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Nonadiabatic geometric quantum computation with trapped ions
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We propose a nonadiabatic scheme for geometric quantum computation with trapped ions. By making use of
the Aharonov-Anandan phase, the proposed scheme not only preserves the globally geometric nature in quan-
tum computation, but also provides the advantage of nonadiabaticity that overcomes the problem of slow
evolution in the existing adiabatic schemes. Moreover, the present scheme requires only two atomic levels in
each ion, making it an appealing candidate for quantum computation.
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Conventionally, the controllable operations in quantu
computation~QC! are achieved on the basis ofdynamical
origins of quantum state evolutions@1#. In recent years, for
the purpose of being fault tolerant to certain types of co
putational errors, there are considerable interests in exp
ing the possibility of implementing quantum computation
geometricalmeans which have been termed asholonomic
quantum computations@2–4#. Depending on the degenera
property of the eigenspace of the governing Hamiltonian,
holonomy can be either a simple Abelian Berry phase fac
@5# or a general non-Abelian unitary transformation@6#. It
has been shown that the universal quantum computation
be implemented in principle by holonomies@2–4#. Up to
date, several experimental proposals have been suggeste
geometric quantum computation, using such as the nuc
magnetic resonance~NMR! @7#, superconducting nanocir
cuits @8,9#, trapped ions@10,11#, and nonlinear optics@12#.

The principle of the aforementioned geometric QC
rooted in theadiabatic evolution of the quantum system
which may thus imply a slow computing speed. The adiab
cally slow evolution may also challenge the sustainmen
the required coherence in QC. Therefore, geometric
based onnonadiabaticevolution should be desirable. Ver
recently, Wang and Keiji suggested to exploit a nonadiab
evolution to realize geometric QC in NMR system and s
perconductor nanocircuits@13#. Indeed, geometric phase e
ists in nonadiabatic evolving quantum systems, which is
fact the Aharonov-Anandan~AA ! phase@14#. Strictly speak-
ing, the AA phase depends on certain dynamical quanti
such as the rotating angular speed of external~magnetic!
field or state vector@16–18#. In this sense, the AA phas
differs from the adiabatic Berry phase. However, the dep
dence of the AA phase on the angular speed is through
closed path loop depicted by the ending point of the s
vector, and hence is global in nature that largely retains
geometric sense of the AA phase. Accordingly, quant
computation based on the nonadiabatic AA phase can be
sonably regarded as a kind of geometric QC.

In this work we propose a scheme for nonadiabatic g
metric quantum computation with trapped ions. Besides
moving the drawback of the slow adiabatic evolution, t
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proposed nonadiabatic scheme holds additional merits as
lows. First, there is no need to design the reverse evolv
path to eliminate dynamical phases that occur in the Be
phase-based, adiabatic geometric QC operations in no
generated systems@7,8#. Second, in comparison to the exis
ing fully holonomic QC schemes@9,10#, the present one doe
not involve the complicated construction of the degener
eigenspace of driving Hamiltonian. The above two mer
stem from the following observations. In a nonadiaba
quantum evolution, the geometric AA phase is in gene
accompanied by a dynamical phase. However, if the evo
ing path is designed such that along it the state vecto
always perpendicular to the driving~magnetic! field, the re-
sulting phase factor after a nontrivial cyclic evolution will b
purely geometric. This feature has been exploited by Su
et al. in their seminal experiment for demonstrating the A
phase@15#. Finally, only two atomic levels of each ion ar
needed in our scheme. This merit alone is attractive, si
the originally proposed ion-trap QC scheme required th
levels@19# and the recently proposed holonomic ion-trap Q
required four levels@10,11#. We notice that valuable efforts
on improving ion-trap QC protocol by using only two leve
have been carried out in dynamic schemes@20–22#. In par-
ticular, the technique proposed in Ref.@22#, which effec-
tively couples the electronic states of a pair of ions via v
tually exchanging phonons, is similar to our present one. T
major contribution of our work is to perform QC by geome
ric means. Viewing that the work of Ref.@22# has in fact
extended the ion-trap QC scheme to finite temperature,
geometric scheme may also hold to similar regime, althou
in the following we would restrict our description at zer
temperature limit.

Model description. For quantum logic with trapped ions
we assume that each ion has two relevant internal statesu0&
andu1& with energy separationv0, and, as usual@19#, can be
selectively addressed by lasers. Consider, for instance,
j th ion being exposed to a traveling-wave laser fieldE(z)
5E0 cos(k•z2vLt1f) with frequencyvL , wave vectork,
and phasef. Herez5z0ẑ(a1a†) is the center-of-mass co
ordinate of the ion in terms of the phonon raising~lowering!
©2002 The American Physical Society20-1
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operator a†(a) and zero-point spreadz0[(\/2Mv)1/2,
where M is the total mass of the ion chain, andv is the
phonon frequency. The resulting Hamiltonian reads

H ( j )5
v0

2
s j

z1ṽ j@s j
1eih(a1a†)2 ivLt1 if1H.c.#. ~1!

Here, the atomic Pauli operatorssz5u1&^1u2u0&^0u, s1

5u1&^0u, ands25u0&^1u, are introduced. In Eq.~1! ṽ j is
the Rabi frequency, andh5(k• ẑ)z0 is the Lamb-Dicke pa-
rameter that accounts for the coupling strength between
ternal and motional states. In our geometric scheme, the
non plays no roles in one-bit operation, but it does involve
two-bit logic gate implementation as it effectively coupl
two ions together.

One-bit rotation via nonadiabatic AA phase. As just men-
tioned, in single-bit logic operation, we do not need t
phonon-assisted dynamical flipping. This can be the case
der situations such as~i! at zero temperature~no phonon
excitation!, if vL,v0; and ~ii ! at finite temperature, bu
v02vL5” nv (n is an integer!. In the absence of phono
participation, Eq.~1! can be reexpressed as

H R
( j )5Vj•sj , ~2!

in the rotating frame~with angular velocityvLêz). Here no-
tations have been introduced for the effective magnetic fi
Vj[$ṽ j cosf,ṽj sinf,(v02vL)/2%, and the vector Pauli op
eratorsj[$s j

x ,s j
y ,s j

z%.
To show how rotation between logic statesu0& and u1&

can be performed by geometric means, we first consider
geometric evolution of the eigenstates ofsy, defined by
syu6&56u6&, under appropriately designed laser s
quences. Specifically, the stateu1&, for instance, will com-
plete a cyclic evolution and acquire a nonadiabatic AA ph
under the following operations:

~i! Switching on ap pulse with laser phasef50, the
state u1& rotates around an effective magnetic fieldV1

5$ṽ j ,0,(v02vL)/2%, from u1& in the êy direction tou2& in
the2êy direction along the curve ACB on the Bloch sphe
see Fig. 1.

~ii ! Suddenly changing the laser phase tof5p, after an-
otherp pulse, the stateu2& rotates back tou1& aroundV2

5$2ṽ j ,0,(v02vL)/2% along the curve BDA on the Bloch
sphere.

According to the AA phase theory, after the above cyc
evolution, the stateu1& will acquire a geometric phaseeig,
with g54 arctan@2ṽj /(v02vL)#. Note that during the above
operation, the state vector keeps always perpendicular to
effective magnetic field, thus no dynamical phase is accu
lated in the evolution. Similarly, the stateu2& will acquire
AA phasee2 ig at the same time.

Now consider the evolution of logic statesu0&
52 i /A2(u1&2u2&), andu1&51/A2(u1&1u2&). After the
above operations, they evolve to states

u0&→cosgu0&1singu1&,
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u1&→cosgu1&2singu0&. ~3!

We see here that the geometric AA phase plays a role
rotating the logic states. Particularly, complete state flipp
betweenu0& andu1& can take place atg5p/2. Note also that
the possible value ofg ranges from 0 to 2p, implying the
ability of arbitrary rotation betweenu0& and u1&.

The state evolution of the performed qubit described
Eq. ~3! is expressed in the rotating frame with frequencyvL ,
in which otherfree ~not performed! qubits would have rela-
tive phase accumulations in the nonresonant case ofvL
Þv0. Conventionally, a more convenient choice is to e
press states in the interaction picture with respect toH0

5v0/2( js j
z ~equivalently, a rotating frame with frequenc

v0 aroundz axis!. Accordingly, Eq.~3! can be recast in the
interaction picture as

u0&→e2 ivDt/2 cosgu0&1eivDt/2 singu1&,

u1&→eivDt/2 cosgu1&2e2 ivDt/2 singu0&, ~4!

wherevD5v02vL andt is the total operation time on th
performed qubit.

Interestingly, the abovestate rotation (flipping)is per-
formed bynonresonantpulses via geometrical means. No
we show that byresonantpulses, a purephase-shift gateof
single qubit can be geometrically realized. In resonant ca
the laser-frequency-associated rotating frame coincides
the interaction picture defined byH0, in which the (j th)
qubit Hamiltonian readsH ( j )5ṽ j@s j

1eif1H.c.#5Vj•sj ,

with Vj5$ṽ j cosf,ṽj sinf,0%. We see that in the rotating
frame the effective magnetic field constantly has zeroz-axis
component for arbitrary laser phasef, i.e., it lies in thex-y
plane. To realize the single-bit phase gate, we first switch
a p pulse with laser phase at certain value, say,2f0. The
logic state u0& and u1& would rotate around the effectiv
magnetic field$ṽ j cosf0,2ṽj sinf0,0% to u1& and u0&, re-
spectively. Then, suddenly changing the laser phase tof0,
after anotherp pulse, the logic states rotate around the
fective magnetic field$ṽ j cosf0,ṽj sinf0,0%, and return to

FIG. 1. Schematic diagram for geometric rotation of the st
vector around theeffective magnetic field. Since the state is alway
perpendicular to the field, there is no dynamical phase accumula
during the evolution.
0-2
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the original statesu0& andu1&. Associated with this two-step
cyclic evolution, the logic states will, respectively, acqui
geometric AA phases as

u0&→ei g̃u0&,

u1&→e2 i g̃u1&, ~5!

where g̃54f0. With the help of this phase-shift operatio
the additional phase factor in Eq.~4! can be canceled out b
properly choosingf0. More importantly, together with this
phase-shift gate, the qubit state rotation Eq.~4! constitutes a
complete logic set for the arbitrary single-qubit operation

Two-bit gate via nonadiabatic AA phase. To complete the
universal gate for quantum computation, nontrivial two-
gate such as theCNOT, or equivalently, the conditional phase
shift ~CPS! gate, would be required. Below we show how t
CPS gate can be implemented via geometric means. C
sider two qubits~e.g., thej th andkth ones! irradiated by two
lasers with frequenciesvL,1 and vL,2 , and phasesf1 and
f2. By settingvL,1.v0 andvL,2,v0, and correspondingly
denoting the detunings byd15vL,12v0 and d25v0
2vL,2 , the effective coupling between the two-bit stat
u00& and u11& can be established via virtually exchangin
phonons, and the resulting two-bit effective Hamiltoni
reads@22#

H̃( j ,k)5 (
m51

4

Emum̃&^m̃u1gjk@e2 i (vL,11vL,2)tei (f11f2)s j
1sk

1

1H.c.#. ~6!

Here, notations$u1̃&5u11&,u2̃&5u00&,u3̃&5u10&,u4̃&5u01&%
are introduced for the two-bit computational basis states.
to the first-order expansion of the Lamb-Dicke parameteh
in Eq. ~1!, the effective coupling strength can be obtained
second-order perturbation theory asgjk5gjgk@1/(d12v)
21/(d21v)#, where gj (k)5ṽ j (k)h is the one-phonon in-
volved Rabi frequency of single-ion transition. The fo
basis-state energiesEm(m51, . . . ,4) contain also the ac
Stark shifts. The effective interaction couples only betwe
u1̃& and u2̃&, but leavesu3̃& and u4̃& inactive with respect to
the laser operation in study. This effective two-state dyna
ics ~e.g., Rabi oscillations! has been demonstrated in Re
@22# by numerical simulation starting from the origin
Hamiltonian. As a result, for two-bit operation, one can foc
on state evolution in the subspace$u1̃&,u2̃&% in which the
two-bit Hamiltonian ~6! is recast to a similar form as th
single qubit@23#

H̃R
( j ,k)5

ṽD

2
Sz1gjk~eiFS11e2 iFS2!, ~7!

whereF5f11f2, and thetwo-bit Pauli matrices are intro
duced asSzu1̃(2̃)&56u1̃(2̃)&, S1u2̃&5u1̃&, and S2u1̃&
5u2̃&. Note also that the Hamiltonian~7! has been expresse
in the rotating frame with respect toSz with the rotation
04232
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frequencyvL,11vL,2 , thus ṽD5(E12E2)2(vL,11vL,2).
Simple comparison of Eq.~7! with Eq. ~2! indicates that an
arbitrary rotation betweenu1̃& andu2̃& can be performed geo
metrically as that in the single-bit case.

In the spirit of pulse-sequence operations in dynam
scheme based on anXY spin model@24–26#, we shall in the
following show that the CPS gate can be implementedgeo-
metrically as

UCPS5eip/4eipnj •sj /3eipnk•sk/3e2 ipsk
x/2U jk~p/4!e2 ips j

y/2

3U jk~p/4!e2 ips j
x/2. ~8!

Here the vector Pauli operators5(sx,sy,sz), unit vector
nj5(1,1,21)/A3, andnk5(1,21,1)/A3. In the interaction
picture with respect to the original free ion Hamiltonian, t
two-bit rotation operatorU jk(a) is defined viaU jk(a)u01&
5u01&, U jk(a)u10&5u10&, and

U jk~a!u00&5cosS a

2 D u00&1 i sinS a

2 D u11&,

U jk~a!u11&5cosS a

2 D u11&1 i sinS a

2 D u00&. ~9!

Since the arbitrary rotation and phase-shift gate of sin
qubit have been built up, the single-bit operations in Eq.~8!
can be readily implemented via geometric means by prop
combining the single-bit logic elements. Viewing the simila
ity between the two-bit reduced Hamiltonian~7! in the sub-
space$u00&,u11&% and the single-bit Hamiltonian~2!, the
two-bit rotation of Eq.~9! can be straightforwardly imple
mented by the following two-step procedures:

~i! In the two-bit rotating framewith frequency vL,1
1vL,2 aroundSz, performing cyclic evolution for the eigen
states ofSy by controlling the laser phasesF similarly as in
the single-bit case, one can geometrically rotate the st
u00& and u11&. Expressed in the interaction picture whic
also corresponds toH̃0[E1u11&^11u1E2u00&^00u, this op-
eration can realize the following state transformation:

u00&→e2 i ṽDt/2 cosGu00&1ei ṽDt/2 sinGu11&,

u11&→ei ṽDt/2 cosGu11&2e2 i ṽDt/2 sinGu00&. ~10!

HereG is the geometric AA phase determined by the evo
tion contour of the two-bit state vector, andṽDt is the
detuning-inducedphase accumulation.

~ii ! Tuning the laser frequencies in resonance with the t
ions @27#, i.e., ṽD50, a phase-shift gate associating wi
u00& and u11& can be implemented to cancel out the pha
factors in Eq.~10!. In the resonance case thevL,11vL,2

rotating frame coincides with the interaction picture ofH̃0.
As the one-bit resonant case, the effective magnetic fi
corresponding to Eq.~7! now lies in thex-y plane since
ṽD50. By successively choosing two different values of t
laser phaseF, one can perform twop rotations on the state
u11& and u00& around the effective magnetic fields, an
0-3
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LI et al. PHYSICAL REVIEW A 66, 042320 ~2002!
readily generate the AA geometric phases,e2 i G̃ andei G̃, for
the statesu11& and u00&, respectively. Now, after a phase
shift operation withG̃5ṽDt/22p/4, Eq. ~10! becomes,

u00&→e2 ip/4@cosGu00&1 i sinGu11&],

u11&→eip/4@cosGu11&1 i sinGu00&]. ~11!

This is identical to Eq.~9!, except for the additional globa
phases. Obviously, these global phases Quite simply, the
bal phases in Eq.~9! will not appear if we first generate
phase shift ofeip/4 on u00& and e2 ip/4 on u11& at the same
time, by the phase-shift gate just described, prior to the
eration of Eq.~10!.

We have thus realized the two-bit gateU jk as defined in
Eq. ~9!. Together with the arbitrary one-bit operations~rota-
tion and phase shift! described earlier, we can now readi
implement the important CPS gate Eq.~8!, whose role is to
transformu11&→eipu11&, while to keep other computationa
two-bit basis states unchanged.

Conclusion and discussion. The proposed nonadiabat
geometric QC scheme based on the AA phases is expect
overcome several drawbacks of the adiabatic schem
namely, the slow evolution, need of refocusing to elimin
the dynamical phases, and continuous control over m
fields to construct nontrivial loops in the parameter spa
Viewing that the trapped ion is one of the best exploit
systems for quantum computation, and that the propo
scheme requires a relatively simple atomic level configu
tion, we suggest, as a first step, to exploit it as an inter
ometer for principle proof of the nonadiabatic geometric A
re

al

hy
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phase discussed in this work. We believe that the interfere
associated with the nonadiabatic AA phase can be rea
demonstrated by experiment in ion-trap systems.

As a possible QC architecture, the elementary opera
steps in the proposed nonadiabatic geometric scheme
comparable to its dynamic counterparts. Specifically,
time scales for both the one-bit and two-bit geometric ope
tions are about the same as those in the dynamic operat
Concerning the possible fault tolerance, in the adiabatic c
quantum logic is tolerant to certain types of errors such
the field fluctuations that preserve the loop area in param
space, i.e., the Berry phase. Similarly, in the nonadiab
case, the AA phase is of error tolerance to any fluctuat
around the state-evolving path that preserves the path
area. In principle, there exist many possible driving fie
deviations that can preserve the state path loop area. H
ever, the most natural and possible errors appear to be
dom ~but small! fluctuations of the laser phase, frequenc
and coupling strength to the atomic levels, which equiv
lently result in fluctuations of the effective magnetic fiel
The global AA phase is expected to be largely immune fr
these types of errors, and, at the same time, the net dyna
phase accumulation is approximately zero due to the can
lation of the positive and negative contributions.
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