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We study the interference patterns of a superfluid Fermi gas released from optical lattices below and above
Feshbach resonance based on a simple phenomenological approach. We first solve the order-parameter equa-
tion valid for the crossover from Bardeen-Cooper-Schrieffer �BCS� superfluid to a Bose-Einstein condensate
�BEC� to obtain an initial distribution of subcondensates formed in an optical lattice. Then we investigate the
coherent evolution of the subcondensates when both harmonic oscillator and optical lattice potentials are
switched off. The interference patterns of the superfluid Fermi gas along the BCS-BEC crossover during a
nearly ballistic expansion are calculated by means of Feynman propagator method combined with numerical
simulations. The result obtained agrees with the recent experimental observation reported by the MIT group
�J. K. Chin et al., Nature �London� 443, 961 �2006��.
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I. INTRODUCTION

The problem of BCS-BEC crossover, which is not only of
fundamental interest in condensed matter physics but also
closely related to the understanding of the physical mecha-
nism of high-Tc superconductivity, has attracted considerable
attention for decades �1–3�. Recent studies showed that such
a problem can be investigated by using ultracold fermionic
atomic gases through a magnetic field induced Feshbach
resonance, by which the magnitude and sign of interatomic
interactions can be tuned in a controllable way �4,5�.

Optical lattices are regular arrays of potential wells cre-
ated by one or more sets of orthogonal intersecting laser
beams, which provide a periodic potential for ultracold at-
oms �2–6�. In the case of Fermi gases the study is closely
related to the physics of electrons in metals and semiconduc-
tors, and hence Fermi gases in optical lattices can be used to
make detailed quantum simulations of the many-body phys-
ics of solid-state materials. Due to the advantages of easy
manipulation on optical lattice potentials and specific char-
acters of ultracold atom gases, such quantum simulations
may provide many useful insights for strongly correlated
condensed matter systems �2–6�.

An important topic in the study of ultracold Fermi gases
in optical lattices is a direct observation of superfluid prop-
erty in the BCS-BEC crossover. One expects that interfer-
ence patterns appear when subcondensates formed by con-
densed fermionic atom pairs in an optical lattice expand
ballistically and overlap each other. Such behavior has been
observed successfully in a recent experiment carried out by
Chin et al. �7� for a superfluid 6Li Fermi gas. The measure-
ment in Ref. �7� was made on both sides of a Feshbach
resonance by using a magnetic field ramp that increased rap-
idly the detuning from the Feshbach resonance, and hence

took the system out of the strongly interacting regime and
enforced a nearly ballistic expansion of the gas. By this use-
ful fast magnetic field ramp technique, clear interference pat-
terns of condensate wave function after the nearly ballistic
expansion have been obtained, which provided a very clear
evidence for the superfluidity of ultracold fermions in optical
lattices.

A complete understanding of the long-range phase coher-
ence behavior reported in Ref. �7� is not an easy problem. In
principle, one can start from a model Hamiltonian that in-
cludes the main character of the ultracold Fermi gas in the
optical lattice in the BCS-BEC crossover. Because the fermi-
onic atom pairs are trapped in combined harmonic oscillator
and optical lattice potentials, the inhomogeneous and meso-
scopic features of the system make a microscopic approach
of the problem difficult. However, notice that for a shallower
optical lattice depth the system is in a superfluid regime and
hence at ultralow temperature the condensed fermionic atom
pairs do not decay into single atoms due to the existence of
energy gap in their excitation spectrum. It is known the dy-
namics of such perfect superfluid can be well described phe-
nomenologically by using an order-parameter equation, i.e.,
a generalized nonlinear Schrödinger �GNLS� equation, ob-
tained by time-dependent density functional theory �8–17�.
Different superfluid regimes can be characterized by an
equation of state, which can be obtained by a quantum
Monte Carlo simulation �18,19�. The GNLS equation cap-
tures a dominant feature that the superfluid exhibits macro-
scopically, though its mathematical framework is simple. Re-
cently, the GNLS equation has been used to investigate the
collective excitations and ballistic expansions of superfluid
Fermi gases, and the results obtained agree quite well with
experimental ones �9–14,17�.

In this work, we extend the work of Refs. �9–17� to study
the formation of interference patterns of a superfluid Fermi
gas released from an optical lattice by using a simple phe-
nomenological approach. The interference patterns of the su-*Corresponding author: gxhuang@phy.ecnu.edu.cn
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perfluid Fermi gas along the BCS-BEC crossover during a
nearly ballistic expansion will be investigated by an approxi-
mate analytical treatment combined with numerical simula-
tions. The method is simple and the result for interference
patterns obtained in different superfluid regimes agrees fairly
well with the experimental one.

The paper is arranged as follows. Section II gives a
simple introduction of the GNLS equation used to describe
the superfluid dynamics of fermionic pair condensates. Sec-
tion III provides the initial distribution of fermionic pair sub-
condensates formed in a three-dimensional �3D� optical lat-
tice through solving the GNLS equation. The coherent
evolution of the subcondensates after switching off com-
bined harmonic and optical lattice potentials is investigated
by means of the Feynman propagator method and interfer-
ence patterns of the superfluid Fermi gas are calculated by
using a numerical simulation. The result obtained is com-
pared with the experimental one reported in Ref. �7�. The last
section contains discussion and summary of our main results.

II. ORDER-PARAMETER EQUATION ALONG
THE BCS-BEC CROSSOVER

We consider a system of superfluid Fermi �i.e., 6Li or 40K�
gas in which fermionic atoms have two different internal
states and atomic numbers in each internal state are the same.
In ground state condensed fermionic atom pair density is
n /2, where n is atomic density. By means of Feshbach reso-
nance the transition from BCS to BEC regimes can be real-
ized through tuning an applied magnetic field and hence
changing the s-wave scattering length as. When as�0 �as
�0�, the system is in a BCS �BEC� regime. By defining a
dimensionless interaction parameter ��1 / �kFas�, where kF
= �3�2n�1/3 is Fermi wave number, one can distinguish sev-
eral different superfluidity regimes �10,13,17�, i.e., BCS re-
gime ���−1�, BEC regime ���1�, and BEC-BCS cross-
over regime �−1���1�. �=−� ��= +�� is called BCS
�BEC� limit and �=0 is called unitarity limit. Both theoret-
ical and experimental studies show that the transition from
BCS regime to BEC regime is smooth �1–3�, which hints that
one can study the physical property of the system in various
superfluid regimes in a unified way.

At zero temperature, the macroscopic dynamics of the
superfluid is governed by the hydrodynamic equations ob-
tained from a time-dependent density functional theory
�9–17�

�n

�t
+ � · �nv� = 0, �1a�

m
�v

�t
+ ��1

2
mv2 + ��n� + Vho�r�� = 0, �1b�

where v is superfluid velocity, m is atomic mass, and Vho�r�
is a harmonic trapping potential. The equation of state �also
called bulk chemical potential� under a local density approxi-
mation has the form ��n�=��n��n�� /�n, where ��n� is the
bulk energy per particle obtained by taking Vho�r�=0 �20�.
Introducing ��n�= �3 /5��F����, with �F=	2kF

2 / �2m� being
Fermi energy, one obtains �10–17�

��n� = �F����� −
�

5

�����
��

	 . �2�

As a function of n, the expression of ��n� is very compli-
cated, which prevents us from obtaining analytical results on
the dynamics of the system. A simple approach is to take a
polytropic approximation, i.e., by assuming �9–17,21–23�
��n�=�0�n /n0�
 with


 = 
��0� = � n

�

��

�n
	

�=�0
=

2
3���0� − 2�0

5 ����0� +
��0�2

15 ����0�

���0� − �0

5 ����0�
,

�3�

where �0 and n0 are respectively reference chemical poten-
tial and particle number density of the system, introduced
here for the convenience of later calculation. In the follow-
ing, we take n0 to be the equilibrium superfluid density at the
center of the trapping potential. Thus one has �0=�F

0����0�
−�0����0� /5�, with �F

0 = �	kF
0�2 / �2m�, �0=1 / �kF

0as�, and kF
0

= �3�n0�1/3. There are two well known limits for the value of
the polytropic index 
. One is 
=2 /3 at �0→−� �BCS
limit� and another one is 
=1 at �0→ +� �BEC limit�. The
polytropic approximation has the advantage of allowing one
to obtain analytical results for various superfluid regimes in a
unified way. In fact, it is quite accurate because 
 is a slowly
varying function of �0 and hence widely used in literature
�9–17,21–23�.

For studying the interference patterns when the conden-
sate is released from the optical lattice, we need a wave
equation for the superfluid order parameter, which can be
obtained in the following way. Notice that at T=0 the system
consists of only condensed fermionic atom pairs. The order

parameter of the condensate can be expressed as 
�̂a�r
−� /2��̂b�r+� /2��, where �̂ j�r�� /2� is the Fermi annihila-
tion operator that destroys one fermion in the internal state j
�j=a or b; a�b� and at location r�� /2. For a superfluid
with velocity vs, the momentum of each particle is boosted

by an amount mvs and the order parameter 
�̂a�r
−� /2��̂b�r+� /2�� will be multiplied by a factor exp�2i
�
with 
=mvs ·r /	. Obviously, �s�2
=Mvs ·r /	 is the

phase of 
�̂a�r−� /2��̂b�r+� /2�� and one has vs
= �	 /M���s. The change in the phase of the order param-
eter is independent of the relative coordinate � and thus we
can put � to zero �4�.

Note that ns=n /2 and v�vs �valid in continuity approxi-
mation�, where n and v are the quantities given in Eqs. �1a�
and �1b�. Using these relations, Eqs. �1a� and �1b� can be
transferred into the following form:

�ns

�t
+ � · �nsvs� = 0, �4a�

M
�vs

�t
+ ��1

2
Mvs

2 + �s�ns� + Vs
ho�r�� = 0, �4b�

with �s�ns�=2��2ns� and Vs
ho�r�=2Vho�r�. If a quantum pres-

sure term −	2�2
ns / �2M
ns� is included, which was done in
Ref. �9�, and later on in Refs. �10–17�, the hydrodynamic
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Eqs. �4a� and �4b� can be simplified to the GNLS equation

i	
��s

�t
= �−

	2�2

2M
+ Vs

ho�r� + �s�ns���s, �5�

where we have introduced �s�r , t�=
ns exp�i�s�, which is
the order parameter of the condensed fermionic atomic pairs.
It is easy to show that in the BEC limit �i.e., 
=1� the GNLS
Eq. �5� coincides exactly with the order-parameter equation
derived in Ref. �24� based on Bogoliubov–de Gennes equa-
tions in an extended BCS theory.

III. INTERFERENCE PATTERNS

A. Time evolution of the condensate wave function

Now we begin to the investigate the interference pattern
of the Fermi gas in the superfluid regime based on the order
parameter Eq. �5�. We assume that the condensate is prepared
in a harmonic oscillator potential

Vs
ho�r� = M��x

2x2 + �y
2y2 + �z

2z2�/2, �6�

where � j �j=x ,y ,z� is the trapping frequency in the jth di-
rection. Then a three-dimensional �3D� optical lattice poten-
tial

Vs
op�r� = sER�sin2�qx� + sin2�qy� + sin2�qz�� , �7�

formed by three orthogonal intersecting laser beams, is
added to the system. Here the wave vector q=2� /� is fixed
by the laser wavelength �. The period of the optical lattice is
d=� /2, which is much smaller than the size of the conden-
sate. The lattice potential depth sER is measured in units of
the recoil energy ER=	2q2 / �2M� with s being a dimension-
less parameter determining the intensity of the laser field.

Due to the introduction of the optical lattice, in equilib-
rium the system is composed of many subcondensates lo-
cated in minima of the combined potential Vs�r�=Vs

ho�r�
+Vs

op�r�. Since we are interested in the interference pattern of
the superfluid Fermi gas during a free expansion, the initial
distribution of the condensate wave function �s�r ,0� must
be calculated before the combined potential is switched off.

Notice that at present a rigorous analytical result for this
initial distribution is not yet available. Here we employ the
technique developed in Refs. �25,26� to obtain an approxi-
mate expression for equilibrium subcondensates of the sys-
tem. Since the size of the whole condensate is much larger
than that of each subcondensate, if optical lattice depth is
moderately big the optical lattice potential can be expressed
by a superposition of many approximate harmonic potentials,
i.e.,

Vs
op�r� =

M�op
2

2 ��
kx

�x − kxd�2 + �
ky

�y − kyd�2

+ �
kz

�y − kzd�2� , �8�

where the effective trapping frequency is defined by �op
=2
sER /	, which is much larger than the frequencies � j of
the harmonic oscillator potential. We assume that typical

width of subcondensates is much less than the optical lattice
period d and consider the case that the subcondensates in
different lattice sites are fully coherent �i.e., the whole sys-
tem is in a superfluid state�. In this situation the chemical
potentials of these subcondensates are identical and hence
under a tight-binding approximation �25,26� the condensate
wave function of the system can be written as the form

�s�r,t� = �
kx,ky,kz

�kx,ky,kz
�r�exp�− i�Gt/	� , �9�

where �G is the chemical potential of the system and
�kx ,ky ,kz� denote the central positions of various subconden-
sates.

Substituting Eq. �9� into Eq. �5� we obtain the equation
for �kx,ky,kz

�−
	2�2

2M
+

1

2
M��x

2x2 + �y
2y2 + �z

2z2�

+
1

2
M�op

2 ��x − kxd�2 + �y − kyd�2 + �z − kzd�2�

+ �s
0� ns

ns
0	
��kx,ky,kz

= �G�kx,ky,kz
, �10�

where �s
0=�s�ns

0�. In obtaining Eq. �10� the small overlap of
the subcondensates between adjacent sites has been ignored.
After the transformation x−kxd→x, y−kyd→y, and z−kzd
→z, Eq. �10� becomes

�−
	2�2

2M
+

1

2
M��x

2�x + kxd�2 + �y
2�y + kyd�2 + �z

2�z + kzd�2�

+
1

2
M�op

2 �x2 + y2 + z2� + �s
0� ns

ns
0	
��kx,ky,kz

= �G�kx,ky,kz
.

�11�

Because �op�� j �j=x ,y ,z�, for the subcondensate confined
in the lattice site �kx ,ky ,kz� it is evident that one has x
�kxd, y�kyd, and z�kzd. Thus Eq. �11� can be simplified
into

�−
	2�2

2M
+

1

2
M�op

2 �x2 + y2 + z2� + �s
0� ns

ns
0	
��kx,ky,kz

= �kx,ky,kz
�kx,ky,kz

, �12�

where we have introduced the notation �kx,ky,kz
=�G

− �M /2�d2��x
2kx

2+�y
2ky

2+�z
2kz

2�. Equation �12� describes a
subcondensate trapped in a harmonic oscillator potential with
an isotropic trapping frequency �op. The subcondensate has
an effective chemical potential �kx,ky,kz

and its central posi-
tion is at the site �kx ,ky ,kz�.

The particle-number distribution Nkx,ky,kz
in each subcon-

densate can be obtained by solving Eq. �12� under a Thomas-
Fermi approximation. We obtain

INTERFERENCE PATTERNS OF SUPERFLUID FERMI … PHYSICAL REVIEW A 77, 033623 �2008�

033623-3



Nkx,ky,kz
= N0�1 −

�x
2kx

2

�ho
2 kM

2 −
�y

2ky
2

�ho
2 kM

2 −
�z

2kz
2

�ho
2 kM

2 	2+3
/2


,

�13�

where N0= �2� /M�op
2 �3/2�Md2�ho

2 kM
2 /2�3/2+1/
ns

0��1 /

+1� / ���s

0�1/
��1 /
+5 /2�� is the particle number at central
site �0, 0, 0�, �ho= ��x�y�z�1/3 is mean trapping frequency of
the harmonic oscillator potential �6�, and � is the gamma
function. The chemical potential of the system is expressed
as �G�Md2�ho

2 kM
2 /2, with

kM = � N

ns
0

��4 + 1/
�
��1 + 1/
��2�s

0

M
	1/
 �op

3

�3��hod�2+3
/
�
/6
+2

.

�14�

By Eq. �13� the possible values of kj �j=x ,y ,z� should be
limited to the condition

kx
2

��ho
2 /�x

2�
+

ky
2

��ho
2 /�y

2�
+

kz
2

��ho
2 /�z

2�
� kM

2 . �15�

The normalized initial superfluid wave function of the
system in both the harmonic oscillator potential �6� and the
optical lattice potential �7� can be approximated by a sum of
Gaussian wave functions centered at different potential
minima

�s�x,y,z,t = 0�

= An�
k

��1 −
�x

2kx
2

�ho
2 kM

2 −
�y

2ky
2

�ho
2 kM

2 −
�z

2kz
2

�ho
2 kM

2 	2+3
/4


�exp�−
�x − kxd�2 + �y − kyd�2 + �z − kzd�2

2�kx,ky,kz

2 � ,

�16�

where An is a normalized constant, and the prime in the sign
of the sum means that the summation is limited to the do-
main indicated by the inequality �15�. We assume that the
number of fermionic atom pairs in each lattice site is not
large, so the width of the subcondensate �kx,ky,kz

can be ap-
proximately replaced by the harmonic oscillator length aop
��	 / �M�op��1/2. In this situation one has An= ���1 /

+4� / ���1 /
+5 /2��kM�aop�3��1/2.

The time evolution of the superfluid Fermi gas after re-
leasing from the harmonic oscillator potential �6� and optical
lattice potential �7� can be obtained through solving the
GNLS Eq. �5� by taking Eq. �16� as an initial condition.
Generally, the interaction among atoms may induce elastic
collisions during an expansion and hence change the mo-
mentum distribution and remove a significant fraction of at-
oms from the subcondensates. As a result, the interference
peaks of the condensate wave function will be washed out.
However, in the experiment of Chin et al., a nearly ballistic
expansion of the superfluid Fermi gas is obtained by apply-
ing a fast magnetic field ramp technique �7�. Thus in a lead-
ing order approximation one can employ the famous Feyn-
man propagator method �27� to obtain the condensate wave
function for any time t�0 �26–28�. Then we have

�s�x,y,z,t� = �
−�

�

dx��
−�

�

dy��
−�

�

dz�

�G�x,y,z,t;x�,y�,z�,t� = 0��s�x�,y�,z�,t� = 0� .

�17�

The propagator G�x ,y ,z , t ;x� ,y� ,z� , t�=0� in Eq. �17� is
given by

G�x,y,z,t;x�,y�,z�,t� = 0� = �
j=1

3

Gj�xj,t;xj�,t� = 0� �18�

with

Gj�xj,t;xj�,t� = 0� = �2�i	t

M
	−1/2

exp�iM�xj − xj��
2/2	t�

�19�

being the component of the propagator in the jth direction. In
Eqs. �18� and �19� we have used the notations �x1 ,x2 ,x3�
��x ,y ,z�.

Implementing the integration in Eq. �17� we obtain

�s�x,y,z,t� = An �
kx,ky,kz

��1 −
�x

2kx
2 + �y

2ky
2 + �z

2kz
2

�ho
2 kM

2 	2+3
/4


��
j=1

3

� j�xj,t� , �20�

where

� j�xj,t� = � 1

1 + i��t�	
1/2

exp�−
�xj − kjd�2

2aop
2 �1 + i��t��� �21�

with ��t�=	t / �Maop
2 �. By Eqs. �20� and �21� one can calcu-

late the density distribution of the superfluid Fermi gas
ns�x ,y ,z , t�=N��s�x ,y ,z , t��2 numerically, which will be pre-
sented in the next subsection.

B. Interference patterns of the superfluid Fermi gas

In the recent MIT experiment by Chin et al. �7�, high-
contrast interference patterns of fermion pair subcondensates
released from combined harmonic oscillator and 3D optical
lattice potentials below and above the Feshbach resonance
have been observed. This experiment provides a clear signa-
ture and direct evidence of the long-range phase coherence
of the ultracold Fermi gas �3�.

The MIT experiment �7� used a balanced mixture of 6Li
fermions in the two lowest hyperfine states. By means of
evaporative cooling a condensate containing N=2�105 fer-
mion pairs is produced in an anisotropic harmonic oscillator
potential, with the trapping frequencies ��x ,�y ,�z�=2�
� �270,340,200� Hz. Then a 3D optical lattice potential
formed by three orthogonal intersecting laser beams with
wavelength �=1064 nm was imposed on the condensate.
Using their experimental parameters, we obtain the effective
trapping frequency �defined by Eq. �8�� �op=2�
�65 727 Hz, which is much larger than the trapping fre-
quencies � j �j=x ,y ,z� of the harmonic oscillator potential,
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justifying the validity of the approximation used from Eq.
�11� to Eq. �12�. The Fermi energy of the trapped particles is
given by EF=	�6N�x�y�z�1/3, which determines the value
1 /kF

0 =0.17 �m. The size of the condensate can be estimated
by Thomas-Fermi approximation, which gives the conden-
sate radii Rj = �2�s

0 / �M� j
2��1/2 �j=x ,y ,z�, with their geomet-

ric mean given by R̄= �RxRyRz�1/3.
In order to study the superfluid property of the fermion

pairs in the BCS-BEC crossover, Chin et al. used the Fesh-
bach resonance technique to tune the s-wave scattering
length as, which is the function of the applied magnetic field
B. Near the resonance one has the approximated expression
�7�

as�B� = − 1405a0�1 + 0.0004�B − 834���1 +
300

B − 834
� ,

�22�

where a0 is the Bohr radius. For the optical lattice depth 5ER
�which belongs to superfluid regime� and at three different
magnetic fields �i.e., B=822 G, 867 G, and 917 G, which
correspond to as=33558a0, −14365a0, and −6699a0, respec-
tively�, high-contrast interference patterns with six first-order
side peaks clearly visible around the zero-momentum central
peak have been observed �see Fig. 2 of Ref. �7��.

We must stress that in the previous experimental observa-
tion on the interference patterns of Bose gases �29–31�, in-
terparticle interaction is weak and hence the expansion of the
gases after releasing from optical lattices can be approxi-
mated as a ballistic one. However, for the strongly interact-
ing Fermi gas elastic collisions during the expansion can
change the momentum distribution and remove a significant
fraction of atoms from the subcondensates, and thus blur the
interference peaks. In order to avoid the elastic collisions that
may result in diffusion and loss of the Fermi atomic cloud,
Chin et al. �7� applied a magnetic field ramp that can in-
crease quickly the detuning from Feshbach resonance and
hence take the system out of the strongly interacting regime.
By using this useful technique, Chin et al. �7� acquired a
nearly ballistic expansion of the superfluid Fermi gas and
hence observed clear interference patterns after the gas is
released from the optical lattices. Thus we can apply the
formulas obtained by the Feynman propagator method in the
last section to calculate the interference patterns and make a
comparison between our theoretical result and the experi-
mental one reported by Chin et al. �7�.

Notice that the fast magnetic field ramp technique was
pioneered by Bourdel et al. for the observation of the transi-
tion to superfluid phase of a Fermi gas near Feshbach reso-
nance �32�. Later on, this technique was also successfully
used to the observation of fermionic pair condensates �33�,
quantized vortices �34�, the momentum distribution �35�, and
vortex lattice expansion of the superfluid Fermi gas in the
BCS-BEC crossover �36�. Although the Fermi gas expands
nearly ballistically due to the use of the fast magnetic field
ramp technique, the interaction effect has been included in
the calculation of the ground state wave function �16�, which
is obtained by taking the mean-field interaction of the super-
fluid fermions into account before the expansion. Because in
this work we pay attention mainly to the nearly ballistic ex-
pansion and the subsequent interference patterns, the simu-
lation of the fast magnetic field ramp process before the ex-
pansion is beyond the scope of this work �37�.

Using the experimental parameters in Ref. �7� we can

obtain the values of �0, 
��0�, �s
0 /�F

0 , and R̄ for different
magnetic field B, which for clearness have been listed in
Table I. According to the classification given in Sec. II, case
�a� in Table I belongs to the BEC regime; cases �b�, �c�, and
�d�, which correspond to the three cases considered in Fig. 2
of Ref. �7�, belong to the crossover regime; while case �e�
belongs to the BCS regime.

After suddenly switching off both the harmonic oscillator
and the optical lattice potentials, the subcondensates at the
lattice sites expand freely; then they overlap and coherently
interfere each other to form an interference pattern, which
consists of a central peak and smaller, symmetrically spaced
lateral peaks moving in opposite directions. A simple analy-
sis similar to that used in Sec. 13.1.1 of Ref. �4� gives the
asymptotic formula of the position between the interference
peaks

X�j
= � 2�� j

	t

dM
�j = x,y,z; � j = 0,1,2, . . .� , �23�

where t is the free-expansion time and the integer number � j
denotes the � jth-order lateral peak in the jth direction.

Figure 1 shows the result of the interference pattern when
the gas is released from the combined potentials after 6.5 ms.
The pattern is obtained by using the parameters of case �b� in
Table I. We see that there is one central peak that locates at
the center �x ,y ,z�= �0,0 ,0� and six first-order lateral peaks
carrying high momentum locate symmetrically at positions
�−764d ,−764d ,0�, �−764d ,764d ,0�, �764d ,−764d ,0�,

TABLE I. Parameters of the superfluid Fermi gas in the BCS-BEC crossover used in numerical
simulations.

�a� �b� �c� �d� �e�

B �G� 698 822 867 917 1529

�0=1 / �kF
0as� 2.00 0.096 −0.224 −0.480 −1.250


 1.05 0.71 0.60 0.60 0.61

�s
0 /�F

0 0.076 0.768 1.132 1.334 1.60

R̄��m� 7.2 22.8 27.7 30.1 33.0
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�764d ,764d ,0�, �0,0 ,−764d�, and �0,0 ,764d�, with d
=532 nm. After the expansion time 6.5 ms, the first-order
lateral peaks �i.e., � j =1� locate at X1j

= �764d= �0.4 mm
with respect to the central peak at X0j

=0. The result is a
little larger than the experimental value �approximately
�0.3 mm� reported in Ref. �7�. The reason is that our theo-
retical approach is based on the assumption that the system is
at zero temperature and in a complete superfluid. In addition,
the interaction between particles during the expansion, even
small in the nearly ballistic expansion, will also have a con-
tribution on the interference pattern.

Experimentally, one usually measures the column number
density distribution of the condensed pairs, i.e., ns��x ,y�
=�−�

� dz ns�x ,y ,z�. In Fig. 2 we have shown the simulating
result of the interference patterns of ns��x ,y� in the BCS-
BEC crossover when the subcondensates have been released
from both the harmonic oscillator and the optical lattice po-
tentials for t=6.5 ms. The interference patterns in panels �a�,
�b�, �c�, �d�, and �e� are obtained by calculating ns��x ,y�
based on the parameters given in cases �a�, �b�, �c�, �d�, and
�e� of Table I. In all figures the values of pairs density ns�

have been normalized by n1=N /aop
2 . We see that from the

BEC regime �case �a��, through the crossover regime �cases
�b�, �c�, and �d��, to the BCS regime �case �e��, the interfer-
ence peaks become wider and their maxima are also lowered
gradually. The physical reason for the change of the interfer-
ence patterns from the BEC regime to the BCS regime can
be explained as follows. Because in the BEC �BCS� regime
the reference chemical potential �s

0 is smaller �larger�, the

geometric mean radius of the condensate R̄ is smaller �larger�
�see Table I for detail�, which results in a larger �smaller�
pair density and hence larger �smaller� peak value and nar-
rower �wider� width of the interference peaks in the BEC
�BCS� regime.

In order to show the difference of the interference patterns
in different superfluid regimes more clearly, in Fig. 3 we
have plotted the number density distribution of condensed
pairs ns��x ,y=0� in units of N /aop

2 . The result is obtained by
using the parameters of Table I for cases �a�, �c�, and �e�. We
see that there is a larger difference between the interference
patterns in different superfluid regimes. The inset shows the

polytropic index 
 �defined by Eq. �3�� as a function of
1 / �kF

0as�. Note that the experimental result reported in Fig. 2
of Ref. �7� locates in the crossover regime −1�1 / �kF

0as�
�1, i.e., the three solid circles near 1 / �kF

0as�=0 in the inset.

FIG. 1. Interference pattern of the superfluid Fermi gas released
from the combined potentials after 6.5 ms ballistic expansion. The
pattern is obtained by using the parameters of case �b� in Table I.
The value of the condensate density is normalized by N /aop

3 .

FIG. 2. �Color online� Column pair density distribution ns��x ,y�
in the BCS-BEC crossover when the subcondensates have been
released from both the harmonic oscillator and the optical lattice
potentials for t=6.5 ms. The interference patterns in panels �a�, �b�,
�c�, �d�, and �e� are obtained by calculating ns��x ,y� based on the
parameters given in cases �a�, �b�, �c�, �d�, and �e� of Table I. In all
figures the values of pairs density ns� have been normalized by
n1=N /aop

2 .
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IV. DISCUSSION AND SUMMARY

In the calculations on the interference patterns presented
in the preceding section, the interatoms interaction during the
expansion has been neglected. It is necessary to make a
simple estimation of the interaction during the expansion.
The total energy of the system at time t reads

E�t� = Ekin�t� + Epot�t� + Eint�t� , �24�

where

Ekin�t� = N�
−�

�

dx�
−�

�

dy�
−�

�

dz
	2

2M
���s�r,t��2,

Epot�t� = N�
−�

�

dx�
−�

�

dy�
−�

�

dz�Vs
ho�r� + Vs

op�r����s�r,t��2,

Eint�t� = N�
−�

�

dx�
−�

�

dy�
−�

�

dz
�s�ns�

 + 1

��s�r,t��2, �25�

are the kinetic, potential, and interaction energies, respec-
tively. Using the expression �16� it is easy to get Ekin�0�,
Epot�0�, and Eint�0�. For example, for B=822 G �i.e., case �b�
of Table I�, we obtain Ekin�0�=Epot�0�=0.65�10−23 J and
Eint�0�=0.25�10−23 J, and hence we have Eint�0� /E=0.16,
which means that in the ground state �i.e., before the expan-
sion� the interatomic interaction takes an important role. To
estimate the interaction energy during the expansion, we
have calculated Eint�t� /E also for case �b� of Table I. The
result is given in Fig. 4. We see that the interaction energy
during the expansion can be neglected after 0.05 ms. Of
course, during the expansion the weak interaction may in-
duce some elastic collisions and hence a small change of the
interference patterns of the subcondensates, a topic deserving
further study. One can also consider possible Bragg diffrac-
tion and multiwave mixing in the superfluid Fermi gas in the
BCS-BEC crossover by extending the work by Band et al.

�38,39� for a weakly interacting Bose-Einstein condensed
gas if some particular phase-matching conditions are as-
sumed.

We must point out that the phenomenological approach on
the interference patterns of ultracold Fermi gases presented
here is valid only for zero temperature and for the superfluid
state near BEC and the crossover regimes. �The results pre-
sented in Figs. 2–4 are for these regimes.� In the deep BCS
regime �i.e., �0�−1� and at any finite temperature, the BCS
critical temperature drops quickly due to the fast decrease of
atomic density during expansion and thus the superfluid
cannot be maintained. In this case, our model cannot apply
because the gas should expand according to a collisional
hydrodynamics or enter a regime intermediate between col-
lisional hydrodynamics and collisionless expansion �36�.

In addition, in Ref. �7� the experimental results of the
interference patterns from the superfluid regime to a Mott-
insulator regime have also been reported by increasing the
optical lattice depth sER. In a recent work, Zhai and Ho �40�
studied the quantum phase transition between superfluid and
band insulator of fermions in optical lattices. They showed
that as one moves across Feshbach resonance to the BEC
side, the superfluid-band insulator transition evolves into the
superfluid-Mott-insulator transition. However, the experi-
mental result on the change of the interference patterns from
the superfluid regime to the Mott-insulator regime reported
in Ref. �7� still remains to be explained.

In conclusion, based on a simple phenomenological ap-
proach we have investigated the interference patterns of a
superfluid Fermi gas after releasing from both a harmonic
oscillator and an optical lattice potential below and above
Feshbach resonance. In order to obtain an initial distribution
of the subcondensates formed in the optical lattice, we have
solved the order-parameter equation �i.e., the GNLS Eq. �5��
which is valid for the crossover from Bardeen-Cooper-
Schrieffer superfluid to a Bose-Einstein condensate. Then we
have discussed the coherent dynamic evolution of the sub-
condensates during a nearly ballistic expansion after the har-
monic oscillator and optical lattice potentials are switched
off. The interference patterns of the superfluid Fermi gas
along the BCS-BEC crossover during the expansion have
been calculated by using the Feynman propagator method
combined with numerical simulations. The results obtained
for interference patterns for superfluid Fermi gases in a BCS-
BEC crossover agree fairly well with the recent experimental
ones reported in Ref. �7�.

FIG. 3. �Color online� Number density distribution of condensed
pairs ns��x ,y=0� in units of n1=N /aop

2 . The result is obtained by
using the parameters of Table I for cases �a�, �c�, and �e�. The inset
is the polytropic index 
 �defined by Eq. �3�� as a function of
1 / �kF

0as�. The experiment reported in Fig. 2 of Ref. �7� corresponds
to the three solid circles near 1 / �kF

0as�=0 in the crossover regime.

FIG. 4. �Color online� Eint�t� /E for B=822 G, i.e., 1 / �kF
0as�

=0.096. t is the expansion time.
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