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Nonadiabatic geometric quantum computation with trapped ions
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We propose a nonadiabatic scheme for geometric quantum computation with trapped ions. By making use of
the Aharonov-Anandan phase, the proposed scheme not only preserves the globally geometric nature in quan-
tum computation, but also provides the advantage of nonadiabaticity that overcomes the problem of slow
evolution in the existing adiabatic schemes. Moreover, the present scheme requires only two atomic levels in
each ion, making it an appealing candidate for quantum computation.
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Conventionally, the controllable operations in quantumproposed nonadiabatic scheme holds additional merits as fol-
computation(QC) are achieved on the basis difnamical lows. First, there is no need to design the reverse evolving
origins of quantum state evolutiofi]. In recent years, for path to eliminate dynamical phases that occur in the Berry
the purpose of being fault tolerant to certain types of comphase-based, adiabatic geometric QC operations in nonde-
putational errors, there are considerable interests in exploigenerated systenjg,8]. Second, in comparison to the exist-
ing the possibility of implementing quantum computation bying fully holonomic QC schemd®,10], the present one does
geometricalmeans which have been termed ladonomic  not involve the complicated construction of the degenerate
quantum computationg2—4]. Depending on the degenerate eigenspace of driving Hamiltonian. The above two merits
property of the eigenspace of the governing Hamiltonian, thgtem from the following observations. In a nonadiabatic
holonomy can be either a simple Abelian Berry phase factofuantum evolution, the geometric AA phase is in general
[5] or a general non-Abelian unitary transformatifBl. It~ accompanied by a dynamical phase. However, if the evolv-
has been shown that the universal quantum computation Ry path is designed such that along it the state vector is
be implemented in principle by holonomi¢8—4]. Up to  4ays perpendicular to the drivingnagnetis field, the re-
date, several experimental proposals have been suggested Qjfiing phase factor after a nontrivial cyclic evolution will be
geometric quantum computation, using SUCh.aS the nu.de?furely geometric. This feature has been exploited by Suter
megnetlc resonane(aNMR) 7], supercqnductmg NANOCIT™ ot al. in their seminal experiment for demonstrating the AA
cuits[8,9], rapped ion$10,11,, and nonlinear optick12]. phase[15]. Finally, only two atomic levels of each ion are

The principle of the aforementioned geometric QC iSneeded in our scheme. This merit alone is attractive, since
rooted in theadiabatic evolution of the quantum system, . " o
the originally proposed ion-trap QC scheme required three

which may thus imply a slow computing speed. The adiabati o
cally slow evolution may also challenge the sustainment O]levels[19] and the recently proposed holonomic ion-trap QC

the required coherence in QC. Therefore, geometric Qéeq_uired feur _IevelilO,l];I. We notice thet valuable efforts
based omonadiabaticevolution should be desirable. Very ON improving ion-trap QC protocol by using only two levels
recently, Wang and Keiji suggested to exploit a nonadiabati®@ve been carried out in dynamic scherf@3-232. In par-
evolution to realize geometric QC in NMR system and su-ticular, the technique proposed in R¢22], which effec-
perconductor nanocircuifd3]. Indeed, geometric phase ex- tively couples Fhe electronlc. stete_s of a pair of ions via vir-
ists in nonadiabatic evolving quantum systems, which is ifu@lly exchanging phonons, is similar to our present one. The
fact the Aharonov-AnandafA) phase14]. Strictly speak- Major COI‘\tI‘Ib!JtIO.n of our work is to perform QC by.geomet—
ing, the AA phase depends on certain dynamical quantitie§C Mmeans. Viewing that the work of Ref22] has in fact
such as the rotating angular speed of exterimahgnetig extendeq the ion-trap QC scheme to_flr_ute temperature, our
field or state vectof16—18. In this sense, the AA phase geometnc sc_heme may also hoI_d to similar regime, although
differs from the adiabatic Berry phase. However, the depen!" the foIIowmg_we would restrict our description at zero-
dence of the AA phase on the angular speed is through th€mperature limit. o _
closed path loop depicted by the ending point of the state Model description For quantum logic with trapped ions,
vector, and hence is global in nature that largely retains th&/€ assume that each ion has two relevant internal sf@jes
geometric sense of the AA phase. Accordingly, quantunfnd|1) with energy separatiom,, and, as usudll9)], can be
computation based on the nonadiabatic AA phase can be re§¢lectively addressed by lasers. Consider, for instance, the
sonably regarded as a kind of geometric QC. jth ion being exposed te a traveling-wave laser fiEld)

In this work we propose a scheme for nonadiabatic geo=Eo COSk-z2— w t+ ¢) with frequencyw, , wave vectok,
metric quantum computation with trapped ions. Besides reand phasep. Herez=zyz(a+ a') is the center-of-mass co-
moving the drawback of the slow adiabatic evolution, theordinate of the ion in terms of the phonon raisithgwering)
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operator a'(a) and zero-point spready=(4/2Mw)*?,
where M is the total mass of the ion chain, and is the
phonon frequency. The resulting Hamiltonian reads

H(j)z%oﬁaj[afe‘ patal)—iogt+io Hcl]. Q)

Here, the atomic Pauli operators’=|1)(1|—|0)(0|, o™
=|1)(0], ando~ =|0)(1], are introduced. In Eq(1) w; is

the Rabi frequency, ane}=(k-2)zo is the Lamb-Dicke pa-
rameter that accounts for the coupling strength between in-
ternal and motional states. In our geometric scheme, the pho-
non plays no roles in one-bit operation, but it does involve in
two-bit logic gate implementation as it effectively couples
two ions together.

One-bit rotation via nonadiabatic AA phasks just men-
tioned, in single-bit logic operation, we do not need the
phonon-assisted dynamical flipping. This can be the case un-
der situations such a€) at zero temperaturéno phonon

excitation, if WL = @o; 'and (i) at finite temperature, but We see here that the geometric AA phase plays a role of
wo—w #Nw (N is an integex. In the absence of phonon | yiating the logic states. Particularly, complete state flipping
participation, Eq(1) can be reexpressed as betweer|0) and|1) can take place ag= /2. Note also that
HO=Q. . o ) thg_possible_value oy ranges from O to 2, implying the
R IR ability of arbitrary rotation betwee[0) and|1).

R The state evolution of the performed qubit described by
in the rotating framewith angular velocityw €,). Here no-  Eq.(3) is expressed in the rotating frame with frequensgy,
tations have been introduced for the effective magnetic fielgn which otherfree (not performedl qubits would have rela-
Q,E{Z)j cos¢,z)j sin ¢,(wy—w)/2}, and the vector Pauli op- tive phase accumulations in the nonresonant casewof
eratora-js{ojx,ajy,(rjz}. # wy. Conventionally, a more convenient choice is to ex-

To show how rotation between logic staty and|1) press states in the interaction picture with respectHtp
can be performed by geometric means, we first consider the wOIZEjajZ (equivalently, a rotating frame with frequency
geometric evolution of the eigenstates @f, defined by w, aroundz axis). Accordingly, Eq.(3) can be recast in the
o¥|=)==|%), under appropriately designed laser se-interaction picture as
quences. Specifically, the stdte ), for instance, will com-

FIG. 1. Schematic diagram for geometric rotation of the state
vector around theffective magnetic fiel&ince the state is always
perpendicular to the field, there is no dynamical phase accumulation
during the evolution.

|1)—cosy|1)—siny|0). ©))

plete a cyclic evolution and acquire a nonadiabatic AA phase |0y —e 072 cosy|0) + e “p™siny|1),
under the following operations:
(i) Switching on aw pulse with laser phase=0, the |1)—e'“p™2cosy|1)—e 1“0 siny|0), (4)

state | +) rotates around an effective magnetic fiefd;
={:0j,0,(wo—wL)/2}, from|+) in theéy direction to]—) in ~ Wherewp=wo— o andr is the total operation time on the

the — ¢, direction along the curve ACB on the Bloch sphere; performed qubit. _ o
see Fig. 1. Interestingly, the abovetate rotation (flipping)is per-

(i) Suddenly changing the laser phasefite =, after an- formed bynonresonanpulses via geometrical means. Now

other 7 pulse, the staté— ) rotates back td-+) around€, we show that byresonantpulses, a pur@hase-shift gatef
=T 0 (o o )2 al th BDA on the Bloch single qubit can be geometrically realized. In resonant case,
s_p{hera()ej, (wo—w)/2} along the curve on the BIoCN 6 |aser-frequency-associated rotating frame coincides with

According to the AA phase theory, after the above cyclicthe I|nterac.t|0n_p|cture de1:|jr)1io|~ b%ﬁ :r; wh|ch_the ()
evolution, the staté+) will acquire a geometric phase?, q‘_Jb't Hamiltonian Lea‘_jgi =wjloje +H'_C-]_QJ adE
with y=4 arctafiZe; /[(wo—w,)]. Note that during the above With Q;={w; cosp,w;sing,0;. We see that in the rotating
operation, the state vector keeps always perpendicular to tHEaMe the effective magnetic field constantly has zeexis
effective magnetic field, thus no dynamical phase is accumuyCOmPonent for arbitrary laser phage i.e., it lies in thex-y

lated in the evolution. Similarly, the state-) will acquire plane. To reglize the single-bit phasg gate, we first switch on
AA phasee™'” at the same time. a 7 pulse with laser phase at certain value, sayp,. The

Now consider the evolution of logic state$O) logic state|0) and |1) would rotate around the effective
=—i/\2(|+)—|-)), and|1)=12(|+)+|-)). After the ~ magnetic field{w; cos¢y,—w;sin¢,,0} to [1) and|0), re-

above operations, they evolve to states spectively. Then, suddenly changing the laser phasggto
after anotherr pulse, the logic states rotate around the ef-
|0)— cosy|0)+siny|1), fective magnetic fielc{Z)J- cos¢o,z)jsin¢0,0}, and return to
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the original state$0) and|1). Associated with this two-step frequency w, 1+ w| 5, thus @p=(E;—E,)— (@ 1+ w| »).

cyclic e\{olution, the logic states will, respectively, acquire Simple compiarisori of E(7) with Eq. (2) indicates that an

geometric AA phases as arbitrary rotation betweefi) and|2) can be performed geo-
metrically as that in the single-bit case.

|0)—€"10), In the spirit of pulse-sequence operations in dynamic
- scheme based on a6 spin mode[24—-26, we shall in the
|1)—e '71), (5  following show that the CPS gate can be implemerged-
metrically as

wherey=44¢,. With the help of this phase-shift operation, S , o oy

the additional phase factor in E6f) can be canceled out by — Ucps=€' ™' ™ %iRe! ™k o3~ 1m0ll2y , (7r/4)e~ 7)1

properly choosingp,. More importantly, together with this "

phase-shift gate, the qubit state rotation E.constitutes a XU (mld)e i, 8

complete logic set for the arbitrary single-qubit operation. . _
Tvr\)/o-bit ggte via nonadiabatic A)\/A pk?as‘ég compFI)ete the Here the vector Pauli operatar=(o,0%,0%), unit vector

universal gate for quantum computation, nontrivial two-bit™j = (1.1~ 1)/\3, andnk=(1,_—_1,1)/\/§. In the interaction

gate such as thenoT, or equivalently, the conditional phase- plcturg with _respect to the ongmal fre.e ion Hamﬂtoman, the

shift (CP9 gate, would be required. Below we show how the tWO-bit rotation operatot;(«) is defined viaUj () |01)

CPS gate can be implemented via geometric means. cor101), Uj(2)[10)=]10), and

sider two qubitge.qg., thejth andkth one$ irradiated by two o w

lasers with frequencies, ; and w_,, and phasesp,; and Ujk(a)|00)=cos(—)|00>+i sin(—)|11),

¢,. By settingw| 1> wy andw| ,<wg, and correspondingly 2 2

denoting the detunings byd;=w 1—wgy and 6,=wq

— o, the effective coupling between the two-bit states Ujk(a)|11)=c05<g>|ll)+i sin(z)loo). 9

|00) and |11) can be established via virtually exchanging 2 2

phonons, and the resulting two-bit effective Hamiltonian

reads[22] Since the arbitrary rotation and phase-shift gate of single

qubit have been built up, the single-bit operations in @j.

4 can be readily implemented via geometric means by properly
A= E | my(m| +gjk[e—i(wL,1+wL,z)tei(¢1+<ﬁz)Uj+ o combining the single-bit logic elements. Viewing the similar-

m=1 ity between the two-bit reduced Hamiltoni@n) in the sub-
space{|00),|11)} and the single-bit Hamiltoniari2), the
two-bit rotation of Eq.(9) can be straightforwardly imple-
mented by the following two-step procedures:
(i) In the two-bit rotating framewith frequency | ;

+H.c]. (6)

Here, notations{|1)=|11),|2)=]00),[3)=]10),[4)=|01)}
are intrpduced for the twp-bit computational basis states. Up, |, around3?, performing cyclic evolution for the eigen-

to the first-order expansion of the Lamb-Dicke paramefer giqie oy by controlling the laser phasds similarly as in

in Eq. (1), the effective coupling strength can be obtained viaye single-bit case, one can geometrically rotate the states
second-order perturbation theory 8% =9;9d 1/(d1=®) |00) and|11). Expressed in the interaction picture which

—1/(6,+ w)], where gj(k)=z)j(k)7; is the one-phonon in- 450 corres =~ _ :
. . ; e ponds té{,=E,|11)(11|+ E,|00){00|, this op-
volved Rabi frequency of single-ion transition. The four g 4tion can realize the following state transformation:

basis-state energiegE,(m=1,...,4) contain also the ac

Stark shifts. The effective interaction couples only between |00)He‘iZ‘DT/2 cosF|OO)+e‘Z’DT’ZsinF|11>,

|1) and|2), but leaveg3) and|4) inactive with respect to

the laser operation in study. This effective two-state dynam- |11>He‘5’07/2 cosF|11>—e“Z’DT’2 sin'|00).  (10)

ics (e.g., Rabi oscillationshas been demonstrated in Ref.

[22] by numerical simulation starting from the original Herel is the geometric AA phase determined by the evolu-
Hamiltonian. As a result, for two-bit operation, one can focustion contour of the two-bit state vector, anoy 7 is the

on state evolution in the subspa¢e),|2)} in which the  detuning-induceghase accumulation.

two-bit Hamiltonian (6) is recast to a similar form as the (i) Tuning the laser frequencies in resonance with the two
single qubit[23] ions [27], i.e., wp=0, a phase-shift gate associating with
|00) and|11) can be implemented to cancel out the phase
factors in Eq.(10). In the resonance case the ;+ w ,
rotating frame coincides with the interaction picture7d.

As the one-bit resonant case, the effective magnetic field
where® = ¢, + ¢,, and thetwo-bit Pauli matrices are intro- - corresponding to Eq(7) now lies in thex-y plane since
duced asX*1(2))==[1(2)), 27[2)=|1), and 37[1)  G,=0. By successively choosing two different values of the
= |§>. Note also that the Hamiltoniai@) has been expressed laser phas@, one can perform twer rotations on the states
in the rotating frame with respect 7 with the rotation |11) and |00) around the effective magnetic fields, and

HIO="25% gy (€S +e ST, ()
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read"y generate the AA geometric phasegtf and eif" for phase discussed in this work. We believe that the interference

the stateg11) and |00), respectively. Now, after a phase- associated with the nonadiabatic AA phase can be readily

; ; T Bilad demonstrated by experiment in ion-trap systems.
shift operation withl'= [2— /4, Eq.(10) becomes, . ; .
It operafion Wi woTem T a.(10 As a possible QC architecture, the elementary operation

|00)—e ™[ cosI"|00) +i sin'|11)], steps in the proposed nonadiabatic geometric scheme are
comparable to its dynamic counterparts. Specifically, the
|11)— €' cosI'|11) +i sinI"|00)]. (11)  time scales for both the one-bit and two-bit geometric opera-

tions are about the same as those in the dynamic operations.

This is identical to Eq(9), except for the additional global Concerning the possible fault tolerance, in the adiabatic case,
phases. Obviously, these global phases Quite simply, the glguantum logic is tolerant to certain types of errors such as
bal phases in Eq(9) will not appear if we first generate a the field fluctuations that preserve the loop area in parameter
phase shift ofe'™* on [00) ande™'™* on|11) at the same space, i.e., the Berry phase. Similarly, in the nonadiabatic
time, by the phase-shift gate just described, prior to the opease, the AA phase is of error tolerance to any fluctuation
eration of Eq.(10). around the state-evolving path that preserves the path loop

We have thus realized the two-bit gdte, as defined in area. In principle, there exist many possible driving field
Eq. (9). Together with the arbitrary one-bit operatiometa-  deviations that can preserve the state path loop area. How-
tion and phase shiftdescribed earlier, we can now readily ever, the most natural and possible errors appear to be ran-
implement the important CPS gate K@), whose role is to  dom (but smal) fluctuations of the laser phase, frequency,
transform|11)—e'7|11), while to keep other computational and coupling strength to the atomic levels, which equiva-
two-bit basis states unchanged. lently result in fluctuations of the effective magnetic field.

Conclusion and discussionThe proposed nonadiabatic The global AA phase is expected to be largely immune from
geometric QC scheme based on the AA phases is expectedtitese types of errors, and, at the same time, the net dynamic
overcome several drawbacks of the adiabatic schemephase accumulation is approximately zero due to the cancel-
namely, the slow evolution, need of refocusing to eliminatelation of the positive and negative contributions.
the dynamical phases, and continuous control over many
fields to construct nontrivial loops in the parameter space. Support from the Major State Basic Research Project No.
Viewing that the trapped ion is one of the best exploitedGO01CB3095 of China, Special Fund for the “100 Person
systems for quantum computation, and that the proposeBroject” from the Chinese Academy of Sciences, the Youth
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