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We study nonlinear excitations in a lifetime-broadened A-type three-level atomic system with a configuration
of electromagnetically induced transparency. Different from previous works, we show that a significant deple-
tion of the control field may occur during the formation and propagation of ultraslow optical solitons for the
probe field. We demonstrate that ultraslow optical solitons predicted in previous works correspond to the limits
of weak dispersion and weak nonlinearity, adiabatons correspond to the limits of stronger dispersion and stron-
ger nonlinearity, and simultons correspond to the limits of strong dispersion and strong nonlinearity. Between
these different limits the system also yields solitonlike nonlinear excitations with different levels of depletion
of the control field. The results provided here are useful not only for a deep understanding of the interrelation
between ultraslow optical solitons, adiabatons, and simultons, but also for potential applications in optical in-
formation processing and transmission. © 2009 Optical Society of America
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1. INTRODUCTION

In recent years, much attention has been paid to the
study of wave propagation in lifetime-broadened atomic
systems via electromagnetically induced transparency
(EIT) [1]. By means of the quantum interference effect in-
duced by a controlling field, the absorption of a probe la-
ser field tuned to a strong one-photon resonance can be
largely suppressed, and hence an initially highly opaque
optical medium becomes transparent. Moreover, signifi-
cant reduction of group velocity and the tremendous en-
hancement of Kerr nonlinearity of the probe field can be
realized [2-5]. Based on these striking features, the pos-
sibility of generating ultraslow optical solitons in EIT me-
dia has been predicted recently [6—-12]. In nearly all the-
oretical studies on such solitons, the control field has been
simply assumed to be a constant, with its intensity much
stronger than the probe field. However, in realistic EIT
experiments the control field cannot be taken to be too
strong, and hence its significant depletion is expected dur-
ing the formation and propagation of ultraslow optical
solitons.

On the other hand, pulse propagation in resonant opti-
cal media has become an active research field since the
pioneering work by McCall and Hahn on self-induced
transparency (SIT) in resonant two-level atomic systems
[13,14]. Like other famous models (e.g., Korteweg—de
Vries model, nonlinear Schrodinger model, and sine-
Gordon model), two-level SIT equations, which can be
solved by the inverse scattering transform and hence are
completely integrable, have now become a standard
mathematical model in soliton theory [15,16]. In the past
four decades, considerable progress in this direction has
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been achieved, which includes the extension of the SIT
theory to different physical systems such as multilevel
atomic systems and semiconductors [17—41], stimulated
Raman scattering, and four-wave mixing, etc. [42—46]. Es-
pecially, optical simultons (i.e., simultaneously propagat-
ing multicomponent optical solitons in resonant atomic
systems with more than two levels) [18,30] and adiaba-
tons (i.e., multicomponent optical pulses in resonant
atomic systems obtained under nearly adiabatic condi-
tions) [21,24] have received a lot of interest [18—41]. It is
natural to ask what is the interrelation between ul-
traslow optical solitons, predicted recently [6—-12], and the
adiabatons and simultons, which have been widely inves-
tigated in literature [18—41].

In this work, we address the above problem and show
that the ultraslow optical solitons, adiabatons, and simul-
tons are possible in multilevel systems but they are valid
in different physical regimes. To demonstrate this, we
make a detailed study on the nonlinear pulse propagation
in a A-type three-level atomic system by considering the
evolution of both the probe and control fields for various
pulse intensities and time lengths. Our result shows that
ultraslow optical solitons are valid under the conditions of
weak dispersion and weak nonlinearity and the adiaba-
tons are valid in the case of stronger dispersion and stron-
ger nonlinearity, whereas the simultons are only possible
under conditions of strong dispersion and strong nonlin-
earity. Between these different regimes the system also
yields solitonlike nonlinear excitations with different ex-
tents of depletion of the control field. The transition from
ultraslow solitons to adiabatons and simultons can be re-
alized through adjusting the system parameters, includ-
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ing especially changing the pulse lengths, light field in-
tensities, and atomic detunings. The results provided
here are helpful for a deep understanding of the interre-
lation between ultraslow optical solitons, adiabatons, and
simultons, and also useful for potential applications in op-
tical information processing and transmission.

The paper is arranged as follows. Section 2 gives a
simple description of our theoretical model. In Section 3,
numerical simulations are carried out, the formation and
propagation of stable ultraslow optical solitons for the
probe field are studied, and the depletion effect of the con-
trol field is shown. In Section 4, a simple theory for ex-
plaining the numerical results presented in Section 3 is
provided. Finally, the last section contains a discussion
and summary of our main results.

2. THE MODEL

We consider a resonant, lifetime-broadened A-type three-
level atomic system with energy levels |1), |2), and |3),
as shown in Fig. 1. A probe field of the center frequency
w,/(2m) is coupled to the [1)—|3) transition and a control
field of the frequency w,/(2m) is coupled to the [2)—|3)
transition. The electric field vector of the system is E
=2p €& expli(kiz - wit)]+c.c., where e; is the unit vector
of the polarization component of the electric field with en-
velope & (I=p,c). The half-Rabi frequencies are defined
by Q,=(e, p13)E,/h, and Q.=(e. pa3)é./h, respectively,
where p;; is the electric dipole matrix element associated
with the transition from [i) to |j). In the interaction pic-
ture, the equations of motion for the atomic system and
electric field are

d
i§A1+Q;A3=O, (la)
a e
i%"’dz A2+QSA3=0, (1b)
J

i§+d3 A3+QPA1+QCA2=0, (1C)

[ 19 )
l ;+;5 Qp+K1A3A1=0, (ld)

[ 19 .
l E+Z§ QC+K2A3A2=0, (le)

where A; (j=1,2,3) is the probability amplitude of the
bare atomic state |j) (with eigenenergy gi=hw)). dj=A;
+iy;, with Ag=w,—(w3-w1) and Ag=w,—w.~(wg—w;) be-
ing the one- and two-photon detunings and 7; being the
decay of the state |j). The coupling constant is «j
=Ny [P1323)%/ (280ch) with N, being the atomic den-
sity. When obtaining Egs. (1), a rotating-wave approxima-
tion and a slowly-varying envelope approximation have
been used.
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Fig. 1. (Color online) Energy-level configuration and excitation
scheme of a lifetime-broadened three-state atomic system inter-
acting with a control field of half-Rabi frequency (), and a probe
field of half-Rabi frequency (),. A; and A, are one-photon and
two-photon detunings, respectively.

Generally, for the motion of resonant atomic systems,
density matrix equations should be adopted. Neverthe-
less, as shown by many previous studies [47,48], for EIT-
like coherent atomic systems the density matrix equa-
tions can be replaced by probability amplitude equations
without a significant difference. For a detailed discussion
on the comparison between the result from the probabil-
ity amplitude equations and that from the density matrix
equations, see Section 5 and Appendix A given below.

3. NUMERICAL RESULT ON THE
EVOLUTION OF PROBE AND CONTROL
FIELDS

From the study of ultraslow solitons [6-12] we know that
for weak pulsed (), and strong continuous ()., the
Maxwell-Schrodinger Eqs. (1a)—(1e) can be reduced to a
nonlinear Schrodinger equation, and hence an analytical
soliton solution can be obtained. On the other hand, from
the study on adiabatons and simultons [18,21,24,30], for
pulsed strong (), and ), with short pulse length,
Maxwell-Schrodinger Eqgs. (1a)-(1le) can be solved ex-
actly. However, for an intermediate pulse length and field
intensity, an analytical solution of the Maxwell—-
Schrodinger Egs. (1a)—(1e) is not available. Hence we turn
to consider the evolution of the probe and control fields by
using a numerical simulation in this intermediate regime.
In our calculation, system parameters are chosen as (typi-
cal for transitions in hyperfine-split 3'Rb atoms) V3T
=mX5.6, 17=1.0X1073, Ay7=2.0, Agr=1.15X10%, Q.7
=100.0, Q,07=34.0, and «;7=ky7=1.0X 10* cm~!, with the
pulse length 7=1.0xX107%s. The evolution of the probe
and the control fields with different initial probe ampli-
tudes and after propagating to z=2 cm are shown in Figs.
2(a)-2(d), respectively. In all panels, solid curves result
when the evolution of the control field is not taken into
account, while dashed curves result when the evolution of
both the probe and control fields are considered simulta-
neously. From these plots we see that for a large probe
field intensity, the depletion of the control field is signifi-
cant and thus cannot be neglected. In this case though,
the probe field may have a solitonlike structure but it is
not stable [see Fig. 2(a)l. However, for a small probe field
intensity the depletion of the control field becomes less
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Fig. 2. (Color online) Evolution of the probe field and the control
field via propagation distance z and time ¢ with different
initial amplitudes. (a) Q,(0,6)=Q,¢sech(t/7); (b) €Q,(0,%)
=0.50,0sech(t/7); (c) Q,(0,t)=0.2Q,sech(t/7); (d) Q,(0,t)
=0.10,, sech(t/7). In all panels, solid curves are results when the
evolution of control field is disregarded; dashed curves are re-
sults of probe and control fields after propagating 2 cm. Param-
eters are given in the text. The probe pulse is unstable in the
case of panel (a). The result of panel (d) is relevant to the ul-
traslow optical soliton predicted in [6-12] but with a small deple-
tion of the control field.

important, and the optical soliton for the probe field can
propagate stably [see Fig. 2(d)], which is relevant to the
situation of the ultraslow optical soliton in EIT systems
predicted in [6-12] but with a slightly depleted control
field. The depletion of the control field is due to an energy
exchange between the probe and control fields.

In Fig. 3 we show the evolution of probe and control
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Fig. 3. (Color online) Evolution of probe and control fields via
propagation distance z and time ¢ with different detunings, opti-
cal intensities, and pulse lengths. (a) Q,(0,)=0.1€,, sech(t/7)
with other parameters the same as those used in Fig. 2; (b) 7
=2.0x107"s, 0,(0,¢)7=34.0 sech(¢/7), Q.g7=100.0 with other pa-
rameters the same as those used in Fig. 2; (¢) 7=1.0X107" s,
Q,(0,£)7=34.0 sech(¢/7), Q,7=100.0 with other parameters the
same as those used in Fig. 2; (d) 7=1.0x107" s, 0,(0,#)7=34.0,
0,07=100.0, Ay7=A37=0.0 with other parameters the same as
those used in Fig. 2. The result of panel (d) is close to the adia-
baton obtained in [21,24,25].
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Fig. 4. (Color online) Evolution of simultons via propagation
distance z and time ¢. (a) Evolution of probe field [©,/Q,0/% (b)
evolution of control field |Q2./Q./%. In both panels, solid curves
denote the initial conditions, dashed curves are the results after
propagating 5 cm, and dashed-dotted curves are the results after
propagating 10 cm. Parameters are shown in the text.

fields via propagation distance z and time ¢ with different
energy level detunings, optical intensities, and pulse
lengths. In panel (a) we take ,(0,t)=0.10, sech(¢/7)
with other parameters the same as those used in Fig. 2.
In this case we obtain an ultraslow optical soliton with a
slightly depleted control field; in panel (d) we choose 7
=1.0x107"s, 0,(0,t)7=34.0, Q.7=100.0, and Ayr=Ag7
=0.0 with other parameters the same as the ones used in
Fig. 2. In this situation we obtain a structure like an adia-
baton with a significant control depletion that is very
close to the phenomena observed by the authors of
[21,24,25]. Panels (b) and (c) are the intermediate cases
between panels (a) and (d). From panels (a) to (d) we see
that one can easily obtain a continuous transition from
the ultraslow soliton to the adiabaton by manipulating
the energy level detunings, probe field intensities, and
pulse lengths. We see that the depletion of the control
field increases from panel (a) to (d) as the probe and con-
trol field intensities increase.

We stress that the conditions for generating the ul-
traslow optical soliton and the adiabaton are quite differ-
ent. The formation of the ultraslow soliton requires weak
nonlinearity (i.e., small probe intensity) and weak disper-
sion (i.e., nonzero detunings and longer probe pulse
length—see the theoretical explanation in the next sec-
tion). However, for the formation of adiabatons the sys-
tem must have stronger nonlinearity and stronger disper-
sion, and hence both probe and control fields must have
large and comparable intensity and shorter time dura-
tion. Notice that, different from the adiabatons obtained
in [21,24], the decay rates of the atomic levels in Fig. 2(d)
are included in our numerical calculation.

We have also made an additional numerical simulation
by choosing 7=1.0x1077s, 0,(0,8)=Q, sech(¢/7),
Q.(0,8)=Q tanh(t/7), Q,07=90.0, and .,,7=100.0. Other
parameters are the same as the ones in Fig. 2. The result
is shown in Fig. 4. From the figure we see that in this case
the probe field and control field have comparable ampli-
tude variations, and they are quite stable and completely
matched during propagation. Such coupled soliton behav-
ior is nothing but the optical simultons that were pre-
dicted by Eberly and his collaborators [18,30]. Obviously,
the optical simultons can only be obtained under the con-
ditions of strong dispersion and strong nonlinearity,
which require large light intensity of the probe and con-
trol fields with a very short pulse length.
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4. THEORY

Now we give a simple explanation on the above numerical
results analytically. The formation and propagation of ul-
traslow solitons in an EIT medium can be studied by a
standard perturbation theory developed in [7]. If Q, is
much less than ()., in a leading-order solution, one can
treat the control field as a constant and thus Eq. (1e) can
be disregarded. It is easy to show that the evolution equa-
tion describing the dynamics of the probe field reads

g 19 K, #Q, ,
| —+—=——Q,-— -WQ,|°Q,=0, 2

Langat"’zat2 51, @
where V,=1/Re(K;) determines the probe field group ve-
locity, K, represents group velocity dispersion, and W
originates from the self-phase modulation effect of the
system. The expressions of K; and K, can be obtained by

the expansion of linear dispersion relation K(w) around
0=0,ie., K(w)=Ky+K 0+Ky0?/2+O(0®). Here,

) w+dy
K(w) = P “Uh(a) (3)
and D(w)=|Q|?—(0+dy)(w+ds); W is given by
(0+do)(|Q + |0+ daf?)
DIDP

- (4)

The nonlinear Schridinger equation has complex coef-
ficients and hence generally it does not allow soliton solu-
tions. However, if a practical set of system parameters
can be found so that the imaginary part of these coeffi-
cients can be made much smaller than their correspond-
ing real parts, it is possible to obtain a shape-preserving
localized solution that can propagate for a rather long dis-
tance without significant distortion. Actually, we can take
A;>; (dj=4)), and thus the complex coefficients can be
approximated as real ones:

v, |+ A3 |7
—=|1+xe—]—| , (5a)
C D2

_ 2K (1 + AZ)(Ay + Ag)
Ky=—| A+ — , (5b)

D? D
. Ag(|Q[2 + A3)
W=ki——, (5¢)
D3

with D=[Q,|2- AgA5. The tilde denotes the real part of the
coefficients.

In order to solve Eq. (2), we have used the condition
Im(K,) =0, which can be satisfied by a weak EIT condi-
tion. Then the equation supports the localized solution

1 K, 1 z E E o
Q,=—~[—sech| —|t-— KoK/ 2] (6)
T 4 T V,

The solution in Eq. (6) describes a fundamental bright
soliton traveling with propagating velocity V,. With the
parameters used in Fig. 2, we obtain V,/c=1.97X 1075,
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i.e., the soliton travels with an ultraslow propagating ve-
locity much less than the light speed in vacuum. The dis-
persion length Lj;=7/|Ky|=2.0 cm. The propagation of
such an ultraslow optical soliton corresponds to the situ-
ation shown in Fig. 2(d).

From Eqgs. (5b), (5¢), and (6) we see that under strict
EIT conditions, i.e., Ag=0, the system displays no nonlin-
ear effects. Hence, to generate the soliton with the form of
Eq. (6) in the system, a nonzero two-photon detuning (i.e.,
Ay #0) is necessary. However, Ay cannot be too large un-
less the validity condition of the nonlinear Schriodinger
Eq. (2) will be violated.

With the solution in Eq. (6) one readily obtain the solu-
tion for Ay and Aj:

9,

Ap=- 50, (7a)
w + d2

Az=———0,. (7b)

In previous theoretical approaches [6-12], the deple-
tion of the control field is not taken into account. Here, we
consider this problem by solving Eq. (1e) through the use
of the solution given above. Substituting the above result
into Eq. (1e) we obtain a linear and inhomogeneous equa-
tion for (). It is easy to obtain the solution,

Q.=00+0" + 0P, (8)

where QE,O) is a constant describing a continuous back-
ground, and le)(t,z)zﬂgl)(t—z/c) describes a hump that
propagates with speed c. The concrete waveform of Qil) is
determined by the initial condition. The third term of Eq.
(8) is given by

(0) 76

o OONVE, 1/ =

Q7 =ikyg—————tanh| —| t-— ||, 9)
D> TW ™V

which contributes a hole (or dark soliton) to the light in-
tensity of the control field. The motion of the hole matches
that of the probe field, i.e., it moves with the same propa-
gating velocity of the probe field soliton (6). The appear-
ance of the control field hole is obviously due to the energy
exchange between the control field and the probe field via
the atomic system as an intermediary.

The solution given above can be used to explain the re-
sult of the numerical simulation presented in the last sec-
tion. For example, the horizontal line in the upper part of
Fig. 3 is continuous background ng); the hump above the
horizontal line is the contribution by le)(t—z/ ¢); the hole
below the horizontal line is the contribution of 022).

5. DISCUSSION AND SUMMARY

In the above calculations, probability amplitude equa-
tions [i.e., Egs. (1a)—(1c)] have been used for the descrip-
tion of atomic motion. Strictly speaking, for a lifetime-
broadened system, density matrix equations should be
adopted in order to get a complete description that in-
cludes the effects of spontaneous emission and dephasing.
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However, for an EIT-based partially open system, it can
be shown that the probability amplitude approach and
the density matrix approach are roughly equivalent. The
main reason for such equivalence is due to the fact that
the controlling field (), induces a quantum coherence in
the system and greatly suppresses the spontaneous emis-
sion. The dominant processes in the system are hence co-
herent, reversible transitions between the hyperfine
ground states. The quantity determining the importance
of the incoherent processes is given by the fraction of the
population undergoing spontaneous emission integrated
over time, i.e., Ploss=v3/dt|As(t)|?, which is indeed small
because Aj is nearly vanishing in EIT-like systems. For a
detailed discussion and comparison between the two ap-
proaches in EIT systems, we refer to [47,48]. In Appendix
A, we have presented the equations of motion of the den-
sity matrix for our system and have given the relations
between the decay rate 7y, in the probability amplitude
equations [Egs. (la)-(1c)] and spontaneous emission
decay rates and dephasing rates in the density matrix
equations. Another reason for the choice of the probability
amplitude approach is due to its simplicity in the math-
ematical treatment and transparency for the physical ex-
planation on the results obtained in the numerical simu-
lation.

To check the above argument we have made an addi-
tional numerical calculation for the time evolution of the
probe and controlling fields based on the density matrix
equations [Eqgs. (Ala)-(A1lh)]. The result is shown in Fig.
5, where the corresponding result based on the probabil-
ity amplitude equations [Egs. (1a)—(1e)] is also presented.
We see that the difference between two approaches is in-
deed very small.

In conclusion, we have investigated nonlinear optical
pulse propagation in a lifetime-broadened three-state
atomic system. We have shown that a depletion of the
control field may occur and even be significant during the
formation and propagation of ultraslow optical solitons of
the probe field. We have also shown that the ultraslow op-
tical solitons are relevant to the limit of weak dispersion

12 i Qo A
101 ) N 1.0 <70l A\ -

~ . 11 \ _§ 0951 jJa, < o, A
gg- » § 090- 0.85
\‘9-5 . ! 2 g£.5- RETICr 08 7
c density matrix % —— density matrix
_0 , - - amplitude o Iﬂp/ﬂpolz - - amplitude

Y17 0.0

-10 0 10 -20 0 20
(@ t/t (b) t/x

Fig. 5. (Color online) Evolution of probe and control fields as
functions of distance z and time ¢. The results shown are for z
=0 cm (the pulse on the left side) and 1 cm (the pulse on the right
side). (a) The case of control field (), is a constant; (b) the evolu-
tion of both the probe and control fields is considered. The insets
in the figures show the very small difference between the density
matrix description and the probability amplitude description. In
both panels, solid curves are the results based on the density ma-
trix Eq. (A1) and dotted curves are the results based on the prob-
ability amplitude Eq. (1). Parameters are chosen as I's;7=1"3,7
=v317=Y357=5.67, v5;7=1.0X 1073 [the ionization rate y,7=0 (i
=1 to 3) in density matrix equation], with other ones the same as
those in Fig. 2. The initial condition is taken as A;=p;;=1, A,
=133=P22= P33=pa1=p31=p32=0, €,(0,8)=Q,sech(t/7), Q.(0,¢)
—S5c0-
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and nonlinearity, the adiabatons correspond to the limit
of stronger dispersion and stronger nonlinearity, and the
simultons are corresponding to the limit of strong disper-
sion and strong nonlinearity. Between these limits the
system also allows solitonlike nonlinear excitations with
different depletions of the control field. We believe that
the results provided in this work are useful not only for a
deep understanding of the interrelation between ul-
traslow optical solitons and adiabatons but also for poten-
tial applications in optical information processing and
transmission.

APPENDIX A: DENSITY MATRIX
EQUATIONS

Density matrix equations that describe the interaction be-
tween three-level atoms and probe and controlling fields
are:

J
L(E + 7’1)/311 = il51p33 + O p31 = Qppy, =0,  (Ala)

J
1(5 + 72)/322 —il39p33+ Qjps2 - Qcpgz =0, (Alb)

=)

J
L(E + Y3+ r3)#’33 + Qpp§1 - Q;P:n + QeP;2 - QZP32 =

(Alc)

J
(ig+d21)P21—QpP§2+QZP31=O, (Ald)
. d
15"'(131 p31— Qp(ps3 = p11) + Qepa1 =0,  (Ale)
15+d32 ps2 = Qe(p3s — pag) + Qppy; =0, (ALf)

Jd 190
| —+——]Q =0, (Al
l &z+c&t » + K1P31 (Alg)

Jd 190 A
| —+—— | Q.+ =0, 1h
4 c ot Kap32 ( )

with pUHAlA;? dU=Al_AJ+l71j7 and 'ylj=(Fl+I‘J)/2+(yl
+y)/2+ yfj‘?l with I';=3;I';;. Here I';; denotes the sponta-
neous emission decay rate from state |i) to state |j), and Y
is the ionization rate of the state |7). yjcl”l represents the di-
pole dephasing rate that reflects the loss of phase coher-
ence without change of population, as might occur with
elastic collisions. From Eqs. (Ala)-(Alc), one has Ef’ﬂp]j
=-— Jszlyjpjj, and hence the system is partially open.

If the system is an open system, i.e., ['3;=1"3,=0, Eq. (1)
and Eq. (Al) are mathematically equivalent, so one has
pij=AiA:f< [49]. Since in our system (a partially open one)
states |]1) and |2) are two hyperfine ground states, one
has a vanishing y; and a very small y,. The quantum in-
terference effect induced by the controlling field sup-
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presses the spontaneous emission greatly. The dominant
processes in the system are thus coherent, reversible
transitions between the hyperfine ground states. In this
case, the difference between the result given by the prob-
ability amplitude approach and the one obtained by the
density matrix approach is not significant.
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