
spectroscopy [10–15]. Based on these interesting features, it
has been shown recently that there exists a class of optical
solitons, called ultraslow optical solitons, in highly resonant
three-level [16–18] and four-level atomic systems [19,20]. The
formation of matched ultraslow soliton pairs have also been
predicted [21–23]. These fruitful explorations have enriched
largely the research field of the resonant nonlinear optics in
coherent media [24].

In a recent work, Han et al. has considered the nonlinear
optical pulse propagation in a four-level tripod atomic sys-
tem [25]. The authors claimed that a superluminal (or called
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fast light [26]) optical soliton can propagate stably in the sys-
tem. In the present work, we shall show that their conclusion
is incorrect. Actually, a superluminal optical soliton obtained
in an anomalous dispersion regime near resonance suffers a
serious absorption because such soliton works outside of EIT
transparency window. However, by choosing appropriate pa-
rameters the system may support an ultraslow optical soliton
with very low light intensity when working in a normal disper-
sion regime near resonance. Since in this case the system works
within the EIT transparency window, the ultraslow optical soli-
ton can propagate stably in the system.

The Letter is arranged as follows. In Section 2, the Hamil-
tonian, the Maxwell–Schrödinger equations, and the linear op-
tical property of the system are presented. In Section 3, by using
a standard method of multiple-scales an asymptotic expansion
on the Maxwell–Schrödinger equations is made and a nonlinear
envelope equation governing the time-evolution of probe field
envelope is derived. In Section 4 ultraslow optical soliton so-
lutions are given and their physical properties are discussed in
detail. The stability of the ultra-slow optical solitons and their
collision are also studied by means of numerical simulations.
Section 5 contains a discussion and summary of our main re-
sults of this work.

2. Model and the solution in linear regime

The system under study is a resonant, lifetime-broadened
four-level tripod atomic system [25] with upper energy level |0〉
and lower energy levels |1〉, |2〉, and |3〉 (see Fig. 1). A weak,
pulsed probe optical field (with pulse duration τ0) of center fre-
quency ωp/(2π) is coupled to |1〉 → |0〉 transition, a strong
and continuous-wave (cw) pumping optical field of frequency
ωc/(2π) is coupled to |2〉 → |0〉 transition, and a strong and
cw control field of frequency ωd/(2π) is coupled to |3〉 → |0〉
transition, respectively.

The electric-field vector of the whole optical field can be
written as E = ∑

l=p,c,d elEl exp[i(kl · r − ωlt)] + c.c., where
|kl | = ωl/c (l = p, c, d) and el is the unit vector in the lth
polarization direction. The Hamiltonian of the system reads
Ĥ = Ĥ0 + Ĥ ′, where Ĥ0 describes an free atom and Ĥ ′ de-
scribes the interaction between the atom and the optical field. In
Schrödinger picture, the state vector of the systems is expressed
by |Ψ (z, t)〉s = ∑3

j=0 Cj (z, t)|j〉, where |j〉 is the eigenstate

of Ĥ0. Under electric-dipole and rotating-wave approximations,
the Hamiltonian takes the form

Ĥ =
3∑

j=0

εj |j〉〈j | − h̄
{
Ω1 exp

[
i(kpz − ωpt)

]|0〉〈1|

+ Ω2 exp
[
i(kc · r − ωct)

]|0〉〈2|
(1)+ Ω3 exp

[
i(kd · r − ωdt)

]|0〉〈3| + H.c.
}
,

where εj is the energy of state |j〉, Ω1 = ep · p01Ep/h̄, Ω2 =
ec ·p02Ec/h̄ and Ω3 = ed ·p03Ed/h̄ are the half Rabi frequencies
of the probe, pumping, and control fields, respectively. p0l is
the electric dipole matrix element associated with the transition
|0〉 ↔ |l〉 (l = 1,2,3). The detunings are given by Δ1 = (ε0 −
Fig. 1. Energy level structure and excitation scheme of the lifetime-broadened
four-level tripod atomic system with upper energy level |0〉 and the lower en-
ergy levels |1〉, |2〉, and |3〉. Δ1 and Δ2 are detunings. Ω1, Ω1, and Ω3 are the
half Rabi frequencies of the probe, pumping, and control fields, respectively.

ε1)/h̄ − ωp = (ε0 − ε2)/h̄ − ωc and Δ2 = (ε0 − ε3)/h̄ − ωd .
For simplicity and without loss of generality, the wavevector
direction of the probe field has been chosen along the z axis,
i.e. kp = kpez.

In order to investigate the time evolution of the system, it
is more convenient to employ an interaction picture, which is
obtained by making the transformation Cj = Aj exp{i[kj · r −
(εj /h̄ + λj )t]}, with k0 = kpez, k1 = 0, k2 = kpez − kc, k3 =
kpez −kd , λ0 = 0, λ1 = λ2 = Δ1, and λ3 = Δ2. Then we obtain
the Hamiltonian in the interaction picture

Ĥint = −h̄
[
Δ1|1〉〈1| + Δ1|2〉〈2| + Δ2|3〉〈3|]

(2)− h̄
[
Ω1|0〉〈1| + Ω2|0〉〈2| + Ω3|0〉〈3| + H.c.

]
.

Using the Schrödinger equation ih̄∂|Ψ (t)〉int/∂t =
Hint|Ψ (t)〉int with |Ψ (t)〉int = (A1,A2,A3,A4)

T (T represents
transpose) and the Maxwell equation ∇2E − (1/c2)∂2E/∂t2 =
[1/(ε0c

2)]∂2P/∂t2 with P =Na{p01A0A
∗
1 exp[i(kpz−ωpt)]+

p02A0A
∗
2 exp[i(kc · r−ωct)]+p03A0A

∗
3 exp[i(kd · r−ωdt)]+

c.c.}, one can readily obtain the Maxwell–Schrödinger (MS)
equations governing the motion of atomic state amplitudes and
the time-dependent probe field

(3a)

(
i

∂

∂t
+ d0

)
A0 + Ω1A1 + Ω2A2 + Ω3A3 = 0,

(3b)

(
i

∂

∂t
+ d2

)
A2 + Ω∗

2 A0 = 0,

(3c)

(
i

∂

∂t
+ d3

)
A3 + Ω∗

3 A0 = 0,

(3d)i

(
∂

∂z
+ 1

c

∂

∂t

)
Ω1 + κA0A

∗
1 = 0,

(3e)|A0|2 + |A1|2 + |A2|2 + |A3|2 = 1,

where d0 = iγ0, d2 = Δ1 + iγ2, and d3 = Δ2 + iγ3 with γl

describing the corresponding decay rate of the energy level |l〉
(l = 0, 2, 3). κ = Naωp|p10|2/(2ε0ch̄) is the coupling constant
between the electric field and the atomic state vector, with Na

being the atomic concentration and ε0 the vacuum dielectric
constant.

Before solving the MS equations (3a)–(3e), we first examine
the linear property of the system, which may provide a useful
starting point for the weak nonlinear theory developed in the
following sections. We assume that atoms are initially popu-
lated in the ground state |1〉 and the probe field is infinitesimal.
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(a)

(b)

Fig. 2. The dispersion curve Re(K) (solid line) and absorption curve Im(K)

(dashed line) of the probe field as functions of ω, obtained with Δ1 = −Δ2 	= 0
(panel (a)) and Δ1 = Δ2 = 0 (panel (b)). The system parameters have been
given in the text.

In this case the population of the ground state |1〉 is not depleted
during time evolution, i.e. A1 ≈ 1. Taking Ω1 and Aj (j = 0,
2, 3) as being proportional to exp[i(K(ω)z − ωt)], one obtains
readily the linear dispersion relation

(4)K(ω) = ω

c
− κ

(ω + iγ0) − |Ω2|2
ω+d2

− |Ω3|2
ω+d3

.

In most operation conditions K(ω) can be Taylor expanded
around the center frequency of the probe field, i.e. ω = 0.
We obtain K(ω) = K0 + K1ω + 1

2K2ω
2 + · · ·, where Kj =

[∂jK(ω)/∂ωj ]|ω=0 (j = 0,1,2, . . .), which can be obtained
from Eq. (4) explicitly. The physical interpretation of the dis-
persion coefficients Kj is rather clear. K0 = φ + iα/2 gives
the phase shift φ per unit length and absorption coefficient α,
K1 = 1/Vg determines the group velocity Vg of the probe
pulse, and K2 represents the group-velocity dispersion that con-
tributes to probe pulse’s shape change and an additional loss.

The panel (a) of Fig. 2 shows the dispersion (solid line) and
absorption (dashed line) curves of the probe field Ω1, which are
characterized respectively by Re(K) and Im(K). The parame-
ters are taken as γ0 � 1.2 × 108 s−1, γ2 � γ3 � 1.0 × 102 s−1,
κ = 1.0 × 109 cm−1 s−1, Ω2 = Ω3 = 1.0 × 108 s−1, Δ1 =
−1.0 × 108 s−1, and Δ2 = 1.0 × 108 s−1. Notice that two EIT
Fig. 3. The deformation of the dimensionless probe wave intensity
|Ω1(z, t)/Ω1(0, t)|2 due to dispersion. The initial condition is a Gaussian pulse
with the form Ω1(0, t) = Ω1(0,0) exp[−t2/(2τ2

0 )] with τ0 = 1.0×10−7 s and
other parameters being the same as those used in Fig. 2(b).

transparency windows (called double dark resonance [27]) in
the absorption curve Im(K) appear due to the quantum inter-
ference effect induced by the pumping field Ω2 and the con-
trol field Ω3. Interestingly, if one takes Δ1 = Δ2 = 0 without
changing other parameters, only one transparency window oc-
curs, as shown in panel (b) of the figure.

The dispersion curves in the figure can be divided into nor-
mal and anomalous dispersion regimes. In the normal disper-
sion regimes, i.e. ∂ Re(K)/∂ω > 0, we have Vg < c and thus
the probe field is a slow light; in the anomalous dispersion
regimes, i.e. ∂ Re(K)/∂ω < 0, one has Vg > c or even negative
and hence the probe field is superluminal [26]. From the figure
we see that in the normal anomalous (anomalous) dispersion
regimes the probe field has a negligible (strong) absorption.
Consequently, the probe field is nearly transparent (opaque) for
the slow-light (superluminal) propagation when working in the
normal (anomalous) dispersion regimes.

Although in the normal dispersion regimes the absorption
of the probe field can be largely suppressed, the dispersion
effect of the system may be significant for the probe pulse
with a shorter temporal width. Fig. 3 shows the dimension-
less probe field intensity |Ω1(z, t)/Ω1(0, t)|2 during propa-
gation in the linear level. The initial condition is a Gaussian
pulse with the form Ω1(0, t) = Ω1(0,0) exp[−t2/(2τ 2

0 )] with
τ0 = 1.0 × 10−7 s and other parameters being the same as those
used in Fig. 2(b). We see that due to the dispersion effect of the
system the probe pulse spreads rapidly. The main contribution
for the pulse deformation in the linear case is mainly due to the
group-velocity dispersion of the system.

3. Asymptotic expansion and nonlinear envelope equation

Because an EIT-based system has giant Kerr nonlinear-
ity [7–9], it is natural to use such nonlinearity to balance the
dispersion effect of the system. In this section, we apply stan-
dard multiple-scale perturbation theory [1] to solve equations
(3a)–(3d) and investigate the possible formation and propaga-
tion of a shape-preserving nonlinear probe pulse in the system.
In order to make nonlinear effect significant, one may increase
the intensity of the probe field and hence the population in the
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ground state |1〉 will be depleted. Thus we make the following
asymptotic expansion Aj = δ1j + ∑∞

n=1 εnA
(n)
j (j = 0,1,2,3)

and Ω1 = ∑∞
n=1 εnΩ

(n)
1 , where ε is a small parameter char-

acterizing the small population depletion of the ground state.
To obtain a divergence-free expansion, all quantities on the
right-hand side of the asymptotic expansion are considered as
functions of the multi-scale variables zj = εj z (j = 0 to 2) and
tj = εj t (j = 0,1). Substituting the expansion and the multi-
scale variables into Eqs. (3a)–(3e), we obtain a chain of linear,
but inhomogeneous equations for A

(l)
j and Ω

(l)
1 , i.e.

(5a)

(
i

∂

∂t0
+ d0

)
A

(l)
0 + Ω

(l)
1 + Ω2A

(l)
2 + Ω3A

(l)
3 = M(l),

(5b)

(
i

∂

∂t0
+ d2

)
A

(l)
2 + Ω∗

2 A
(l)
0 = N(l),

(5c)

(
i

∂

∂t0
+ d3

)
A

(l)
3 + Ω∗

3 A
(l)
0 = Q(l),

(5d)i

(
∂

∂z0
+ 1

c

∂

∂t0

)
Ω

(l)
1 + κA

(l)
0 = R(l).

The explicit expressions of M(l), N(l), Q(l) and R(l) are omitted
here for saving space. Eqs. (5a)–(5d) can be further expressed
in the following convenient form

(6a)L̂Ω
(l)
1 = S(l),

(6b)A
(l)
0 = 1

κ

[
R(l) − i

(
∂

∂z0
+ 1

c

∂

∂t0

)
Ω

(l)
1

]
,

(6c)A
(l)
2 =

(
i

∂

∂t0
+ d2

)−1[
N(l) − Ω∗

2 A
(l)
0

]
,

(6d)A
(l)
3 =

(
i

∂

∂t0
+ d3

)−1[
Q(l) − Ω∗

3 A
(l)
0

]
,

with

L̂ = κ − i

[(
i

∂

∂t0
+ d0

)
− |Ω2|2

(
i

∂

∂t0
+ d2

)−1

− |Ω3|2
(

i
∂

∂t0
+ d3

)−1](
∂

∂z0
+ 1

c

∂

∂t0

)
,

and

S(l) = −
[(

i
∂

∂t0
+ d0

)
− |Ω2|2

(
i

∂

∂t0
+ d2

)−1

− |Ω3|2
(

i
∂

∂t0
+ d3

)−1]
R(l)

+ κ

[
M(l) − Ω2

(
i

∂

∂t0
+ d2

)−1

N(l)

− Ω3

(
i

∂

∂t0
+ d3

)−1

Q(l)

]
.

Eqs. (6a)–(6d) can be solved order by order. The leading or-
der (l = 1) solution is just that obtained in the linear regime,
described already in the last section. The expression of Ω1 has
the form F exp{i[K(ω)z0 − ωt0]}, with F being a yet to be de-
termined envelope function depending on the slow variables t1
and zj (j = 1,2).
At the second order (l = 2), a divergence-free condition for
the second-order solution requires

(7)i

(
∂F

∂z1
+ 1

Vg

∂F

∂t1

)
= 0,

where Vg = 1/K1 is the group velocity of the envelope F .
To the third order (l = 3), a divergence-free condition yields

the equation for F

(8)i
∂F

∂z2
− K2

2

∂2F

∂t2
1

− W exp(−α1z2)F |F |2 = 0,

with α1 = ε−2α, and

W = − κ

G|G|2
(

1 + |Ω2|2
Δ2

1 + γ 2
2

+ |Ω3|2
Δ2

2 + γ 2
3

)
,

where G = iγ0 − |Ω2|2/(Δ1 + iγ2) − |Ω3|2/(Δ2 + iγ3). Here,
the real and the imaginary parts of W contribute to the Kerr
(self-phase modulation) effect and the nonlinear absorption of
the system, respectively.

Combining equations (7) and (8) and returning to original
variables, we obtain the nonlinear envelope equation

(9)i

(
∂

∂z
+ α

2

)
U − K2

2

∂2U

∂τ 2
− W |U |2U = 0,

where τ = t − z/Vg and U = εFe−iαz/2.

4. Ultraslow optical solitons

4.1. Ultraslow soliton solutions

Eq. (9) is a Ginzberg–Landau equation, which has complex
coefficients and thus generally does not allows soliton solu-
tions. However, if a practical set of system parameters can be
found so that the imaginary part of these coefficients can be
made much smaller than their corresponding real part, it can be
approximated as a nonlinear Schrödinger (NLS) equation and
thus it is possible to obtain a shape-preserving soliton solution
that can propagate for a rather long distance without signifi-
cant distortion. This is just the case for the present system when
working in the normal dispersion regimes (i.e. within the EIT
transparency window).

For convenience of following discussions, we write Eq. (9)
into the dimensionless form

(10)i
∂u

∂s
+ ∂2u

∂σ 2
+ 2u|u|2 = id0u,

where s = −z/(2LD), σ = τ/τ0, u = U/U0, and d0 = LD/LA.
Here LD = τ 2

0 /K̃2 is characteristic dispersion length, LA =
1/α is characteristic absorption length, and U0 = (1/τ0) ×√

K̃2/W̃ is characteristic Rabi frequency of the probe field. The
symbol tilde above these quantities denotes the real part of the
corresponding coefficients. Notice that in order to form soli-
tons the characteristic Rabi frequency U0 is obtained by setting
LD = LNL (i.e. the dispersion and the nonlinearity are balanced
each other), where LNL is the characteristic nonlinearity length
defined by LNL = 1/(W̃U2).
0
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If d0 
 1 (i.e. LD is much less than LA), the term on
the right-hand side of Eq. (10) is a high-order one and thus
can be neglected within the propagation distance up to LD .
In this case Eq. (10) reduces to the standard NLS equation
i∂u/∂s + ∂2u/∂σ 2 + 2u|u|2 = 0, which is completely inte-
grable and allows multi-soliton solutions. A single soliton solu-
tion reads u = sechσ exp(is), or in terms of field

Ω1 = Ueiφz

(11)= 1

τ0

√
K̃2

W̃
sech

[
1

τ0

(
t − z

Ṽg

)]
exp

[
iφz − i

z

2LD

]
,

which describes a fundamental bright soliton travelling with
propagating velocity Ṽg .

Now we consider an practical cold atomic (e.g. 87Rb) sys-
tem that can be realized by a typical alkali atomic vapor at
very low temperature. The parameters suitable to this system
can be chosen as γ0 � 1.2 × 108 s−1, γ2 � γ3 � 1.0 × 102 s−1.
We take κ = 1.0 × 109 cm−1 s−1, Ω2 = 1.0 × 108 s−1, Ω3 =
1.3 × 108 s−1, Δ1 = −8.0 × 105 s−1, and Δ2 = 1.0 × 106 s−1.
With these parameters we get K0 = (0.227 + i0.006) cm−1,
K1 = (1.68 + i0.09) × 10−6 cm−1 s, K2 = (2.50 + i0.21) ×
10−11 cm−1 s2, and W = (3.81 + i0.11) × 10−16 cm−1 s2. We
see that the imaginary part of these coefficients are indeed much
smaller than their corresponding real part.

After taking τ0 = 5.0 × 10−6 s, we obtain U0 = 5.0 ×
107 s−1, LD = LNL = 1.0 cm, and LA = 157 cm. Because the
dispersion and nonlinear lengths are much smaller than the ab-
sorption length, the absorption of the probe field can be safely
neglected within the distance up to the dispersion and nonlin-
earity lengths. In this case the system can be described reason-
ably by the standard NLS equation (10) without the d0 term and
hence the soliton with the form (11) for the probe field Rabi fre-
quency is physically possible in the system.

With the above parameters we obtain the propagating veloc-
ity of the soliton

(12)Ṽg = 2.0 × 10−5c.

So the soliton obtained travels with an ultraslow propagat-
ing velocity. The spatial width of such ultraslow soliton is
τ0Ṽg = 2.98 cm. The bright soliton with the form (11) is ob-
tained under the condition Re(K̃2W̃ ) > 0. Note that the system
also supports dark solitons when the parameters are chosen to
satisfy the condition Re(K̃2W̃ ) < 0.

The input power of the ultra-slow optical soliton in the nor-
mal dispersion regimes described by Eq. (11) can be easily
calculated by Poynting’s vector. By a simple calculation we ob-
tain the average flux of energy over carrier-wave period, which
is given by P̄ = P̄max sech2[(t −z/Ṽg)/τ0], with the peak power
P̄max = 2ε0cnpS0|Ep|2max = 2ε0cnpS0(h̄/|p13|)2K̃2/(τ

2
0 W̃ ).

Here np = 1+cK/ωp is the refractive index and S0 is the cross-
section area of the probe field. Using the above parameters and
S0 ≈ 1.0 × 10−4 cm2, we obtain P̄max = 3.5 × 10−3 mW. Thus
to produce such ultraslow soliton very low input light inten-
sity is needed. However, in non-resonant media such as optical
fibers, ps or fs laser pulses are usually needed to reach a very
(a)

(b)

Fig. 4. The dispersion curve Re(K) (solid line) and absorption curve Im(K)

(dashed line) of the probe field as functions of ω obtained with the parameters
given just below Eq. (11) (panel (a)) and given by [25] (panel (b)). The A and
B are points where the optical solitons are obtained in the present work and in
Ref. [25], respectively.

high peak power to bring out the enough nonlinear effect re-
quired for soliton formation.

We stress that the above result is obtained in a normal dis-
persion regime, i.e. the system parameters have been chosen
in an EIT transparency window. Shown in Fig. 4(a) is the dis-
persion (solid line) and absorption (dashed line) curves of the
probe field by using the above parameters. The ultraslow op-
tical soliton (11) is obtained in the normal dispersion regime
near resonance, indicated by the point A in the figure, where
the absorption is extremely low. Note that although a superlumi-
nal soliton may be also generated in the anomalous dispersion
regime (i.e. the regions with negative slope of Re(K)). How-
ever, such soliton decays very rapidly due to the very large
absorption of the optical filed.

4.2. Stability of the ultraslow optical solitons

Now we discuss the stability of the ultraslow optical soliton
by using numerical simulations. In Fig. 5(a), we have plot-
ted the waveshape of |Ω1/U0|2 as a function of t/τ0 and
z/(2LD) with the parameters given just below the expression
(11). The solution is obtained by numerically solving Eq. (9)
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(a)

(b)

Fig. 5. (a): The shape-preserving (soliton) waveshape of |Ω1/U0|2 as a func-
tion of t/τ0 and z/(2LD) with the parameters given just below Eq. (11). The
solution is numerically obtained from Eq. (9) with full complex coefficients.
The initial condition is given by Ω1(0, t)/U0 = sech(t/τ0). (b): The evolution
of |Ω1/U0|2 obtained by directly integrating equations (3a) and (3e) with-
out any approximation. The initial condition is taken the same as that used in
panel (a).

with full complex coefficients. The initial condition is given by
Ω1(0, t)/U0 = sech(t/τ0). We see that the shape of the soli-
ton undergoes no apparent deformation because the imaginary
part of the coefficients is very small. In order to make further
confirmation on the soliton solution and check its stability, we
have made a directly numerical integration based on Eqs. (3a)–
(3e) without using any approximation. The result is shown in
Fig. 5(b). The initial condition is taken the same as that used in
Fig. 5(a). We see that the probe pulse suffers no apparent dis-
tortion except a very small wave radiation when propagating to
3 cm distance.

We have also numerically investigated the interaction be-
tween two ultraslow optical solitons. Assume initially we have
two solitons created in the system. As time goes on they
collide and then depart each other. Shown in Fig. 6 is the
waveshape of the two solitons during their collision. The ini-
tial condition is taken by Ω1(0, t)/U0 = sech[(t − 3.0)/τ0] +
1.2 sech[1.2(t +3.0)/τ0]. We see that the solitons are fairly sta-
ble during the collision.

Notice that the optical solitons in the same system have
been studied recently by Han et al. [25]. For comparison,
we have also calculated the coefficients using the parame-
Fig. 6. The waveshape during the collision between two ultraslow optical soli-
tons. The initial condition is given by Ω1(0, t)/U0 = sech[(t − 3.0)/τ0] +
1.2 sech[1.2(t + 3.0)/τ0].

ters given in [25], i.e. γ0 � 1.2 × 108 s−1, γ2 � γ3 � 0,
κ = 1.0 × 109 cm−1 s−1, Ω2 = 1.0 × 108 s−1, Ω3 = 2.0 ×
1010 s−1, Δ1 = Δ2 � 1.2 × 109 s−1, and τ0 = 1.0 × 10−11 s.
We get φ � −3.00 × 10−3 rad cm−1, α � −2.16 × 10−6 cm−1,
K1 = (3.58 + i0.0002)× 10−11 cm−1 s, K2 = (3.01 + i0.15)×
10−23 cm−1 s2, and W = (7.53 + i0.0027) × 10−24 cm−1 s2.
Thus, we have LD = LNL = 3.3 cm, Ṽg = 0.93c, and U0 =
2.0 × 1011 s−1. The corresponding linear dispersion and ab-
sorption curves of the probe field are shown in Fig. 4(b) by
using these parameters. Base on these results one can obtain
the following conclusions: (i) The system works in a normal
dispersion regime, not an anomalous regime as claimed by the
authors. Hence the soliton obtained is a slow but not superlumi-
nal one. (ii) The system works in the point B of Fig. 4(b), i.e. far
away from the resonance due to the large Ω3, Δ1, and Δ2. This
is not interesting for a resonant system. (iii) The magnitudes
of K̃2 and W̃ are respectively twelve and eight orders smaller
than the corresponding coefficients given in our above scheme.
(iv) The soliton formation in this case requires U0 � 2000Ω2,
which violates the weak probe-field assumption and the EIT
condition (i.e. |Ω1| 
 |Ω2|, |Ω3|). Consequently, the claim by
the authors of Ref. [25] that they have obtained a superluminal
optical soliton in the same system is incorrect. By a careful in-
spection on the calculations presented in Ref. [25], we found
that the authors mistook a sign in the MS equations, which re-
sults in a wrong linear dispersion relation and a wrong group
velocity expression of the probe field. In fact, as mentioned
above although a superluminal optical soliton can be generated
in the anomalous dispersion regimes, it cannot propagate to a
significant distance due to the very large optical absorption.

5. Summary

In this work, we have made a detailed investigation on the
possible formation and propagation of ultraslow optical soli-
tons in a resonant, lifetime-broadened four-level tripod atomic
system via electromagnetically induced transparency. We have
shown that a superluminal optical soliton suffers a serious ab-
sorption during propagation because it works outside of the EIT
transparency window. Thus the claim and result presented in
Ref. [25] are incorrect. However, the system supports an ultra-
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slow optical soliton if working in normal dispersion regimes
near resonance. The ultraslow optical soliton can propagate sta-
bly for a fairly long distance because in this case the system
works inside of the EIT transparency window. In addition, such
ultraslow optical soliton can be generated by using very low in-
put light intensity. Different from the ultraslow optical solitons
in the N -type systems suggested earlier [20], the dissipation of
the present tripod system is smaller because there is only one
upper energy level. Due to the robust propagating property, the
ultraslow optical solitons in such systems may have potential
applications in optical information processing and transmis-
sion.
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