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Matter-wave solitons in an array of spin-orbit-coupled Bose-Einstein condensates
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We investigate matter-wave solitons in a binary Bose-Einstein condensate (BEC) with spin-orbit (SO) cou-
pling, loaded in a one-dimensional (1D) deep optical lattice and a three-dimensional anisotropic magnetic trap,
which creates an array of elongated sub-BECs with transverse tunneling. We show that the system supports 1D
continuous and discrete solitons localized in the longitudinal (along the array) and the transverse (across the
array) directions, respectively. In addition, such solitons are always unpolarized in the zero-momentum state but
polarized in finite-momentum states. We also show that the system supports stable two-dimensional semidiscrete
solitons, including single- and multiple-peaked ones, localized in both the longitudinal and transverse directions.
Stability diagrams for single-peaked semidiscrete solitons in different parameter spaces are identified. The results
reported here are beneficial not only for understanding the physical property of SO-coupled BECs but also for
generating new types of matter-wave solitons.

DOI: 10.1103/PhysRevE.108.014208

I. INTRODUCTION

Spin-orbit (SO) coupling describes an interaction occur-
ring between internal spin and external orbit motions of a mi-
croscopic particle [1]. It can be regarded as the contribution of
an effective magnetic field seen by the spin in the frame where
the particle is at rest. The first and best-known effect induced
by SO coupling is the splitting of spectral lines of atomic en-
ergy levels. Due to a relation between angular momentum and
nuclear force, a similar effect occurs for protons and neutrons
moving inside an atomic nucleus, leading to the energy-level
shifts of the nucleus. SO coupling plays also an important role
in solid-state physics, the study of which has stimulated many
interesting findings, including topological insulators [2,3] and
the spin Hall effect [4,5], are promising for many applications
(including the design of novel spin devices) [6,7].

In recent years, tremendous efforts have been paid to the
research on the generation and engineering of synthetic gauge
fields and SO coupling in cold atomic gases [8–15]. Based
on the tunability of the SO coupling realized in atomic gases,
one can not only investigate many phenomena in solid-state
physics in a controllable and disorder-free way, but also reach
parameter regimes not easy to access with conventional solid-
state materials, and hence allow us to explore more exotic
matter states [16–22]. For example, for a homogeneous SO-
coupled atomic Bose-Einstein condensate (BEC), its ground
state can display a stripe phase, i.e., the atomic gas has a
periodic density distribution and hence continuous transla-
tion symmetry of the system is broken [23–28]. Moreover,
Zitterbewegung oscillations have been found for the center-
of-mass motion of SO-coupled BECs [29,30]. In addition,
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roton-maxon structures, roton softening, and relevant phonon
modes in the spectra of SO-coupled BEC s have also been
observed [31–33].

Bose-condensed atomic gases have unique features and
the interplay between SO coupling and these features can
lead to many intriguing new phenomena [34,35]. Particularly,
the interplay of SO coupling and atom-atom interactions can
give rise to various self-localized states, such as solitons and
vortices [36–54]. Furthermore, when a SO-coupled BEC is
loaded in an optical lattice, the lattice effect can open energy
gaps, resulting in the formation of gap solitons [55–59]. Such
solitons exhibit interesting features that are absent in the BEC
without SO coupling (e.g., the violation of Galilean invari-
ance) [60,61]. Additionally, the SO coupling can also be used
to stabilize high-dimensional solitons in BECs [40–48]. Par-
ticularly, when the optical lattices are deep enough, the SO-
coupled BECs are localized only at each lattice potential min-
imum, splitting into sub-BECs, and hence the gap solitons and
nonlinear modes created in BECs become discrete [62–64].

In this article, we consider a binary BEC with a SO cou-
pling, loaded in a one-dimensional (1D) deep optical lattice
and a highly anisotropic three-dimensional (3D) magnetic
trap, which creates an array of quasi-1D condensates with
transverse tunneling. The SO coupling is assumed to be gen-
erated via a Raman coupling of two atomic hyperfine states.
We show that the system supports 1D continuous solitons
localized in the longitudinal (along the array) direction, and
1D discrete solitons localized in the transverse (across the
array) direction. We find that such solitons are always unpo-
larized (the densities of two spin-components are equal) in
zero-momentum state but are polarized (the densities of two
spin-components are unequal) in finite-momentum states.

Furthermore, we demonstrate that the system supports
the existence of stable two-dimensional (2D) matter-wave
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solitons, which are localized in both longitudinal and trans-
verse directions and can exhibit single- and multi-peaked
density distributions. Such solitons can be taken as semidis-
crete solitons, since they have continuous and discrete density
distributions in the longitudinal and transverse directions, re-
spectively. We also consider the stability of such solitons, and
identify their stability diagram in different parameter regions.

Before proceeding, we would like to stress that, although
in the past years many studies on matter-wave solitons in
binary BECs with SO coupling have been reported, our work
is distinct from them based on the following reasons:

(i) In previous studies [40–48], high-D solitons were ob-
tained in free space. The stabilization of solitons is realized
through Rashba SO coupling, by which the solitons have
forms of semivortices or vortex mixed modes [41–43,48]; an-
other way for soliton stabilization is to employ dipole-dipole
interaction between atoms, which needs the use of dipolar
BECs with SO coupling [44–46]. Differently, in our work the
SO coupling is realized via the Raman coupling of atomic
hyperfine states, which is equivalent to an equal-weight su-
perposition of Rashba and Dresselhaus SO couplings [65]
and can be easily realized in experiments. The atom-atom
interaction in the BEC is a local one and hence our model can
be realized by using a conventional BEC. The stabilization of
the solitons can be achieved by the joint contribution of the
SO coupling and the trapping potential (i.e., 1D optical lattice
and a 3D magnetic trap).

(ii) Gap solitons in a SO-coupled BEC with a shallow
optical lattice potential were considered in Refs. [55–59],
where the system was modeled by a continuous nonlinear
Schrödinger (NLS) equation with a periodic potential, allow-
ing gap solitons which are bifurcated from the band edge of
linear Bloch modes. At variance with such a consideration, in
our work a 1D deep optical lattice is used and thus the BEC
is split into an array of quasi-1D sub-BECs with transverse
tunneling; the system is modeled by a discrete NLS equation,
in which the underlying periodicity and discreteness leads to
new families of matter-wave solitons that have no counterpart
in continuous models. The atomic density for such solitons
distributes only in very few lattice sites, much more localized
in space than the gap solitons obtained in Refs. [55–59].

(iii) The system proposed in our study can support vari-
ous matter-wave solitons (including 1D continuous solitons
localized in the longitudinal direction, 1D discrete solitons
localized in the transverse direction, and 2D semidiscrete
solitons localized in both the longitudinal and the transverse
directions), which are not easy to realize in other settings.
Thereby, such a system may be regarded as an effective plat-
form for the study of novel nonlinear matter waves based on
SO-couplings. The research results reported here are useful
not only for understanding the unique property of SO-coupled
BECs, but also for finding new types of matter-wave solitons
in Bose-condensed atomic gases.

The remainder of the article is organized as follows: In
Sec. II, we describe the physical model under study; the linear
dispersion relation of the system is discussed. In Sec. III,
we investigate the formation and propagation of 1D contin-
uous and discrete solitons; the polarization of the solitons is
analyzed. In Sec. IV, we investigate the 2D single- and multi-
peaked semidiscrete solitons, and give the stability diagram

FIG. 1. Physical model under study. The red curve denotes the
optical lattice and the blue ellipsoids denote the array of sub-BECs.
The geometrical configuration of the setting and the level diagram are
shown in the left and right insets, respectively. The SO coupling is
generated by two Raman laser fields EL1 and EL2 (magenta arrows
along x direction), which have orthogonal linear polarizations ey

and ez (black double arrows along the y and z directions, respec-
tively). Intermediating by the upper level, EL1 and EL2 couple the
two lower (Zeeman) levels |F = 1, mF = 0〉 and |F = 1, mF = −1〉
of a Bose-condensed 87Rb atomic gas, which differ in energy by a
Zeeman splitting ωZ caused by the magnetic field B applied along
the z direction (denoted by green arrow). EL1 and EL2 have frequency
difference ωZ + δ, where δ is a small detuning from the two-photon
Raman resonance. � is a large (one-photon) detuning.

of the semidiscrete solitons in different parameter regions.
Finally, in the last section we give a summary of the main
results obtained in the present study.

II. PHYSICAL MODEL AND SMALL-AMPLITUDE
SOLUTIONS

A. Physical model

We start with considering an atomic BEC (e.g., a Bose-
condensed 87Rb atomic gas) formed in the F = 1 hyperfine
ground-state manifold, which is loaded in a deep, 1D op-
tical lattice and a highly anisotropic 3D magnetic trap; see
Fig. 1. We assume that a static magnetic field B is applied
along z direction, leading to a Zeeman splitting of the F = 1
hyperfine ground state, i.e., F = 1 level is split into three
Zeeman sublevels |F = 1, mF = −1〉, |F = 1, mF = 0〉, and
|F = 1, mF = 1〉. The BEC is then coupled to the electric field
of two Raman laser fields EL1 and EL2, which have orthogonal
linear polarizations ey and ez (represented by the black double
arrows along the y and z directions in the left inset of Fig. 1),
wave vectors kL1 and kL2, and angular frequencies ωL1 and
ωL2, respectively. The frequency splitting between the two
Zeeman sublevels |F = 1, mF = 0〉 and |F = 1, mF = −1〉
(i.e., ωZ ) is set to be close to the frequency difference be-
tween the two Raman laser fields (i.e., �ωL = ωL1 − ωL2),
giving rise to a small two-photon detuning δ = �ωL − ωZ .
The state |F = 1, mF = 1〉 (not shown) is far detuned from
the other states and hence can be neglected. Through the
coupling of the two Raman laser fields (which are assumed
to be undepleted) and intermediation of the upper level, the
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system can be regarded as a pseudo-spin-1/2 system, with
the two spin components given by |↑〉 = |F = 1, mF = 0〉
and |↓〉 = |F = 1, mF = −1〉. We further assume that the two
Raman laser fields counterpropagate along the x direction with
approximately equal wave number, i.e., kL1 ≈ −kL2 = exkL.

Under the mean-field approximation the Hamiltonian of
the system is given by

H =
∫

d3r�†(r)[Hsp + G]�(r), (1)

where r = (x, y, z), d3r = dxdydz, � = (�↑, �↓)T is the bi-
nary condensate wave function (here �↑ and �↓ are the
spin-up and spin-down components, respectively; T means
transpose), G is a 2 × 2 matrix defined by

G = 4π h̄N

(
a↑↑|�↑|2 + a↑↓|�↓|2 0

0 a↓↑|�↑|2+a↓↓|�↓|2)

)
,

(2)

characterizing the atom-atom interaction, with N the number
of atoms and aαβ (α, β =↑,↓) the s-wave scattering lengths
for the same (a↑↑, a↓↓) and different (a↑↓ and a↓↑) spin-
components.

In the expression (1), Hsp is single-particle Hamiltonian
with the form

Hsp = − h̄2

2M
∇2 − i

h̄2kL

M

∂

∂x
σz + h̄�σx + V (r), (3)

where ∇ = (∂x, ∂y, ∂z ), M is atomic mass, σx and σz are Pauli
matrices, and � = |�L|2/� describes the Raman coupling
(�L is the half Rabi frequency of each Raman laser field and
� is a one-photon frequency detuning), which is assumed
large for suppressing the spontaneous emission from the upper
level. Since � is proportional to the Raman laser intensity
|�L|2 and inversely proportional to the detuning �, it can be
easily tuned experimentally. The term −i(h̄2kL/M )∂xσz in the
expression (3) is the contribution from the Raman-induced SO
coupling, which describes the momentum exchange between
the atom and the Raman laser fields, as well as the coupling
with the atomic spin. The strength of the SO coupling is
characterized by the parameter h̄2kL/M = 2π h̄2/(MλL ), i.e.,
inversely proportional to the atomic mass M and the wave-
length λL of the Raman laser fields.

We assume that the potential V (r) originates from con-
tributions of a 1D optical lattice in the y direction and an
anisotropic 3D magnetic trap. It has the form

V (r) = V0 sin2
(πy

d

)
+ M

2

(
ω2

x x2 + ω2
y y2 + ω2

z z2
)
, (4)

where V0 (d) is the depth (period) of the optical lattice, and
ωα (α = x, y, z) are the trapping frequencies in the three di-
rections of the magnetic trap, satisfying the condition of high
anisotropy ωx ≈ ωy � ωz. If the optical lattice along the y
direction is deep enough, taking into account that the trapping
effect of the magnetic trap in the z direction is much larger
than that in the other (x and y) directions, the Bose-condensed
atomic gas will become an array of quasi-1D subcondensates
(see the lower part of Fig. 1). However, the atoms can still
tunnel between adjacent lattice sites and, as a result, they are
coupled weakly in the y direction.

For the convenience of the following calculations, we intro-
duce the dimensionless variables (ξ, η, ζ ) = a−1

z (x, y, z), τ =
ωzt , and (ϕ↑, ϕ↓) = (�↑, �↓)/

√
n0, with az = √

h̄/(Mωz ) the
harmonic oscillator length in the y and z directions and n0 =
N/a3

z the atomic density. Then, from the Hamiltonian (1) we
obtain the dimensionless Gross–Pitaevskii (GP) equations for
the two spin components:

i
∂ϕ↑
∂τ

= −1

2

[
∇̃2 − 2V0

h̄ωz
sin2

(
πη

d̃

)
− ζ 2

]
ϕ↑ − ik̃L

∂ϕ↑
∂ξ

+ �̃ϕ↓ + (g↑↑|ϕ↑|2 + g↑↓|ϕ↓|2)ϕ↑, (5a)

i
∂ϕ↓
∂τ

= −1

2

[
∇̃2 − 2V0

h̄ωz
sin2

(
πη

d̃

)
− ζ 2

]
ϕ↓ + ik̃L

∂ϕ↓
∂ξ

+ �̃ϕ↑ + (g↓↑|ϕ↑|2 + g↓↓|ϕ↓|2)ϕ↓, (5b)

with ∇̃ = (∂ξ , ∂η, ∂ζ ), d̃ = d/az, k̃L = kLaz, and �̃ = �/ωz.
Here, gαβ = 4πNaαβ/az (α, β =↑,↓) characterize the atomic
interactions for the same (g↑↑ and g↓↓) and different (g↑↓
and g↓↑) spin components. Since a↑↑ ≈ a↓↓ and a↑↓ ≈ a↓↑,
we set g↑↑ ≈ g↓↓ = g1 and g↑↓ ≈ g↓↑ = g2. Moreover, for
deriving Eqs. (5), we have neglected the terms −(ω2

x/ω
2
z )ξ 2

and −(ω2
y/ω

2
z )η2, which are very small due to the condition

ωz 	 ωx, ωy. From Eqs. (5), we see that the condition of the
deep optical lattice is given by V0/(h̄ωz ) 	 d̃2.

To estimate the magnitude of dimensionless parameters
given above, we choose a set of practical parameters with the
trapping frequencies ωx ≈ ωy ≈ 2π × 1 Hz and ωz ≈ 2π ×
15 Hz, which leads az ≈ 2.8 µm. Through the use of Fesh-
bach resonance, the s-wave scattering length for 85Rb BECs
can be tuned to be negative (corresponding to the attractive
atomic interactions), giving by aαβ ≈ −10.9 a0 (a0 = 0.0529
nm is the Bohr radius) [66,67], and if the total number of
condensed atoms N ≈ 104, the atomic density n0 ≈ 4.7 ×
1014 cm−3 and the atomic interactions g1 ≈ g2 ≈ −26. More-
over, we take kL ≈ 1/az ≈ 3.6 × 105 m−1 (λL ≈ 17.5 µm),
�L ≈ 0.5 × 106 s−1, and � ≈ 2.6 GHz, then the strengths of
the SO coupling and Raman coupling are of the same order of
magnitude of one, i.e., k̃L ≈ �̃ ≈ 1. Note that both k̃L and �̃

are tunable by changing ωz, �L, and � in the present system,
providing an ideal platform for the study of various solitons
(see below). We also choose V0 ≈ h̄ωz/2 so that the condition
of the deep optical lattice reads d̃2 � 1/2, which can be safely
satisfied by taking d � az.

We are interested in the nonlinear excitations in the system
for the case where the BEC is tightly confined in the min-
ima of the optical lattice and the magnetic trap. To this end,
we make simplification for the Eqs. (5) under assumptions
indicated above. As a first step, we consider the following
eigenvalue problems associated with the solutions of Eqs. (5)
[see Eqs. (7) and (9) below], given by

−∂2φk,α (η)

∂η2
+ 2V0

h̄ωz
sin2

(
πη

d̃

)
φk,α (η) = Eαφk,α (η), (6a)

−∂2βm(ζ )

∂ζ 2
+ ζ 2βm(ζ ) = εmβm(ζ ), (6b)

where φk,α (η) are Bloch functions, describing the condensate
distribution in the y direction, with α and k being the band

014208-3



ZHANG, HANG, AND HUANG PHYSICAL REVIEW E 108, 014208 (2023)

number and Bloch vector in the first Brillouin zone. Since
the energy Eα is periodic in the momentum space, Eα (k) =
Eα (k + 2π/d̃ ), it can be represented in the form of discrete
Fourier series Eα (k) = ∑

n ω̂n,αeiknd̃ , with ω̂n,α = ω̂−n,α =
ω̂∗

n,α . Since the functions φk,α (η) are strongly localized at the
lattice minima, it implies | ∫ φ∗

k,α (η)φk,α (η − nd̃ )dη| ≈ δ0,n,
which is analogous to the tight-binding approximation of
solid-state physics [68].

Although Bloch functions constitute a complete orthogonal
basis, for the deep lattice of the present case it is more con-
venient to use Wannier functions instead of Bloch functions.
We recall that the Wannier functions are centered around the
position η = nd̃ (n ∈ Z) and defined as [69]

wn,α (η) = wn,α (η − nd̃ ) = d̃

2π

∫ π/d̃

−π/d̃
φk,α (η)e−iknd̃ dk. (7)

The inverse transformation is given by φk,α (η) = ∑
n

wn,α (η)eiknd̃ . Wannier functions form a complete orthogonal
set of functions with respect to both n and α, which can be
made real and exponentially decaying at infinity.

Equation (6b) has the form of the eigenvalue equation of a
1D harmonic oscillator in quantum mechanics [70]. Thus its
solution reads

βm(ζ ) = 1√√
π2mm!

Hm(ζ )e−ζ 2/2, (8)

with eigenvalue εm = 2(m + 1/2), m = 0, 1, 2, . . .. Here
Hm(ζ ) are Hermite polynomials, forming a complete and or-
thogonal set of functions with respect to quantum number
m. Particularly, for the lowest state (m = 0) one has β0(ζ ) =
π−1/4e−ζ 2/2, with eigenenergy ε0 = 1.

Based on the completeness of Wannier functions and the
Hermite polynomials given above, any solution of Eqs. (5)
can be expanded with the form

ϕ↑(ξ, η, ζ , τ ) =
∑
j,α,m

w j,α (η)βm(ζ )ψ↑, j,α,m(ξ, τ ), (9a)

ϕ↓(ξ, η, ζ , τ ) =
∑
j,α,m

w j,α (η)βm(ζ )ψ↓, j,α,m(ξ, τ ). (9b)

For simplicity, we make the following assumptions: (i) The
trapping potential in the z direction is strong enough, so that
the excitation of atoms to upper levels εm (m � 1) is negli-
gible. Thus one can take βm(ζ ) ≈ β0(ζ )δm,0. (ii) The optical
lattice in the y direction is deep enough, so that only the ex-
citation in the lowest band plays a significant role. Hence one
can take w j,α (η) ≈ w j,1(η)δα,1. As a result, the expressions
(9) is reduced into

ϕ↑(ξ, η, ζ , τ ) = β0(ζ )
∑

j

w j (η)ψ↑, j (ξ, τ ), (10a)

ϕ↓(ξ, η, ζ , τ ) = β0(ζ )
∑

j

w j (η)ψ↓, j (ξ, τ ), (10b)

where we have dropped the band index.
Substituting solutions (10) into Eqs. (5), multiplying∫ ∞

−∞ dηw j (η)
∫ ∞
−∞ dζβ0(ζ ), and using the orthogonality

of Wannier functions
∫ ∞
−∞ w j (η)w j′ (η)dη = δ j, j′ and the

normalization condition
∫ ∞
−∞ β2

0 (ζ )dζ = 1, we obtain the
reduced GP equations

i
∂ψ↑, j

∂τ
= −1

2

∂2ψ↑, j

∂ξ 2
− ik̃L

∂ψ↑, j

∂ξ
− χ (ψ↑, j+1 + ψ↑, j−1)

+ �̃ψ↓, j + (W1|ψ↑, j |2 + W2|ψ↓, j |2)ψ↑, j, (11a)

i
∂ψ↓, j

∂τ
= −1

2

∂2ψ↓, j

∂ξ 2
+ ik̃L

∂ψ↓, j

∂ξ
− χ (ψ↓, j+1 + ψ↓, j−1)

+ �̃ψ↑, j + (W2|ψ↑, j |2 + W1|ψ↓, j |2)ψ↓, j . (11b)

Here k̃L characterizes the strength of the SO coupling,
χ = −ω̂1 = −ω̂−1 characterizes the coupling between
adjacent lattice sites due to the atomic tunneling, �̃

characterizes the Raman coupling, and W1 = (g1/2)
∫

w4
j dη

[W2 = (g2/2)
∫

w4
j dη] describes the strength of the

intracomponent (intercomponent) interaction. Note that,
owing to the strong localization of Wannier functions around
lattice sites, in Eqs. (11) the contribution by next nearest
neighbor lattice sites along the y direction plays a negligible
role and hence has been disregarded; furthermore, both W1 and
W2 can be approximately taken as to be independent of the site
number j.

The reduced GP Eqs. (11) are semidiscrete (2 + 1)D equa-
tions, describing the nonlinear coupling (due to the mean-field
and the SO interactions) between the two spin components.
In addition to the independent time variable τ , they have the
continuous independent space variable along the x direction
(i.e., ξ ) and the discrete independent space variable along the
y direction (i.e., j).

B. Small-amplitude solutions and linear dispersion relation

For a dilute SO-coupled BEC, the small-amplitude so-
lution of Eqs. (11) can be sought by neglecting the non-
linear effect (i.e., taking W1 ≈ W2 ≈ 0). It has the form
of a two-component plane-wave solution (ψ↑, j, ψ↓, j )T =
(a, b)T eikξ+iq j−iωτ . Here, a and b are amplitudes of the two
components; k and q are atomic and lattice momentums along
the x and y directions, respectively. Substituting such a plane-
wave solution into Eqs. (11), we obtain(

k2

2 + k̃Lk − 2χ cos q �̃

�̃ k2

2 − k̃Lk − 2χ cos q

)(
a
b

)

= ω

(
a

b

)
, (12)

which leads to two branches of linear dispersion relation

ω = ω± ≡ 1

2
k2 − 2χ cos q ±

√
k̃2

Lk2 + �̃2. (13)

If q is fixed, the upper branch ω+ always has a
minimum at (k, ω) = (0,−2χ cos q + �̃). Differently, the
lower branch ω− has different behavior depending on
the sign of the parameter 1 − �̃/k̃2

L: if 1 − �̃/k̃2
L � 0,

it has a minimum at (k, ω) = (0,−2χ cos q − �̃) (Case
I); however, if 1 − �̃/k̃2

L > 0 it has a maximum at
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FIG. 2. Linear dispersion relation of the lower branch, i.e., ω−, as a function of the atomic and lattice momentums k and q for tunneling
coefficient χ = 1 and different strengths of the SO coupling k̃L and the Raman coupling �̃. Panels (a1), (a2), (a3), and (a4) are for (k̃L, �̃) =
(0.5, 1), (1,1), (1.5,1), and (2,1), respectively; panels (b1), (b2), (b3), and (b4) are for (k̃L, �̃) = (1, 0.1), (1,0.5), (1,1.2), and (1,2), respectively.

(k, ω) = (0,−�̃) and two minima at (k, ω) = (±kmin,

ωmin) (Case II), with

kmin =
√

k̃2
L − (�̃/k̃L )2, (14a)

ωmin = −2χ cos q − 1

2

[
k̃2

L + (�̃/k̃L )2]. (14b)

On the other hand, if k is fixed, the upper and lower branches
have minima at (q, ω) = (0, 1

2 k2 − 2χ ± (k̃2
Lk2 + �̃2)1/2),

respectively.
Shown in Fig. 2 is the distribution of ω− as a function of

the atomic and lattice momentums k and q for the tunneling
coefficient χ = 1 and different strengths of the SO coupling
k̃L and the Raman coupling �̃. Figures 2(a1)–2(a4) in the
figure are respectively for (k̃L, �̃) = (0.5, 1), (1,1), (1.5,1),
and (2,1) (i.e., varying k̃L, fixing �̃); Figs. 2(b1)–2(b4) are
respectively for (k̃L, �̃) = (1, 0.1), (1,0.5), (1,1.2), and (1,2)
(i.e., varying �̃ but fixing k̃L). We see that there exists a critical
value of k̃L, i.e., k̃ cr

L =
√

�̃. For k̃L � k̃ cr
L , ω− has a single-well

distribution with only one minimum at zero momentum k = 0
in the x direction [i.e., Case I, including Figs. 2(a1), 2(a2),
2(b3), and 2(b4)]. However, for k̃L > k̃ cr

L , ω− has a double-
well distribution with two minima at nonzero momentum
k = ±kmin [i.e., Case II, including Figs. 2(a3), 2(a4), 2(b1),
and 2(b2)]. Therefore, by increasing the SO coupling k̃L or
decreasing the Raman coupling �̃, one can promote the phase
transition from a mode with zero momentum to that with finite
momentum, or a linear superposition of both modes with finite
momentums, which can results in the formation of “stripe
phase.” On the other hand, in the y direction, ω− always has
only one minimum at q = 0.

III. ONE-DIMENSIONAL CONTINUOUS AND DISCRETE
MATTER-WAVE SOLITONS

Because the system under consideration possesses inter-
atomic interaction [characterized by the interaction energy
related to (2)] and dispersion [characterized by the atomic
kinetic energy, i.e., the first term in (3)], it is possible to
generate various matter-wave solitons through balancing the

dispersion and nonlinear effects and manipulating the optical
lattice and SO coupling in the system. In particular, the system
allows the existence of 1D continuous solitons localized in
the x direction and 1D discrete solitons localized in the y
direction, as shown below.

A. One-dimensional continuous matter-wave solitons
localized in the x direction

For 1D solitons localized in the x direction (along the
condensate array), the array has a marginal effect on the soli-
tons and their properties are mainly determined by the linear
dispersion relation of the system. From (13), we see that for
ω < −2χ − �̃ (Case I) or ω < ωmin (Case II), there exists a
semi-infinite gap where the linear modes are forbidden to ex-
ist. However, gap solitons might be found in such semi-infinite
gap analytically or numerically. By using the transformation(

ψ↑, j (ξ, τ )

ψ↓, j (ξ, τ )

)
=

(
c↑,q(ξ, τ )

c↓,q(ξ, τ )

)
eiq j, (15)

where −J/2 � j � J/2 with J the total number of lattice
sites, based on the reduced GP Eqs. (11), we obtain the equa-
tions for c↑,q and c↓,q, given by

i
∂c↑,q

∂τ
= −1

2

∂2c↑,q

∂ξ 2
− ik̃L

∂c↑,q

∂ξ
− 2χ cos (q)c↑,q

+ �̃c↓,q + (W1|c↑,q|2 + W2|c↓,q|2)c↑,q, (16a)

i
∂c↓,q

∂τ
= −1

2

∂2c↓,q

∂ξ 2
+ ik̃L

∂c↓,q

∂ξ
− 2χ cos (q)c↓,q

+ �̃c↑,q + (W2|c↑,q|2 + W1|c↓,q|2)c↓,q. (16b)

To solve Eqs. (16), we employ the multiscale expansion
[36,50] (

c↑,q

c↓,q

)
=

∞∑
n=1

εn

(
An

Bn

)
�n(T, X )ei(kξ−μτ ). (17)

Here ε is a small parameter characterizing the typical ampli-
tude on the condensate background, An and Bn (n = 1, 2, . . .)
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are constants, μ is chemical potential, �n(T, X ) are functions
of the slow variables T = ε2τ and X = ε(ξ − vτ ) (v is a
constant characterizing the group velocity of �n). For conve-
nience, we set μ = ω + ε2ω0, with ω the energy in the linear
limit and ε2ω0 a small deviation due to the nonlinear effect.
Plugging (17) into Eqs. (16) and comparing the powers of ε,
one can solve Eqs. (16) order by order.

At the first-order (n = 1), we get the linear dispersion
relation (13), and also A1 = 1 and

B1 = Q ≡ (ω− − k2/2 − k̃Lk + 2χ cos q)/�̃. (18)

At second-order (n = 2), we attain the expression of the group
velocity, given by v = ∂ω−/∂k = k − k̃L(Q2 − 1)/(Q2 + 1).
Finally, a scalar nonlinear equation of the envelope function
�(T, X ) can be obtained at the third-order (n = 3):

i
∂�

∂T
= −�

2

∂2�

∂X 2
+ S|�|2� − ω0�. (19)

Here � = ∂2ω−/∂k2 = 1 − k̃2
L/(k̃2

Lk2 + �̃2)1/2 +
k̃4

Lk2/(k̃2
Lk2 + �̃2)3/2 and S = (W1 + 2W2Q2 + W1Q4)/(1 +

Q2), characterizing the effects of dispersion and nonlinearity,
respectively.

The signs of the dispersion and nonlinear terms in Eq. (19)
are crucial for determining the types of solitons. If �S < 0
(�S > 0), the system supports bright (dark) solitons. Note
that the sign of S depends on W1 and W2. In the lower en-
ergy band (ω−) and for k = 0 (Case I) and k = kmin (Case
II), the group velocity is zero (v = 0) and one has always
� > 0. Thus, stationary bright (dark) solitons can be found
with S < 0 (S > 0). Besides, moving solitons can also exist,
featuring a finite group velocity (v > 0) that can be found for
k �= 0 (Case I) and k �= kmin (Case II). Returning to original
variables, bright soliton solutions (for �S < 0) are given by(

ψ↑, j

ψ↓, j

)
≈

(
1
Q

)
�(ξ, τ ) eiq j, (20)

where

�(ξ, τ ) = ρ sech[(ρ
√

|S/�|)(ξ − vτ )]eikξ−i(ω−−ρ2|S|/2)τ ,

(21)

with ρ being a free real parameter characterizing the ampli-
tude (width) of the soliton.

Based on the above analysis, in Case II there exist two
degenerate minima at specific values of the momentum k,
i.e., k = ±kmin, at which two different nonlinear modes can
be developed. In the linear limit, a superposition of these
modes is still a solution of the equation with the same energy.
It turns out to be possible to find a nonlinear solution as a
superposition of the two different nonlinear modes developing
from k = ±kmin as well. Particularly, in the case of W1 = W2,
we can employ the symmetry of Eqs. (16), i.e., c↑,q = −c∗

↓,q,
and obtain the stripe soliton solution:(

ψ↑, j

ψ↓, j

)
≈ C

(
q+ cos(kminξ ) + iq− sin(kminξ )

−q+ cos(kminξ ) + iq− sin(kminξ )

)
�(ξ, τ )eiq j,

(22)

where q± = �̃−1 + Q(k = ±kmin), �(ξ, τ ) is given by
Eq. (21), and C is a free real parameter. The soliton solution

given by (22) is localized in the x direction (i.e., along the con-
densate array) but extended in the y direction (i.e., across the
condensate array). We called such a soliton the 1D continuous
soliton since it has a continuous density distribution in the x
direction.

Shown in the upper three panels of Fig. 3 are density
distributions, |ψ↑, j |2 + |ψ↓, j |2, of the 1D continuous soliton
as functions of ξ = x/az. When plotting the figure, the SO
coupling k̃L is taken to be 0.5 in Fig. 3(a), and 1.5 in Fig. 3(b)
and Fig. 3(c); other parameters are chosen as q = 0 (lat-
tice momentum), �̃ = 1 (Raman coupling), χ = 1 (tunneling
coefficient), and W1 = W2 = −0.5 (atomic interactions). The
profiles of solitons in the zero-momentum (k = 0 for Case
I), finite-momentum (k = kmin for Case II), and stripe (k =
±kmin for Case II) states are illustrated in Figs. 3(a)–3(c),
respectively. The left and right insets in each panel show re-
spectively density distributions of the spin-up and spin-down
components, |ψ↑, j |2 and |ψ↓, j |2, as functions of ξ = x/az

and j (the discrete coordinate along y direction). We see that
the zero-momentum soliton is unpolarized, |ψ↑, j |2 = |ψ↓, j |2
[Fig. 3(a)], the finite-momentum soliton is highly polarized,
|ψ↑, j |2 � |ψ↓, j |2 [Fig. 3(b)], and the stripe soliton is nearly
unpolarized |ψ↑, j |2 ≈ |ψ↓, j |2 [Fig. 3(c)]. Interestingly, an os-
cillatory behavior emerges on the two sides of the stripe
soliton center (ξ = 0) [see Fig. 3(c)]. The physical reason of
such an oscillatory behavior is due to the interference of the
two wave modes with wave numbers k = kmin and k = −kmin.

The results for the formation of different spin polar-
izations of the soliton described above can be understood
as follows. For the zero-momentum soliton, the ampli-
tude parameter Q = −1 [for the definition of Q, see (18)],
and hence the polarization ration (i.e., the ration between
the two spin polarization components) |ψ↑, j |2/|ψ↓, j |2 =
1/Q2 = 1, i.e., the zero-momentum soliton is always unpo-
larized; for the finite-momentum soliton, however, one has
Q = −[k̃2

L + (k̃4
L − �̃2)1/2]/�̃, and hence the polarization ra-

tio is |ψ↑, j |2/|ψ↓, j |2 = 1/Q2 = �̃2/[k̃2
L + (k̃4

L − �̃2)1/2]2 <

1 when 1 − �̃/k̃2
L > 0. With the parameters given above, the

polarization ratio of the soliton in Fig. 3(b) is 0.09. Gener-
ally, the spin polarization ratio can be tuned actively through
changing the SO coupling parameter k̃L and/or the Raman
coupling parameter �̃.

B. One-dimensional discrete matter-wave solitons
localized in the y direction

Different from the situation described in the last section,
for a 1D soliton localized in the y direction, the condensate
array will play a significant role. To obtain the analytical solu-
tion of such a soliton, we relax the supposition of exponential
dependence on lattices site j and assume that the solution has
the following form:

(
ψ↑, j (ξ, τ )

ψ↓, j (ξ, τ )

)
=

(
d↑, j (τ )

d↓, j (τ )

)
eikξ+ik2τ . (23)
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FIG. 3. Density distributions |ψ↑, j |2 + |ψ↓, j |2 of 1D continuous [panels (a)–(c)] and discrete [panels (d)–(f)] solitons as functions of
ξ = x/az and j (the discrete coordinate along y direction), respectively. Solitons in the zero-momentum (k = 0 for Case I), finite-momentum
(k = kmin for Case II), and stripe (k = ±kmin for Case II) states are respectively shown in the left, middle, and right columns. The left and right
inserts in each panel represent density distributions of the spin-up (|ψ↑|2) and spin-down (|ψ↓|2) components, respectively. The SO coupling
k̃L is taken to be 0.5 in the left column, and 1.5 in the middle and right columns. Other parameters are given by q = 0 (lattice momentum),
�̃ = 1 (Raman coupling), χ = 1 (tunneling coefficient), and W1 = W2 = −0.5 (atomic interactions).

By using Eqs. (11), we obtain the equations for d↑, j and d↓, j :

i
∂d↑, j

∂τ
= k̃Lk d↑, j − χ (d↑, j+1 + d↑, j−1) + �̃d↓, j

+ (W1|d↑, j |2 + W2|d↓, j |2)d↑, j, (24a)

i
∂d↓, j

∂τ
= −k̃Lk d↓, j − χ (d↓, j+1 + d↓, j−1) + �̃d↑, j

+ (W1|d↓, j |2 + W2|d↑, j |2)d↓, j . (24b)

In contrast with Eqs. (16) which are two coupled continuous
NLS equations, Eqs. (24) are two coupled discrete NLS equa-
tions.

The Lagrangian corresponding to (24) is given by

L =
∑

j

⎡
⎣ ∑

α=↑,↓

i

2
(ḋα, jd

∗
α, j − ḋ∗

α, jdα, j ) − G̃

⎤
⎦, (25)

with

G̃ = k̃Lk(|d↑, j |2 − |d↓, j |2) − χ (d∗
↑, jd↑, j+1 + d∗

↓, jd↓, j+1)

+ �̃d∗
↑, jd↓, j + 1

2W1(|d↑, j |4 + |d↓, j |4)

+ W2|d↑, j |2|d↓, j |2 + c.c.

Here dots stand for time derivative (i.e., ∂τ ) and c.c. stands
for complex conjugate. We assume that the width w is much
larger than the period of optical lattice d̃ , i.e., w 	 d̃ , so that
the summation over j can be replaced by integration.

Equations (24) can be solved analytically by applying the
variational method with the Lagrangian (25) and the following

trial function [71,72]:(
d↑, j

d↓, j

)
= 1√√

π2w

(
eiϕ/2√1 + p

−e−iϕ/2√1 − p

)
e− ( j− jc )2

2w2 +iq( j− jc )
,

(26)

where p (−1 < p < 1), w, jc, and ϕ are variation parame-
ters characterizing the spin polarization, width, position, and
phase of each spin component, respectively.

The equations of motion for p, w, jc, and ϕ can be obtained
from the Euler-Lagrangian equation and their steady-state
solutions are given as p = k̃Lk/(k̃2

Lk2 + �̃2)1/2 ≡ p0, w = w0

(w0 can be obtained numerically), and jc = ϕ = 0 under the
approximation W1 ≈ W2. Then we obtain the soliton solution(

ψ↑, j

ψ↓, j

)
= 1√√

π2w0

( √
1 + p0

−√
1 − p0

)
e
− j2

2w2
0
+iq j

eikξ+ik2τ , (27)

with the polarization ratio given by |ψ↑, j |2/|ψ↓, j |2 = (1 +
p0)/(1 − p0). For the zero-momentum (k = 0 for Case
I) soliton, one has p0 = 0 and hence the polarization
ratio |ψ↑, j |2/|ψ↓, j |2 = 1, i.e., it is always unpolarized.
For the finite-momentum (k = kmin for Case II) soliton,
one has p0 = (1 − �̃2/k̃4

L )1/2, and hence the polariza-
tion ratio |ψ↑, j |2/|ψ↓, j |2 = [1 − (1 − �̃2/k̃4

L )1/2]/[1 + (1 −
�̃2/k̃4

L )1/2] < 1 when 1 − �̃/k̃2
L > 0. The soliton solution

given by (27) is localized in the y direction (i.e., (across the
condensate array) but extended in the x direction (i.e., along
the condensate array). We called such a soliton the 1D discrete
soliton since it has a discrete density distribution in the y
direction (denoted by the discrete index j).

Shown in the lower part of Fig. 3 are density distributions,
|ψ↑, j |2 + |ψ↓, j |2, of 1D discrete solitons as functions of
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FIG. 4. Density distributions, |ψ↑, j |2 + |ψ↓, j |2, of the 2D single-peaked semidiscrete solitons as functions of ξ = x/az and j with different
SO coupling k̃L and tunneling coefficient χ . System parameters used are (k̃L, χ ) = (0.5, 1) and (1.5,1) for panels (a) and (b), respectively;
(k̃L, χ ) = (0.5, 0.3), (0.5,0.5), and (0.5,1.5) for panels (c)–(e), respectively. Additionally, in panels (a)–(e), the atomic momentum is k = 0,
while in panel (b) the atomic momentum is k = kmin. Other parameters are given by q = 0 (lattice momentum), �̃ = 1 (Raman coupling), and
W1 = W2 = −0.5 (atomic interactions). Upper and lower insets in panels (a) and (b) represent density distributions of the spin-up (|ψ↑|2) and
spin-down (|ψ↓|2) components, respectively.

the lattice site j along the y direction. When plotting the
figure, the total number of lattice sites have been chosen to
be J = 40, the SO coupling k̃L is taken as 0.5 in Fig. 3(d)
and 1.5 in Figs. 3(e) and 3(f), with other parameters being the
same as those used in Figs. 3(a)–3(c). The zero-momentum,
finite-momentum, and stripe solitons are illustrated in
Figs. 3(d)–3(f), respectively. One sees that there is a spatial
modulation of the density distribution in the x direction can
be observed for the stripe soliton [see Fig. 3(f)] due to the
interference of two modes with k = ±kmin. Moreover, the
zero-momentum, finite-momentum, and stripe solitons are
unpolarized [i.e., |ψ↑, j |2 = |ψ↓, j |2; see Fig. 3(d)], highly
polarized [i.e., |ψ↑, j |2 � |ψ↓, j |2; see Fig. 3(e)], and partially
polarized [i.e., |ψ↑, j |2 < |ψ↓, j |2; see Fig. 3(f)], respectively.

IV. TWO-DIMENSIONAL SEMIDISCRETE MATTER-WAVE
SOLITONS AND THEIR STABILITY

The formation of stable high-dimensional solitons is a
more challenging task than those in 1D. The reason is that
the cubic nonlinearity usually cannot balance the disper-
sion (and/or diffraction), resulting in instability (collapse) of
solitons in high-dimensional geometries [73]. To arrest the
instability, many mechanisms have been proposed, including
the employment of trapping potentials and modified non-
linearities of different forms (such as saturable nonlinearity,
nonlocal nonlinearity, and so on) [74,75]. Here, we show that,
besides the 1D continuous and discrete solitons described in
the last section, the system supports also 2D bright matter-
wave solitons localized in both x and y directions, which can
be stabilized by the combined effects of the atomic dispersion,

cubic nonlinearity, SO couplings, and 1D trapping potential in
the present system.

Because it is not available to solve Eqs. (11) analytically,
we search for the 2D soliton solutions of the system numeri-
cally by using the initial condition

(
ψ↑, j

ψ↓, j

)
= 1√

π2R

( √
1 + p

−√
1 − p

)
ξm jn e− ξ2+ j2

2R2 , (28)

where p is a parameter describing spin polarization, R is the
radius of matter-wave beam, and m, n are positive integers
(m, n = 0, 1, 2, . . . ). The special case m = n = 0 describes
a 2D soliton with a single-peaked density distribution; cases
m �= 0 or n �= 0 describe 2D solitons with density distributions
of multiple peaks.

Shown in Fig. 4 are results of numerical simulation for
density distributions, |ψ↑, j |2 + |ψ↓, j |2, of 2D single-peaked
solitons as functions of ξ = x/az and j with different SO
coupling k̃L and tunneling coefficient χ . The initial condi-
tion is given by (28) with p = 0, R = √

5, and m = n = 0.
System parameters used are (k̃L, χ ) = (0.5, 1) and (1.5,1)
for Figs. 4(a) and 4(b), respectively; (k̃L, χ ) = (0.5, 0.3),
(0.5,0.5), and (0.5,1.5) for Figs. 4(c)–4(e), respectively. Ad-
ditionally, in Figs. 4(a)–4(e), the atomic momentum k is
chosen to be zero (i.e., k = 0), while in the Fig. 4(b) the
atomic momentum is k = kmin. Other parameters are given
by q = 0 (lattice momentum), �̃ = 1 (Raman coupling), and
W1 = W2 = −0.5 (atomic interactions). The upper and lower
insets in Figs. 4(a) and 4(b) represent density distributions
of the spin-up (|ψ↑|2) and spin-down (|ψ↓|2) components,
respectively.
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FIG. 5. The stability of single-peaked 2D semidiscrete solitons.
(a), (b) Density distributions, |ψ↑, j |2 + |ψ↓, j |2, of a 2D single-peaked
semidiscrete soliton as functions of ξ = x/az and j at τ = tωz =
0 and 500, respectively. System parameters used are the same as
those in Fig. 4(a). (c), (d) Stability diagrams of 2D single-peaked
semidiscrete solitons in parameter spaces of (�̃, k̃L ) and (χ,W1)
respectively, with the other system parameters the same as those used
in Fig. 4(a).

From the results illustrated in Fig. 4, we see that, similar to
the 1D solitons obtained in the last section, the 2D semidis-
crete soliton with zero-momentum (i.e., k = 0 for Case I) is
unpolarized [i.e., |ψ↑, j |2 = |ψ↓, j |2; see Fig. 4(a)], whereas
the 2D semidiscrete soliton with finite-momentum (k = kmin

for Case II) is highly polarized [i.e., |ψ↑, j |2 � |ψ↓, j |2; see
Fig. 4(b)]. Additionally, when χ is increased but keeping the
value of k̃L, the density maximum of the solitons reduces and
its width in the y direction grows [see Figs. 4(c)–4(e)]. The
latter phenomenon occurs because larger χ implies stronger
tunneling effect between adjacent lattice sites, which leads
to a stronger atomic diffusion across the condensate array in
the y direction. The variation of χ , however, has a marginal
effect on the soliton width in the x direction. Since the soli-
tons obtained above have a continuous density distribution
in the x direction but a discrete one in the y direction, we
called them semidiscrete solitons. Note that 2D semidiscrete
solitons were also discovered in other settings, including
arrayed or stacked waveguides [76,77], and BECs loaded
in an array of one-dimensional trap with Lee-Hung-Yang
correction [78].

Importantly, there is a critical value of χ , χc, when χ > χc

the 2D semidiscrete solitons shown in Fig. 4 can no longer
exist and they will transform into 1D ones. In this case, these
1D solitons are localized only in the continuous direction (x
direction) but are delocalized in the discrete direction (y direc-
tion), indicating that the atoms have diffused to all lattice sites
due to the strong atomic diffusion. By using the parameters
provided in Fig. 4, we obtain that χc ≈ 1.7.

The stability of 2D semidiscrete solitons is checked by
evolving Eqs. (11) with small perturbations added to the initial
condition, i.e., multiplying the initial condition by the factor
(1 + ε fR), with fR a random variable uniformly distributed in
the interval [0, 1] and ε a small parameter. Shown in Figs. 5(a)

and 5(b) are density distributions, |ψ↑, j |2 + |ψ↓, j |2, of a 2D
single-peaked semidiscrete soliton as functions of ξ = x/az

and j at τ = tωz = 0 and the evolution result at τ = 500
(corresponding to t = 500/�z ≈ 5.3 s), respectively. The pa-
rameters are the same as those used in Fig. 4(a). We see that
the soliton is quite stable since it suffers no obvious distortion
during propagation.

To study the stability of the 2D semidiscrete solitons in a
general way, the soliton fidelity in different parameter spaces
are also estimated. The soliton can be taken as stable during
propagation if its fidelity exceeds 95% over the evolution time
τ � τmax = 100 (corresponding to t � 100/ωz ≈ 1 s with
ωz = 2π × 15 Hz). Here, the fidelity is defined by [74,79]

J =
∣∣∣∣∣
∑

j

∫
[ψ∗

↑, j (τ = 0)ψ↑, j (τ = τmax)

+ψ∗
↓, j (τ = 0)ψ↓, j (τ = τmax)]dτ

∣∣∣∣∣
2/

(I1I2), (29)

where

I1 =
∑

j

∫
[|ψ↑, j (τ = 0)|2 + |ψ↓, j (τ = 0)|2]dξ,

I2 =
∑

j

∫
[|ψ↑, j (τ = τmax)|2 + |ψ↓, j (τ = τmax)|2]dξ .

It is easily seen that J = 1 at τ = 0 and 0 < J < 1 for
0 < τ < τmax. If J ≈ 1, the soliton keeps nearly invariant
and hence has a high fidelity; however, if J � 1, the soliton
suffers a serious distortion and hence is rather unstable during
propagation.

Shown in Figs. 5(c) and 5(d) are stability diagrams of
2D single-peaked semidiscrete solitons in parameter spaces
(�̃, k̃L ) and (χ,W1), with other parameters being the same
as those used in Fig. 4(a); from Fig. 5(c), we see that the
semidiscrete solitons are stable when �̃ � 0.3 and k̃L ≈ 1.
From Fig. 5(d), we find that the semidiscrete solitons are
stable (unstable) when χ and W1 are both large (small). A
similar result is also obtained for the stability diagram in the
parameter space (χ,W2), where the semidiscrete solitons are
stable (unstable) when χ and W2 are both large (small).

The system can also support 2D semidiscrete solitons with
multipeaked density distributions. Shown in Figs. 6(a)–6(c)
are |ψ↑, j |2 + |ψ↓, j |2 of 2D multipeaked semidiscrete soli-
tons as functions of ξ = x/az and j for (k̃L, χ ) = (0.5, 0.5),
(k̃L, χ ) = (0.5, 0.1), and (k̃L, χ ) = (0.5, 0.05) (i.e., varying
χ , fixing k̃L), respectively. When plotting the figure, other sys-
tem parameters used are the following: the atomic and lattice
momentums k = q = 0, the Raman coupling �̃ = 1, and the
atomic interactions W1 = W2 = −0.2. Illustrated in the upper
inset and lower inset of Fig. 6(a) (where the two peaks are
aligned in the x direction) and Fig. 6(b) (where the two peaks
are aligned in the y direction) are respectively density distribu-
tions of the spin-up and spin-down components (i.e., |ψ↑, j |2
and |ψ↓, j |2), by taking (m, n) = (1, 0) and (m, n) = (0, 1) and
the initial conditions given by Figs. 6(a) and 6(b), respectively.
These 2D multipeaked semidiscrete solitons are quite stable
during evolution due to the joint effects contributed by the
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FIG. 6. Density distributions, |ψ↑, j |2 + |ψ↓, j |2, of 2D multipeaked semidiscrete solitons as functions of ξ = x/az and j for (k̃L, χ ) =
(0.5, 0.5) [panel (a)], (k̃L, χ ) = (0.5, 0.1) [panel (b)], and (k̃L, χ ) = (0.5, 0.05) [panel (c)]. Two-peaked semidiscrete solitons are observed
in the panels (a) and (b), and a four-peaked semidiscrete solitons is observed in panel (c). The upper and lower insets of each panel show
respectively density distributions of the spin-up and spin-down components, |ψ↑, j |2 and |ψ↓, j |2. The other system parameters used are atomic
and lattice momentums k = q = 0, the Raman coupling �̃ = 1, and the atomic interactions W1 = W2 = −0.2.

dispersion, nonlinearity, SO and Raman couplings, and 1D
trapping potential in the system.

V. SUMMARY

In this work, we have presented an investigation on the
matter-waves solitons in a binary BEC with SO coupling.
The BEC is loaded in a 1D deep optical lattice and a 3D
anisotropic magnetic trap, by which an array of quasi-1D
sub-BECs with transverse tunneling is created. We have
shown that the system supports both 1D continuous and
discrete solitons, which are localized respectively in the
longitudinal (along the array) and the transverse (across
the array) directions. We have found that these solitons
are unpolarized in zero-momentum state but are polarized in
finite-momentum states. Moreover, we have demonstrated that
the system supports stable 2D semidiscrete solitons, which
can have single-peak and multiple-peaks and are localized in
both longitudinal and transverse directions. In addition, we

have identified the stability diagrams of the single-peaked
semidiscrete solitons in different parameter spaces.

The model suggested in this work can be extended to study
other types of high-dimensional nonlinear excitations, e.g.,
matter-wave vortex solitons and soliton molecules [79], if a
nonlocal atom-atom interaction (which can be realized by us-
ing dipolar BECs) is taken into account. The results reported
here are beneficial for understanding the unique property of
SO-coupled BECs and provide a new route for generating
novel matter-wave solitons that are stable during propagation
based on Bose-condensed atomic gases.
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[6] I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamen-
tals and applications, Rev. Mod. Phys. 76, 323 (2004).

[7] J. D. Koralek, C. P. Weber, J. Orenstein, B. A. Bernevig, S. C.
Zhang, S. Mack, and D. D. Awschalom, Emergence of the
persistent spin helix in semiconductor quantum wells, Nature
(London) 458, 610 (2009).

[8] T. D. Stanescu, B. Anderson, and V. Galitski, Spin-orbit coupled
Bose-Einstein condensates, Phys. Rev. A 78, 023616 (2008).

014208-10

https://doi.org/10.1063/1.3293411
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1126/science.1105514
https://doi.org/10.1103/RevModPhys.87.1213
https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.1038/nature07871
https://doi.org/10.1103/PhysRevA.78.023616


MATTER-WAVE SOLITONS IN AN ARRAY OF … PHYSICAL REVIEW E 108, 014208 (2023)

[9] Y.-J. Lin, R. L. Compton, A. R. Perry, W. D. Phillips, J. V. Porto,
and I. B. Spielman, Bose-Einstein Condensate in a Uniform
Light-Induced Vector Potential, Phys. Rev. Lett. 102, 130401
(2009).

[10] Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin-orbit-
coupled Bose-Einstein condensates, Nature (London) 471, 83
(2011).

[11] P. J. Wang, Z. Q. Yu, Z. K. Fu, J. Miao, L. H. Huang, S. J. Chai,
H. Zhai, and J. Zhang, Spin-Orbit Coupled Degenerate Fermi
Gases, Phys. Rev. Lett. 109, 095301 (2012).

[12] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S.
Bakr, and M. W. Zwierlein, Spin-Injection Spectroscopy of a
Spin-Orbit Coupled Fermi Gas, Phys. Rev. Lett. 109, 095302
(2012).

[13] J. Y. Zhang, S. C. Ji, Z. Chen, L. Zhang, Z. D. Du, B. Yan,
G. S. Pan, B. Zhao, Y. J. Deng, H. Zhai, S. Chen, and J. W. Pan,
Collective Dipole Oscillations of a Spin-Orbit Coupled Bose-
Einstein Condensate, Phys. Rev. Lett. 109, 115301 (2012).

[14] Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y.
Deng, S. Chen, X. J. Liu, and J. W. Pan, Realization of two-
dimensional spin-orbit coupling for Bose-Einstein condensates,
Science 354, 83 (2016).

[15] L. Huang, Z. Meng, P. Wang, P. Peng, S. L. Zhang, L. Chen,
D. Li, Q. Zhou, and J. Zhang, Experimental realization of two-
dimensional synthetic spin-orbit coupling in ultracold Fermi
gases, Nat. Phys. 12, 540 (2016).

[16] J. Dalibard, F. Gerbier, G. Juzeliūnas, and P. Öhberg, Artificial
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