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We investigate collective modes and free expansions of quasi-one- and quasi-two-dimensional �Q1D and
Q2D� ultracold Fermi gases in the crossover from a Bardeen-Cooper-Schrieffer �BCS� superfluid to a Bose-
Einstein condensate �BEC�. We solve a superfluid order parameter equation valid for the BCS-BEC crossover
by employing a time-dependent variational method. We take a trial wave function of hybrid Gaussian-parabolic
type, which not only reflects the low-dimensional character of the system but also allows an essentially
analytical approach for the problem. We present Q1D and Q2D criteria that are valid in various superfluid
regimes and show clearly the relation between the maximum condensed particle number and the parameters of
the trapping potential as well as the atom-atom interaction. We demonstrate that, due to the small particle
number in Q1D and Q2D condensates, the contribution to oscillating frequencies of collective modes by the
quantum pressure in the strong-confinement direction is significant and hence the Thomas-Fermi approxima-
tion cannot be used. We also show that the free expansion of Q1D and Q2D superfluid Fermi gases in the
strong-confinement direction is much faster than that in the weak-confinement direction.
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I. INTRODUCTION

The study of dimensional crossover is an important re-
search field because the properties of phase transition and the
nature of associated elementary excitations depend crucially
on spatial degrees of freedom. After the remarkable experi-
mental realization of Bose-Einstein condensation �BEC� in
dilute Bose gases �1�, much effort has been paid to collective
excitations and dimensional crossover effects in quasi-one-
dimensional �Q1D� and quasi-two-dimensional �Q2D� BECs
�2–7�.

Another important problem in condensed matter physics
is the crossover from a BEC to a Bardeen-Cooper-Schrieffer
�BCS� superfluid �8�. Since the first experimental realization
of the quantum-degenerate Fermi gas in a trap �9�, in recent
years much interest has been focused on the study of ultra-
cold fermionic atoms and fermionic superfluidity �10–13�.
Since for dilute atomic systems the atom-atom interaction,
characterized by s-wave scattering length as, can be tuned by
magnetic-field-induced Feshbach resonance, one can ma-
nipulate the interaction strength over the range in a control-
lable way. Using this technique condensed fermionic atom
pairs and the BCS-BEC crossover have been realized in a
series of beautiful experiments �10–13�. At the same time,
collective excitations in various superfluid regimes have also
been investigated intensively �14–24�. This dramatic
progress raises an important question about the role of the
dimensionality effect in ultracold fermionic gases in the
BCS-BEC crossover.

In a recent work, Martikainen and Törmä �25� studied a
Q2D superfluid Fermi gas in BCS limit by solving numeri-
cally the Bogoliubov–de Gennes equations derived from a
BCS Hamiltonian, they found a strong modification of the

superfluid property due to discrete harmonic states. In the
present work we consider Q1D and Q2D superfluid Fermi
gases and investigate their collective modes and free expan-
sions in the whole BCS-BEC crossover based on an order
parameter equation obtained from time-dependent density-
functional theory. The results presented here may be helpful
for the experimental realization of low-dimensional super-
fluid Fermi gases. The paper is organized as follows. The
next section gives a simple introduction to the order param-
eter equation that describes the dynamics of fermionic con-
densate. Variational equations for the parameters of hybrid
Gaussian-parabolic wave functions for Q1D and Q2D sys-
tems are derived by a time-dependent variational approach.
In Sec. III we provide unified criteria for Q1D and Q2D
superfluid Fermi gases, which are valid for various superfluid
regimes. In Sec. IV we solve the variational equations and
calculate eigenvalues and eigenfrequencies of collective
modes and show that the modification to oscillating frequen-
cies contributed by quantum pressure is significant and hence
a Thomas-Fermi approximation �TFA� �19–22� cannot be
used. In Sec. V we discuss free expansions of the Q1D and
Q2D condensates when trapping potentials are switched off.
Finally, the last section contains a discussion and a summary
of our main results.

II. ORDER PARAMETER EQUATION AND DYNAMIC
EQUATIONS FOR A HYBRID VARIATIONAL MODEL

A. Order parameter equation for the BCS-BEC crossover

In the ground state of a superfluid fermionic atom gas, all
particles are paired, with n /2 being the pair density. These
pairs, called condensed fermionic atom pairs, originate from
two-component fermionic atom systems �i.e., 6Li or 40K in
the present experiments �10–13�� with different internal
states. By means of Feshbach resonance one can easily real-
ize the transition from the BCS to the BEC regimes. When
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as�0 �as�0�, the system is in a BCS �BEC� regime. By
defining a dimensionless quantity ��1/ �kFas�, where kF

= �3�2n�1/3 is the Fermi wave number, one can distinguish
several different superfluidity regimes �22,23�.

�i� BCS regime ���−1�. In this case weakly bound Coo-
per pairs form below a critical temperature Tc due to the
many-body effect, and the system undergoes a BCS transi-
tion when the temperature T is lower than Tc. Note that both
the formation of Cooper pairs and the condensation of these
pairs occur simultaneously at T=Tc. In particular, ��−1 is
called the deep BCS regime.

�ii� BEC regime ���1�. In this regime bound molecules
�called dimers� are formed by two fermionic atoms at some
high temperature T=T* due to two-body interaction. These
preformed fermionic atom pairs have a small size and un-
dergo a BEC phase transition at T=Tc ��T*�. When T�Tc,
the system is in the BEC superfluid phase. The particular
case ��1 is called the deep BEC regime.

�iii� BCS-BEC crossover regime �−1���1�. This is the
regime intermediate between BCS and BEC superfluidity.
The condensed fermionic atom pairs in this case have the
character of both BCS Cooper pairs and BEC molecules. In
particular, the point �=0 is called the unitarity limit, corre-
sponding to as→ ±�. Both theoretical and experimental
studies demonstrate that the transition from the BCS to the
BEC regime is smooth �8�, which hints that one can study
the physical properties of the system in various superfluid
regimes in a unified way.

There are several theoretical approaches for the study of
superfluid Fermi gases in the BCS-BEC crossover. One of
them—microscopic theory �called resonance superfluid
theory� based on a model Hamiltonian, which includes fer-
mionic and bosonic degrees of freedoms and their
coupling—has been proposed by several authors �28–30�. In
the experiments on superfluid Fermi gases, the system is
confined in a finite space by an external trapping potential
�10–13�. The inhomogeneous character of the system makes
a microscopic approach based on a quantized model Hamil-
tonian difficult. However, notice that, at very low tempera-
ture �around 10−8 K�, low-frequency collective modes cannot
decay by formation of single fermionic excitations because
of the gap in their energy spectrum. Thus thermal excitations
play no significant role and the system can be taken as a
perfect superfluid �1�. To describe the dynamics of such zero-
temperature superfluid in the trapping potential Vext�r�, one
can use a time-dependent density-functional theory �21–23�.
The action functional L��� of the theory is

L��� =� dt dr L��,��/�t,��� , �1�

where � is the superfluid order parameter,

L = �i � /2��� � �*/�t − �* � �/�t� + ��2/2m�����2

+ Vext�r����2 + �����2����2

is the Lagrangian density. Here � represents the bulk energy
per particle of the system, which is expressed as a function of
the number density n= ���2 and has the relation ��n�

= �3/5��F	���, with �F=�2kF
2 / �2m� being the Fermi energy.

Some asymptotic expressions for 	��� have been obtained
by fitting the calculated data �26,27�. Interpolating these
asymptotic expressions for small and large ��� one can obtain
the general formula 	���=
1−
2 arctan�
3���1+ �� � � / ��2

+ �� � ��. The fitting parameters 
 j �j=1,2 ,3� and �l �l
=1,2� for 6Li �with Feshbach-resonance magnetic field
843 G� have been given in Ref. �23�. These parameters will
be used in the following calculations. Notice that, although
the numerical results given below are valid only for a super-
fluid 6Li Fermi gas, the method developed here can be ap-
plied to other superfluid Fermi gases �with different 
 j and
�l�.

The Euler-Lagrangian equation for � is obtained by mini-
mizing the action functional �1�, which leads to a generalized
Gross-Pitaevskii equation �21–23�

i�
�

�t
� = �−

�2

2m
�2 + Vext�r� + ��n�	� , �2�

where ��n� is the equation of state �also called the bulk
chemical potential� of the system �21,23�. Different super-
fluid regimes can be characterized by different ��n� in cor-
responding regimes. According to the Gibbs-Duhem relation
one can obtain the following formula �23�:

��n� =
��n��n��

�n
= �F�	��� −

�

5

�	���
��

	 . �3�

As a function of n, the expression of the equation of state
��n� is complicated, which prevents us from obtaining ana-
lytical results on the dynamics of the system. A simple ap-
proach for the equation of state is to take a polytropic ap-
proximation, i.e., one assumes �19–23� ��n�=�0�n /n0�
,
where �0 and n0 are the reference chemical potential and
particle number density of the system, introduced here for
the convenience of later calculation. It is easy to show that
the effective polytropic index takes the form


��� = ��2/3�	��� − �2/5��	���� + �2	����/15�/�	���

− �	����/5� .

There are two well-known limits for the value of the poly-
tropic index 
. One is 
=2/3 at �→−� �BCS limit� and
another one is 
=1 at �→ +� �BEC limit�. The polytropic
approximation has the advantage of allowing one to get ana-
lytical expressions for the eigenfunctions and eigenfrequen-
cies of collective modes �18,19,21–23� for various superfluid
regimes in a unified way. In fact, it is quite accurate math-
ematically because 
 is a slowly varying function of �
�19–23�.

B. Dynamic equations for the parameters in a hybrid
variational model

As in most experiments �10–13�, we consider a harmonic
trapping potential of axial symmetry, with the form Vext�r�
= �m /2���

2 ��x2+y2�+�2z2�. Here �=�z /��, with �� and �z

being the harmonic frequencies in the radial �x, y� and axial
�z� directions, respectively.
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To determine the dynamics of Q1D and Q2D condensates
we employ a time-dependent variational method �5,31� to
solve the order parameter equation �2�. The corresponding
Lagrange density is

L =
i�

2
��

��*

�t
− �*��

�t
	 +

�2

2m
����2 + Vext�r����2

+
�0

n0

�1 + 
�

���2+2
. �4�

The dynamics of the condensate will be discussed in two
different cases.

1. Dynamic equations for Q1D condensate

We first consider a Q1D system, i.e., the trapping poten-
tial Vext in the x and y directions is much stronger than in the
z direction, ����z or ��1. The condensate in this case is
cigar shaped and the motion of atoms in the x and y direc-
tions is governed by the ground-state wave function of the
corresponding 2D linear harmonic oscillator. The condensate
wave function in the radial �axial� direction should have a
Gaussian �parabolic� form and hence we choose the follow-
ing hybrid trial variational wave function �5�:

� = An�1 −
z2

lz
2 	1/2


e−�x2/2lx
2+y2/2ly

2�ei��xx2+�yy2+�zz
2�, �5�

where lj and � j �j=x ,y ,z� are the condensate width and
phase parameters. Their time evolution determines com-
pletely the dynamics of the condensate. The normalization
condition 
dr ���2=N requires

An
2 =

��1/
 + 3/2�
��1/
 + 1�

N

lxlylz�
3/2 , �6�

where ���� is the Gamma function. Inserting the trial wave
function �5� into �4� and implementing 3D spatial integration
we obtain

L

N
=

�

2
��x

˙ lx
2 + �y

˙ ly
2 +

2


2 + 3

�z
˙ lz

2	 +
�2

m
� 1

4lx
2 +

1

4ly
2 + �x

2lx
2

+ �y
2ly

2 +
2


2 + 3

�z

2lz
2	 +

m��
2

4
��lx

2 + ly
2� +

2


2 + 3

�2lz

2	
+

2�0

n0

�1 + 
��2 + 3
�

���1/
 + 3/2�
��1/
 + 1� 	
 N


�lxlylz�
3/2�
 . �7�

In obtaining the above equations we have omitted the quan-
tum pressure �i.e., kinetic energy� term in the axial direction
�where this term is divergent due to the sharp boundary of
the condensate wave function in the hydrodynamic regime�
but retained it in the radial direction �where the condensate
wave function has the Gaussian shape of a noninteracting gas
and hence contributes the terms 1/ lx

2 and 1/ ly
2� �5�. The

Euler-Lagrange equations

d

dt

�L

� l̇ j

=
�L

�lj
,

d

dt

�L

��̇ j

=
�L

�� j
, �8�

yield the dynamic equations for the condensate widths lj and
phases � j �j=x ,y ,z�. Then we have

l̈ j = − � j
2lj +

4
�0

n0

�1 + 
��2 + 3
��3
/2m

����1/
 + 3/2�
��1/
 + 1� 	
 N


lj�lxlylz�


��1 +
2 + 


2

� jz	 +

�2

m2lj
3 �1 − � jz� , �9�

where �x=�y =��. Defining the dimensionless time �=��t
and the width dj = lj /a� with a�=�� /m�� �i.e., the har-
monic oscillator length in the radial direction�, Eq. �9� is
converted into the dimensionless form

d2

d�2dj = −
� j

2

��
2 dj +

C1N

dj�dxdydz�
�1 +
2 + 


2

� jz	 +

1

dj
3 �1 − � jz� ,

�10�

where

C1N =
4
�0mN


n0

�1 + 
��2 + 3
��3
/2�2a�

3
−2���1/
 + 3/2�
��1/
 + 1� 	


.

�11�

The ground-state configuration of the system corresponds
to the time-independent solution of Eq. �10�, which can be

obtained by setting d̈j =0 with dj =dj0. dj0 satisfies the equa-
tion

� j
2

��
2 dj0 =

C1N

dj0�dx0dy0dz0�
�1 +
2 + 


2

� jz	 +

1

dj0
3 �1 − � jz� .

�12�

2. Dynamic equations for Q2D condensate

If the trapping potential in the z direction is much stronger
than in the x and y directions, i.e., ����z or ��1, the
condensate is disk shaped and the motion of atoms in the z
direction is strongly confined. In this case the condensate is a
Q2D system and hence the variational wave function in the
axial �radial� direction should have a Gaussian �parabolic�
form �5�, i.e.,

� = An�1 −
x2

lx
2 −

y2

ly
2 	1/2


e−z2/2lz
2
ei��xx2+�yy2+�zz

2�. �13�

The normalization condition requires

An
2 =

�1 + 
�N

lxlylz�

3/2 . �14�

The Lagrangian of the system reads
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L

N
=

�

2
� 


1 + 2

��x

˙ lx
2 + �y

˙ ly
2� + �z

˙ lz
2	 +

�2

m
� 


1 + 2

��x

2lx
2

+ �y
2ly

2� + �z
2lz

2 +
1

4lz
2	 +

m��
2

4
� 


1 + 2

�lx

2 + ly
2� + �2lz

2	
+

�1 + 
�
−1/2�0



�1 + 2
�n0



N


�lxlylz�
3/2�
 , �15�

where, with a similar approach as in the above subsection,
we have retained �omitted� the quantum pressure term in the
axial �radial� direction. The Euler-Lagrange equations �8�
now become

l̈ j = − � j
2lj +

2�1 + 
�
−1/2�0



mn0

�3
/2

N


lj�lxlylz�
�1 −
1 + 


1 + 2

� jz	

+
�2

m2lz
3� jz. �16�

Defining dj = lj /az with az=�� /m�z �i.e., the harmonic oscil-
lator length in the axial direction�, Eq. �16� can be written as
the dimensionless form

d2

d�2dj = −
� j

2

�z
2dj +

C2N

dj�dxdydz�
�1 −
1 + 


1 + 2

� jz	 +

1

dj
3� jz,

�17�

with �=�zt and

C2N =
2�1 + 
�
−1/2�0mN


n0



�3
/2�2az

3
−2 . �18�

To find the ground-state solution we set dj =dj0, since it is
time independent. We obtain

� j
2

�z
2dj0 =

C2N

dj0�dx0dy0dz0�
�1 −
1 + 


1 + 2

� jz	 +

1

dz0
3 � jz. �19�

By eliminating dx0 and dy0 it is easy to get the equation for
dz0 as

dz0
4 =




1 + 2

�C2Ndz0

2+
�1/�1+
��−2
/�1+
� + 1. �20�

The width dz0 is the minimum value the condensate shape
can attain in the axial direction.

III. CRITERIA FOR Q1D AND Q2D SUPERFLUID FERMI
GASES

Up to now Q1D and Q2D superfluid Fermi gases have not
been realized experimentally. It is useful to give some theo-
retical criteria that are helpful for future experimental efforts.
Notice that the total energy per particle Etotal and the chemi-
cal potential � of the system are given by Etotal=Ekin+Epot
+Eint and �=Ekin+Epot+ �1+
�Eint, where Ekin, Epot, and Eint

are, respectively, the kinetic, potential, and interaction

energy, given by the last three terms of the Lagrangian �7�
and �15�, respectively. By a detailed calculation we obtain

�

=�
���
1 +

2 + 3


4

� 2


2 + 3

C1N

2/
�2	
/�2+
�� for Q1D,

�21a�

��z

2

1 + � C2N

��2+
�/2	1/�1+
�� for Q2D.

�21b�
�

The Q1D �Q2D� condition of the system is ��z������

���������z�. From the results given by Eqs. �21� we
obtain the criteria for Q1D and Q2D superfluid Fermi gases:

N � Nmax

=�
1

C1
1/
� 2


2 + 3

	1/
 1

�
for Q1D, �22a�

��2+
�/2


C2
1/
 for Q2D, �22b��

where C1=C1N /N
 and C2=C2N /N
 are constants independent
of N �see Eqs. �11� and �18��. The inequalities �22a� and
�22b� show clearly the constraint conditions for Q1D and
Q2D superfluid Fermi gases for the particle number of the
system �N�, the anisotropic parameter of the trapping poten-
tial ���, and the polytropic index of the equation of state �
�.

Based on the criteria �22a� and �22b�, in Fig. 1 we have
plotted the curves of maximum particle number N
=Nmax�
���� of the condensate for a fixed �. In plotting the
curves for the Q1D case, we have chosen �z=2��2 Hz for
�=1/300 �solid line� and �=1/100 �dashed line�. The curves
in the Q2D case correspond to �z=2��2100 Hz for �
=300 �solid line� and �=100 �dashed line�. The parameter n0
appearing in the expressions of C1N and C2N is chosen as the

FIG. 1. �Color online� The relation between the maximum par-
ticle number Nmax and the interaction parameter �=1/ �kFas� in
Q1D and Q2D superfluid Fermi gases. The trapping parameters are
�z=2��2 Hz, �=1/300 for Q1D and �z=2��2100 Hz, �=300
for Q2D, respectively. The dashed lines show the case of �
=1/100 for Q1D and �=100 for Q2D.
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peak density of the condensate, i.e., n0=n�0�= ���1/

+3/2�N� / ���1/
+1�lx0ly0lz0�3/2� for Q1D and n0=n�0�= �

+1�N / �
lx0ly0lz0�3/2� for Q2D. The bulk chemical potential
per particle, �0, is chosen as the value in the BCS limit �i.e.,
�0=�2�3�2�2/3n0

2/3 / �2m��. From the figure we see that the
maximum particle number for Q1D �Q2D� in the BCS re-
gime is less than that in the corresponding BEC regime.
However, both of them have the same order of magnitude,
which is around 102 �104� for given �z and �. Notice that the
dashed lines in the figure show the case �=1/100 for Q1D
and �=100 for Q2D. For these � values the maximum par-
ticle numbers allowed in Q1D and Q2D are around 101 and
103, respectively. Thus for different trapping parameters �,
the maximum particle number in the superfluid Fermi gas
may be quite different. In general, as � decreases, Nmax in-
creases in a way proportional to 1/� for Q1D �see Eq. �22a��
and decreases in a way proportional to ��2+
�/2
 for Q2D �see
Eq. �22b��. In the BEC limit �i.e., 
=1�, our theoretical result
of the maximum particle number in the condensate agrees
well with the experimental one reported by Görlitz et al. �2�.

IV. COLLECTIVE MODES

Our next topic is to investigate the collective modes in
Q1D and Q2D superfluid Fermi gases in the BCS-BEC
crossover. Notice that, due to the axial symmetry of the trap-
ping potential, the trial wave functions given by Eqs. �5� and
�13� allow three lowest collective modes to be generated,
which are the m=2 mode, the low-lying m=0 mode, and the
high-lying m=0 mode, where m is the azimuthal angular
momentum quantum number �the trivial center of mass mo-
tion is not considered�. In order to get their eigenfrequencies
and corresponding �linear� eigenvectors, we take dj =dj0
+� j��� with the perturbation � j��� representing excitations
from the ground state.

A. Excitations in Q1D

By using Eq. �12�, after some algebra Eq. �10� is reduced
to the following ordinary differential equations for � j���:

��̈x

�̈y

�̈z
� = −�

�2 + 
�C1N

dx0
2+
dy0


 dz0

 +

4

dx0
4


C1N

dx0
1+
dy0

1+
dz0




C1N

dx0
1+
dy0


 dz0
1+



C1N

dx0
1+
dy0

1+
dz0



�2 + 
�C1N

dx0

 dy0

2+
dz0

 +

4

dy0
4


C1N

dx0
1+
dy0


 dz0
1+


�2 + 3
�C1N

2dx0
1+
dy0


 dz0
1+


�2 + 3
�C1N

2dx0

 dy0

1+
dz0
1+


�2 + 3
��2 + 
�C1N

2
dx0

 dy0


 dz0
2+


���x

�y

�z
� . �23�

To find eigensolutions we assume � j =� j�0�exp�−i���+c.c.
Then it is easy to get the eigenvalues of �,

�
K
2 = 2a + 4, �24a�

�
K±

2 = �1 + 
�a +
�2 + 3
��2 + 
�

4

c + 2 ±

1

2
�R1, �24b�

where we have defined a=D�C1N / �dr0
2+2
dz0


 �, c=Ddr0
2 /dz0

2

�dr0�dx0=dy0�, and R1= �2�1+
�a− �2+3
��2+
�c / �2
�
+4�2+4
�2+3
�b2 with b=Ddr0 /dz0. In the above expres-
sions the subscripts 
 and K mean that the eigenfrequencies
have a dependence on the polytropic index 
 and the kinetic
energy �quantum pressure� in the radial direction.

With the eigenfrequencies obtained, we may calculate the
corresponding eigenvectors. The normalized eigenvectors re-
lated to the eigenvalues �24a� and �24b� are found to be
�−1,1 ,0� and �1,1 ,V
K±

�, respectively, with V
K±
= ��
K±

2

−2�1+
�a−4� / �
b�.
The collective mode with the eigenfrequency given by

Eq. �24a� is the m=2 mode. It is a radial breathing mode
because its corresponding eigenvector has only x and y com-
ponents. The collective modes with the eigenfrequencies of

the form Eq. �24b� are m=0 modes. Conventionally, the
mode with the eigenfrequency �
K+

��
K−
� is called the high-

lying �low-lying� m=0 mode �5�. The eigenoscillation for
both the high-lying and the low-lying m=0 modes has three
spatial components.

Notice that, if the kinetic term contributed by the quantum
pressure, represented by 4/dr0

4 in Eq. �23�, is disregarded, the
eigenfrequencies become

�

2 = 2a , �25a�

�
±

2 = �1 + 
�a +
�2 + 3
��2 + 
�

4

c ±

1

2
�R2, �25b�

where R2= �2�1+
�a− �2+3
��2+
�c / �2
��2+4
�2+3
�b2.
The corresponding eigenvectors are given by �−1,1 ,0� and
�1,1 ,V
±

� with V
±
= ��
±

2 −2�1+
�a� / �
b�.
In Fig. 2 we have shown the eigenfrequencies and the z

components of the eigenvectors of the two m=0 modes in
the Q1D superfluid Fermi gas. The left panel of the figure
shows the eigenfrequencies with �solid lines� and without
�dashed lines� the inclusion of the quantum pressure �kinetic
energy� in x and y directions. The parameters of the system
are chosen as �z=2��2 Hz and �=1/300. In order to ana-
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lyze the character of the motion of the two m=0 modes, in
the right panel we have also shown the values of the z com-
ponents of the corresponding eigenvectors. From the figure
we can obtain the following conclusions. �i� The eigenfre-
quency on the BCS side is generally smaller than on the BEC
side. �ii� The eigenfrequency with the inclusion of the quan-
tum pressure in the x and y directions is larger than in the
absence of the quantum pressure. �iii� The z component of
the eigenvector with the quantum pressure is much less than
that without the quantum pressure. �iv� The high-lying m
=0 mode �denoted by the subscript “+”� is an in-phase com-
pressional mode along all directions �breathing mode�. How-
ever, the magnitude of the z component of the eigenvectors is

very small and hence it can be taken as a radial breathing
mode. �v� The low-lying m=0 mode �denoted by the sub-
script “−”� corresponds to axial oscillation of the condensate
width which is out of phase with the oscillation along the
radial direction. Note that the magnitude of the axial oscilla-
tion is much larger than that of the radial oscillation. Thus
this mode can be called an axial breathing mode.

B. Excitations in Q2D

Now we consider the excitations in Q2D. Using Eqs. �17�
and �19� we obtain the following equations for the perturba-
tion � j���:

��̈x

�̈y

�̈z
� = −�

�2 + 
�C2N

dx0
2+
dy0


 dz0




C2N

dx0
1+
dy0

1+
dz0




C2N

dx0
1+
dy0


 dz0
1+



C2N

dx0
1+
dy0

1+
dz0



�2 + 
�C2N

dx0

 dy0

2+
dz0




C2N

dx0

 dy0

1+
dz0
1+



2C2N

�1 + 2
�dx0
1+
dy0


 dz0
1+



2C2N

�1 + 2
�dx0

 dy0

1+
dz0
1+


�2 + 
�
C2N

�1 + 2
�dx0

 dy0


 dz0
2+
 +

4

dz0
4

���x

�y

�z
� . �26�

For solving the eigenvalue problem we take � j���
=� j�0�exp�−i���+c.c. Then we obtain the eigenvalues

�
K
2 = 2a , �27a�

�
K±

2 = �1 + 
�a +
�2 + 
�
c

2�1 + 2
�
+ 2�2 ±

1

2
�R1, �27b�

where R1= �2�1+
�a− �2+
�
c / �1+2
�−4�2�2+8
3b2 / �1
+2
�, and the definitions of a, b, c, and D are the same as
those given in the Q1D case.

The normalized eigenvector for the m=2 mode �with the
eigenvalue given by Eq. �27a�� is �−1,1 ,0�. This is a radial
breathing mode with no oscillation in the axial �z� direction.
The normalized eigenvectors with the eigenfrequencies �
K±
are �1,1 ,V
K±

�; here V
K±
= ��
K±

2 −2�1+
�a� / �
b�. Thus, as
in the 1D case, the system allows two m=0 modes, i.e., the
high-lying m=0 mode �represented by the subscript “+”� and
the low-lying m=0 mode �represented by the subscript “−”�.

Shown in Fig. 3 are the eigenfrequencies and z compo-
nents of the eigenvectors of the two m=0 modes in Q2D.
The parameters are chosen as �z=2��2100 Hz and �
=300. We see that the basic character of the eigenfrequencies
is the same as in Q1D. However, the z components of the
eigenvectors have different properties in comparison with the
Q1D case. �i� The magnitude of the z component of the ei-
genvector of the high-lying m=0 mode is much larger than
those of the x and y components and hence this mode is an
axial breathing mode. �ii� The magnitude of the z component
of the eigenvector of the low-lying m=0 mode is much
smaller than those of the x and y components and hence this
mode is a radial breathing mode. �iii� Contrary to the case of
the Q1D, the magnitude of the z component for both m=0
modes with the inclusion of the quantum pressure in the
strong-confining direction is larger than that in the case with-

FIG. 2. �Color online� Eigenfrequencies �left panel� and the z
component of the corresponding eigenvectors �right panel� of the
m=0 modes in the Q1D superfluid Fermi gas. The solid �dashed�
lines represent the case that the quantum pressure of the radial
direction is �is not� included. The subscript “+” �“−”� denotes the
high-lying �low-lying� m=0 mode. The parameters are chosen as
�z=2��2 Hz and �=1/300.
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out the inclusion of the quantum pressure. From the results
obtained from both the Q1D and the Q2D cases we see that
the contribution by the quantum pressure in the strong-
confining directions is significant and thus the TFA cannot be
used.

V. FREE EXPANSION OF Q1D AND Q2D SUPERFLUID
FERMI GASES

We know that probing the free expansion is an important
experimental technique for understanding the physical prop-
erty of a condensate �1�. Notice that the free expansion of 3D
superfluid Fermi gases was investigated recently in both ex-
periment �32,33� and theory �34,35�. Here we provide the
theoretical results on the free expansion of Q1D and Q2D
superfluid Fermi gases based on the dynamical equations
given above.

A. Free expansion of a Q1D superfluid Fermi gas

To study the free expansion of a Q1D condensate we start
from Eq. �9� by switching off the trap, i.e., the first term on
the right-hand side is set to zero. For convenience we intro-
duce the dimensionless variables l�=a�b� and lz=azbz,

where a�=�� /m�� and az=�2� /m�z
2 are the harmonic os-

cillator length of the trapping potential in the x and y direc-
tions and the TF radius in the z directions, respectively. Then
Eq. �9� is simplified as

b̈� =
�

b�
1+2
bz


 +
1

b�
3 , �28a�

b̈z =
��2

b�
2
bz

1+


2 + 3


2

, �28b�

where �=��t, �=C1N�a� /az�
, and �=a� /az.

Since an analytical solution of Eqs. �28a� and �28b� is not
available we turn to solve them through a numerical simula-
tion. The results for the time evolution of the condensate
widths in the x and y directions �represented by l� /a�� and
in the z direction �represented by lz /a�� have been presented
in Fig. 4. From the figure we see that for a given polytropic
index 
 the free expansion of the condensate in the strongly
confined x and y directions �i.e., the radial direction� is much
faster than in the weakly confined z �i.e., axial� direction. For
example, when �=��t=30, which corresponds to time t
=7.9 ms, one has l� /a�=36.5 and lz /a�=300.2 in the case

=2/3. The reason for the large radial expansion rate is that
the particles have much higher kinetic energy �or quantum
pressure� in the radial direction than in the axial direction. In
addition, the expansion rates for both the radial and axial
widths have a significant 
 dependence. A smaller 
 has a
larger expansion rate, which means that the free expansion
on the BCS side is faster than on the BEC side.

B. Free expansion of a Q2D superfluid Fermi gas

We now consider the free expansion of a Q2D Fermi gas.
In this case the dynamics of the condensate is controlled by
Eq. �16�. After switching off the trapping potential the equa-
tion is reduced to

b̈� =
��2

b�
1+2
bz


 , �29a�

b̈z =
�

b�
2
bz

1+





1 + 2

+

1

bz
3 , �29b�

where �=C2N�az /a��2
 and �=az /a�. In obtaining the above
equations we have defined b�= l� /a�, bz= lz /az, where a�

=�2� /m��
2 and az=�� /m�z are the TF radius in the x and y

direction and the harmonic oscillator length of the trapping
potential in the z direction, respectively.

FIG. 3. �Color online� Eigenfrequencies �left panel� and the z
component of the corresponding eigenvectors �right panel� of the
m=0 modes in the Q2D superfluid Fermi gas. The solid �dashed�
lines represent the case that the kinetic energy of the axial direction
is �is not� included. The subscript “+” �“−”� denotes the high-lying
�low-lying� m=0 mode. The parameters are chosen as �z=2�
�2100 Hz and �=300.

FIG. 4. �Color online� Time evolution of condensate widths of
the Q1D superfluid Fermi gas after the trapping potential is
switched off. The upper and lower panels show the radial width
l� /a� and axial width lz /a� for different polytropic index 
, re-
spectively. The inset is the amplification of the small region indi-
cated in the figure.
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Shown in Fig. 5 are the numerical results of Eqs. �29a�
and �29b�. We see that the time evolution of the condensate
widths in the z direction �represented by lz /az� and in the x
and y directions �represented by l� /az� display very different
behavior. For a given 
, the free expansion of the condensate
in the strongly confined z direction is much faster than in the
weakly confined x and y directions. For instance, when �
=�zt=30 �i.e., t=2.3 ms�, we have lz /az=35.8 and l� /az
=300.4 for 
=2/3. The giant difference of the expansion
rates between the radial and the axial directions is also due to
the differences between quantum pressures in different direc-
tions. As in Q1D, the expansion rates of both the axial and
radial widths have a significant dependence on the polytropic
index 
. The smaller 
, the larger the expansion rate.

VI. DISCUSSION AND SUMMARY

We have investigated the collective modes and free ex-
pansions of Q1D and Q2D superfluid Fermi gases in the
BCS-BEC crossover. By taking hybrid trial wave functions
we have solved the order parameter equation by means of a
time-dependent variational method. We have provided the
criteria for Q1D and Q2D superfluid Fermi gases that are
valid for various superfluid regimes and display clearly the
relation between the condensed particle number and the pa-
rameters of the trapping potential as well as the atom-atom
interaction. We have demonstrated that, due to the small par-
ticle number in the Q1D and Q2D condensates, the contribu-
tion to oscillating frequencies by the quantum pressure in the
strong-confining directions is significant and hence the
Thomas-Fermi approximation cannot be used. To obtain the
Q1D and Q2D superfluid Fermi gases one can use the
method designed in Ref. �2� by continuously removing atoms
from a highly anisotropic trap. Another way is to increase
gradually the trap anisotropy from moderate to very large
values while keeping the atom number fixed �5�. The results
presented in this work may be useful for guiding the experi-
mental finding of the low-dimensional superfluid Fermi
gases and for understanding the physical properties of the
BCS-BEC crossover.
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