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We propose a scheme to realize a giant Kerr nonlinearity and create stable high-dimensional nonlinear plasmon
polaritons via plasmon-induced transparency (PIT) in a metamaterial, which is constructed by an array of unit
cell consisting of a cut-wire and a pair of varactor-loaded split-ring resonators. We show that, due to the PIT effect
and the nonlinearity contributed by the varactor, the system may possess very large second-order and third-order
nonlinear susceptibilities. We further show that the system supports a resonant interaction between longwave and
shortwave and hence effective third-order nonlinear susceptibility can be further enhanced one order of magnitude.
Based on these peculiar properties, we derive Davey-Stewartson equations governing the evolution of longwave
and shortwave envelope, and demonstrate that it possible to generate plasmon dromions [i.e., (2+1)-dimensional
plasmon solitons with coupled longwave and shortwave components] with very low generation power. Our
study raises the possibility for obtaining new, giant Kerr effect and stable high-dimensional nonlinear plasmon
polaritons at very low radiation intensity by using nonlinear PIT metamaterials.
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I. INTRODUCTION

In recent years, much attention has been paid to the
investigation on the classical analog of atomic electromag-
netically induced transparency (EIT) [1] in various physi-
cal systems, such as coupled resonators [2,3], electric cir-
cuits [2–4], optomechanical devices [5,6], whispering-gallery-
mode microresonators [7], various metamaterials (see, e.g.,
Refs. [8–21]), etc. In particular, the plasmonic analog of atomic
EIT in metamaterials, called plasmon-induced transparency
(PIT) [8–10], is a very fruitful platform for the study of EIT-like
propagation of plasmonic polaritons in solid-state systems
[11,13,15–17].

PIT is a typical destructive interference effect resulting from
the strong coupling between the wide-band bright mode and
the narrow-band dark mode in meta-atoms of metamaterials.
The most distinctive characteristics of PIT is the appearance of
transparency window within broadband absorption spectrum,
along with extraordinarily steep dispersion and dramatic
reduction in the group velocity of plasmonic polaritons.
PIT metamaterials can not only work in different regions
of radiation frequency (including microwave [9], terahertz
[10,13,16], infrared, and visible radiations [8,11,15]), but also
can be used to design chip-scale plasmonic devices, in which
the radiation damping can be largely suppressed through
the destruction interference effect between bright and dark
modes. Owing to abundant physical capabilities, important
applications of PIT have been proposed, such as low-loss
metamaterials [8,10], highly sensitive sensors [12,13,17],
optical buffers [14,16], ultrafast optical switches [16], storage
and retrieval of electromagnetic pulses [18], and so on.

However, most studies on the plasmon polaritons in PIT
metamaterials reported up to now are focused on linear
propagation regime. Because of the highly resonant (and hence
dispersive) character inherent in PIT metamaterials, linear
plasmon polaritons inevitably undergo a significant distortion
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during propagation. Furthermore, due to the diffraction effect,
which can not be neglected for the cases of small transverse
size or long propagation distance, a large deformation of linear
plasmon polaritons is unavoidable. Thus it is necessary to
seek the possibility to obtain a robust propagation of plasmon
polaritons in PIT metamaterials. One way to solve this problem
is to make PIT systems work in a nonlinear propagation
regime.

In this article, by extending the recent work [19] for
(1+1)-dimensional [(1+1)D] nonlinear plasmon polaritons,
we propose a scheme to realize a giant Kerr nonlinearity and
generate stable (2+1)D nonlinear plasmon polaritons via PIT
in a metamaterial, which is constructed by an array of unit cell
consisting of a cut-wire (CW) and a pair of varactor-loaded
split-ring resonator (SRR). We show that, due to the PIT effect
and the nonlinearity contributed by the varactor, the system
may possess very large second-order and third-order nonlinear
susceptibilities (χ (2) ≈ 10−3 mV−1; χ (3) ≈ 10−6 m2V−2). We
further show that the system supports a resonant interaction
between longwave and shortwave, which happens when Vp ≈
Vg [where Vp (Vg) is the phase (group) velocity of the longwave
(shortwave)] and can occur in our system in a broad parameter
region. Based on such longwave-shortwave interaction, the
effective third-order nonlinear susceptibility can be further
enhanced one order of magnitude (up to 10−5 m2V−2). Such a
mechanism of enhancing third-order nonlinear susceptibility
by using longwave-shortwave resonance was proposed by
Newell and Moloney more than twenty years ago [22], but
to the best of our knowledge no realistic physical system was
found up to date. Based on these peculiar properties, we derive
Davey-Stewartson (DS) equations governing the evolution of
longwave and shortwave envelope, and demonstrate that it is
possible to create plasmon dromions [i.e. (2+1)D plasmon
solitons with coupled longwave and shortwave components]
with very low generation power.

We notice that some nonlinear effects in PIT systems
were considered in Ref. [20,21], in which a nonlinearity was
obtained by inserting nonlinear elements (e.g., varactors) into
SRR slits. However, our work is different from Refs. [20,21]
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where only a single unit cell (meta-atom), i.e., not an effective
medium, was adopted and no Kerr effect and plasmon solitons
were discussed. Furthermore, our work is also different from
that in Ref. [19] where only a (1+1)D problem was considered
and no longwave-shortwave resonance was explored; besides,
in Ref. [19] no plasmon dromions was predicted and the plas-
mon soliton obtained is unstable when the diffraction length is
comparable with the dispersion length and nonlinearity length.
Our study presented here raises the possibility for obtaining
a giant Kerr effect and stable high-dimensional nonlinear
plasmon polaritons at rather low radiation intensity by the
use of nonlinear PIT metamaterials.

The remainder of the article is organized as follows.
Section II describes our theoretical model. Section III dis-
cusses the linear dispersion relation of the system and
derives the DS equations describing the nonlinear propagation
of (2+1)D plasmon polaritons; the giant Kerr nonlinearity
through PIT and the longwave-shortwave resonance is also
discussed. Section IV gives the plasmon dromion solutions
and discusses their stability. The last section summaries the
main results obtained in the present work.

II. MODEL

The metamaterial structure considered here is an array of
PIT unit cells [16] consisting of a CW and two SRRs with
a nonlinear varactor inserted into the slits of the SRRs [see
Fig. 1(a) and Fig. 1(b)]. We assume that an incident gigahertz
radiation is collimated on the metamaterial array with the
electric field parallel to the CW, as illustrated in Fig. 1(c)
[16,19]. Orange solid lines in Fig. 1(d) show, respectively, the
numerical results of the normalized absorption spectrum as a
function of the incident-wave frequency for the sole-CW (i.e.,
no SRR in the unit cell), for the unit cell with d = 0.24 mm
(d is the separation between the CW and the SRR pair), and
for the unit cell with d = 0.03 mm, which are obtained by
using the commercial finite difference time domain software
package (CST Microwave Studio). We observe that for the
sole CW (no PIT in this case), the gigahertz radiation suffers
a large, broadband absorption, whereas for the unit cell with
SRRs (PIT is present) a transparency window opens in the
absorption spectrum and it becomes wider and deeper as d is
reduced.

The occurrence of the transparency window in the broad-
band absorption spectrum can be explained simply as follows.
For a normal incident of the radiation, the CW in the unit
cell functions as a dipole antenna and thus can serve as
a bright mode. The two SRRs in the unit cell function as
dark modes, which may be symmetric or antisymmetric.
The antisymmetric mode has counterpropagating currents on
the two SRRs; therefore, there is no direct electrical dipole
coupling with the radiation, and it can be considered as a dark
mode of a long dephasing time. The resonance frequency of
this dark mode is designed to coincide with that of the bright
mode. Hence, the CW and the SRRs serve, respectively, as
the bright and dark modes, and their destruction interference
leads to a dip at the center of the absorption spectrum (i.e.,
PIT) [8,16].

The dynamics of the bright and dark modes in the unit cell
at the position r = (x,y,z) can be described by the Lorentz

FIG. 1. (a) PIT unit cell consisting of a CW and a pair of SRR.
The unit-cell parameters are L = 1.7, w = 0.1, a = 0.58, b = 0.1,
Px = 1.6, Py = 2.4 (in unit mm). 10-μm-thick aluminium that forms
the CW and the SRR-pair pattern is etched on a Si-on-sapphire
wafer comprised of 100-μm-thick undoped Si film and 2.1-mm-
thick sapphire substrate (i.e., h = 2.21mm). (b) SRR pair with a
hyperabrupt tuning varactor mounted onto their slits. (c) Suggested
experimental arrangement for measuring plasmon dromions. To form
plasmon dromions, many (>20) layers in the array of PIT unit cells
are assumed. (d) Numerical (orange solid lines) and analytical (blue
dashed lines) results of the normalized absorption spectrum as a
function of the incident-wave frequency for sole-CW, d = 0.24, and
d = 0.03 (in unit mm), respectively. Analytical result is obtained
from solving the model Eqs. (1) and (2) in linear regime.

equations for two coupled oscillators [8,16]

q̈1 + γ1q̇1 + ω2
0q1 − κ2q2 = g E(r,t), (1a)

q̈2 + γ2q̇2 + (ω0 + �)2q2 − κ2q1 + αq2
2 + βq3

2 = 0, (1b)

where q1 and q2 are respectively amplitudes of the bright and
dark modes (the dot over qj denotes time derivative), with γ1

and γ2 respectively their damping rates; ω0 = 2π × 32 GHz
and ω0 + � are respectively linear natural frequencies of
the bright and dark modes (γ2 � γ1 � ω0); parameter κ

denotes the coupling strength between the CW and SRR
pair; g is the parameter indicating the coupling strength of
the bright mode with the incident radiation E. The last two
terms on the left-hand side of Eq. (1b) are provided by
the hyperabrupt tuning varactors mounted onto gaps of the
SRRs [23–25]. Thus the metamaterial structure suggested
here is a coupled anharmonic oscillator system driven by the
incident radiation E. The coefficients α and β characterize the
quadratic and cubic nonlinearities of the system, which have
important implicity for the occurrence of longwave-shortwave
resonance, giant effective Kerr effect, and plasmonic dromions
discussed in the following. Note that when writing Eq. (1) we
have taken a coordinate system in which the electric (magnetic)
field E (H ) is along y (x) direction and wave vector kf is along
z direction.
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The equation of motion for the electric field E is governed
by the Maxwell equation

∇2E − 1

c2

∂2E

∂t2
= 1

ε0c2

∂2P

∂t2
(2)

with the electric polarization intensity given by P =
ε0χ

(1)
D E + Neq1, where N the density of unit cells, e is

the unit charge, and χ
(1)
D is the optical susceptibility of the

background material (which is assumed to be linear). Note that
the resonance of the two SRRs (dark mode) has no contribution
to the average field E because the asymmetric field distribution
at the two SRRs cancels each other when PIT occurs [8,16]. In
addition, since the wavelength of the incident field (8.5 mm)
is much larger than the thickness of each unit cell (10 μm),
the electric field E seen by each meta-atom (i.e., the unit cell)
is nearly homogeneous. Thus we can take an electric-dipole
approximation, widely used in atomic physics and quantum
optics [26], to investigate the dynamics of the system. In terms
of the relation P = ε0χE, the electric susceptibility χ can be
obtained by the formula

χ = χ
(1)
D + Ne

ε0E
q1. (3)

To obtain the explicit expression of q1, we must solve the
Maxwell-Lorentz (ML) equations (1) and (2). We assume
the incident radiation has frequency ωf , which is near ω0.
Thus, there is resonant interaction between the electric field
E and the oscillators q1 and q2. To treat such resonant,
nonlinear problem analytically, we assume qj = qdj +
(qfj e

i(k0z−ω0t) + c.c.) + (qsj e
2i(k0z−ω0t) + c.c.), E = Ed +

(Ef ei(kf z − ωf t) + c.c.) + (Ese
i[(2kf +�k)z−2ωf t] + c.c.). Here

qdj , qfj , and qsj are respectively amplitudes of the longwave
(rectification field or mean field), shortwave (fundamental
wave), and second harmonic wave of the j th oscillator, with k0

(ω0) the wave number (frequency) of the fundamental wave;
Ed , Ef , and Es are respectively amplitudes of the longwave,
shortwave, and second harmonic wave of the electric field; kf

(ωf ) is the wave number (frequency) of the fundamental wave,
and �k is a detuning. Note that in the present work we only
consider the longwave-shortwave resonance (a special three-
wave resonance) of the gigahertz radiation. Other resonance
processes, such as general three-wave resonance, will not
discussed. From the ML equations (1) and (2) and using
rotating-wave and slowly varying envelope approximations,
we can obtain a series of equations for the motion of qμj and
Eμ (μ = d,f ), which are listed in Appendix A.

III. ENHANCED KERR NONLINEARITIES AND
DS EQUATIONS

A. Asymptotic expansion and DS equations

We now investigate second- and third-order nonlinear
susceptibilities, which can be used to generate the dromionlike
nonlinear excitations through the longwave-shortwave
resonant interaction in the system. To this end, we solve the
equations for qαj and Eα by using the method of multiple scales
[27]. Take the asymptotic expansion qfj = ε q

(1)
fj + ε2 q

(2)
fj

+ · · · , qdj = ε2 q
(2)
dj + · · · , qsj = ε2 q

(2)
sj + · · · , Ef =

ε E
(1)
f + ε2 E

(2)
f + · · · , Ed = ε2 E

(2)
d + · · · , where ε is a

dimensionless small parameter characterizing the amplitude
of the incident electric field. All quantities on the right-hand
side of the expansion are assumed as functions of the
multiscale variables x1 = εx, y1 = εy, zj = εj z (j = 0,1,2),
and tj = εj t (j = 0,1). Substituting this expansion into the
the equations for qμj and Eμ and comparing the expansion
parameter of each power ε, we obtain a chain of linear but
inhomogeneous equations (listed in Appendix B), which can
be solved order by order.

At the first-order we obtain the solution for the shortwave
field E

(1)
f = F exp[i(Kz0 − δt0)] where F is a yet to be

determined envelope function depending on the slow variables
x1, y1, z1, z2, and t1, δ = ωf − ω0 is frequency detuning, and
K is the linear dispersion relation given by

K = nD

c
δ + κ0gD2(δ)

D1(δ)D2(δ) − κ4
. (4)

Here Dj (lδ) = ω2
0 − l2(ω0 + δ)2 − ilγj (ω0 + δ) (j,l = 1,2)

and κ0 = (Neω0)/(2ε0cnD). Shown in Fig. 1(d) is the absorp-
tion spectrum Im(K) (the imaginary part of K) as a function of
the incident-wave frequency ωf /(2π ). When plotting the fig-
ure we used the damping rates γ1 ≈ 60 GHz and γ2 ≈ 10 GHz,
which are nearly independent of d, whereas κ increases from
0 (sole CW) to 145.5 GHz at d = 0.03 mm. We see that the
analytical result (blue dashed lines) fits well with the numerical
one (orange solid lines). Solutions of bright and dark modes at
this order read q

(1)
f 1 = gD2(δ)E(1)

f /[D1(δ)D2(δ) − κ4],q(1)
f 2 =

gκ2E
(1)
f /[D1(δ)D2(δ) − κ4].

At the second order, a divergence-free condition requires
∂F/∂z1 + (1/Vg)∂F/∂t1 = 0, where Vg = (∂K/∂δ)−1 is the
group velocity of the shortwave envelope F . The solution for
the longwave (rectification) field reads E

(2)
d = G, and explicit

expressions for other quantities at this order are presented in
Appendix C.

With the above results we proceed to the third order. The
solvability condition at this order yields the nonlinear equation

i
∂F

∂z2
−1

2
K2

∂2F

∂τ 2
1

+ c

2ω0nD

(
∂2

∂x2
1

+ ∂2

∂y2
1

)
F + ω0

2cnD

χ (3)|F |2

×Fe−2ᾱz2 + m1ω0

2cnD

χ (2)GF = 0. (5)

Here τ1 = ετ (τ ≡ t − z/Vg), ᾱ = ε−2Im(K) is the co-
efficient describing linear absorption, K2 = ∂2K/∂δ2 is
the coefficient describing group-velocity dispersion, m1 ≡
|D1(δ)D2(δ) − κ4|2/[D1(δ)D2(δ) − κ4]2, χ (2), and χ (3) are,
respectively, the second-order and third-order nonlinear sus-
ceptibilities with the form

χ (2) = −2Neg2κ6α

ε0(ω4
0 − κ4)|D1(δ)D2(δ) − κ4|2 , (6a)

χ (3) =
(

4α2ω2
0

ω4
0 − κ4

+ 2α2D1(2δ)

D1(2δ)D2(2δ) − κ4
− 3β

)
× g3κ8Ne

ε0(D1(δ)D2(δ) − κ4)2|D1(δ)D2(δ) − κ4|2 . (6b)

We see that χ (2) is proportional to the parameter α, i.e., it is
contributed by the quadratic nonlinearity in Eq. (1b); χ (3) is
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FIG. 2. Nonlinear susceptibilities of the PIT metamaterial. (a)
Real and imaginary parts of the third-order susceptibility χ (3) [i.e.,
Re(χ (3)) and Im(χ (3))] as functions of the frequency detuning δ. (b)
Real and imaginary parts of the second-order susceptibility χ (2) [i.e.,
Re(χ (2)) and Im(χ (2))] as functions of δ. System parameters used are
given in the text.

proportional to the parameters β and α, which means that it
comes from the contributions by the cubic nonlinearity (the
term proportional to the parameter β) and by the quadratic
nonlinearity (the terms proportional to the parameter α) in
Eq. (1b).

Furthermore, the nonlinear equation for the longwave
(rectification) field G arises at the fourth-order approximation,
which reads(

∂2

∂x2
1

+ ∂2

∂y2
1

)
G −

(
1

V 2
p

− 1

V 2
g

)
∂2G

∂τ 2
1

− χ (2)

c2

∂2|F |2
∂τ 2

1

× e−2ᾱz2 = 0, (7)

where Vp is the phase velocity of the longwave field G, defined
by

1

V 2
p

= n2
D

c2
+ Negω2

0

ε0c2
(
ω4

0 − κ4
) . (8)

The last term on the left-hand side of Eq. (7) corresponds to
a second-order plasmonic rectification. Above results tell us
that the self-interaction of the shortwave (with the envelope F )
can stimulate the generation of the longwave field G [Eq. (7)],
and at the same time longwave field G has a back-action to the
shortwave field F [Eq. (5)]. Equations (5) and (7) are the gen-
eral form of DS equations describing the propagation of high-
dimensional nonlinear plasmonic polaritons in the system.

B. Enhanced Kerr effect due to the resonant interaction
between longwave and shortwave

Since the nonlinear behavior of the high-dimensional
plasmonic polaritons is determined by the combined action
of the second-order and third-order nonlinear susceptibilities,
it is necessary to give a detailed discussion on them. For this
aim, in Fig. 2(a) and Fig. 2(b) we show, respectively, curves
of χ (3) and χ (2) as functions of the frequency detuning δ, in
which the orange solid lines are their real parts and the green
dashed lines are their imaginary parts. From the figure we can
obtain the following conclusions: (i) χ (2) is nearly real [i.e.,
Im(χ (2)) ≈ 0] and has the order of magnitude 10−3 mV−1.
(ii) the real part of the third-order susceptibility, Re(χ (3)),
has the order of magnitude 10−6 m2V−2. The physical reason

for such large second- and third-order nonlinearities predicted
here is due to the fact that the incident radiation E is resonant
with the oscillators q1, q2 and the system works under the
PIT condition. (iii) The imaginary part of χ (3) [i.e., Im(χ (3))],
which contributes a nonlinear absorption to the radiation field,
is much less than the real part Re(χ (3)) when the system works
in the PIT transparency window (i.e., δ takes values within the
interval from −20 GHz to 20 GHz). Such suppression of the
nonlinear absorption is also due to the PIT effect.

Interestingly, the third-order nonlinear susceptibility χ (3)

can be further enhanced by using longwave-shortwave res-
onance. This can be seen from the following analysis. For
simplicity but without loss of generality of the analysis
of nonlinear susceptibilities, we assume that the transverse
spatial distribution of the radiation is large enough so that
the diffraction effect (i.e., its dependence on the transverse
coordinates x and y) of the system can be neglected. Then
from Eq. (7) we obtain G = χ (2)|Ef |2/[c2(1/V 2

g − 1/V 2
p )].

Plugging this result into Eq. (5), we obtain an effective
third-order nonlinear susceptibility

χ
(3)
eff = χ (3) + χ

(3)
SL , (9a)

χ
(3)
SL = m1

(χ (2))2

c2
(

1
V 2

p
− 1

V 2
g

) , (9b)

where the subscript “SL” means that the corresponding term is
due to the longwave-shortwave interaction. Equation (9) tells
us that if some region of system parameters can be found
where Vp ≈ Vg , in addition to the PIT enhancement (i.e.,
χ (3) is large, as shown in Fig. 2), the effective third-order
nonlinear susceptibility χ

(3)
eff can be further enhanced because

of the drastic enhancement of χ
(3)
SL .

In the situation Vp ≈ Vg , the system undergoes a resonant
interaction between the longwave G and the shortwave
F , a special form of three-wave resonance satisfying the
conditions ω1 + ω2 = ω3 and kf (ω1) + kf (ω2) = kf (ω3).
This point can be illustrated clearly if we choose ω1 = ω − εδ,
ω2 = 2εδ, and ω3 = ω + εδ. Then one has ω1 + ω2 = ω3,
and kf (ω1) + kf (ω2) − kf (ω3) = kf (ω − εδ) + kf (2εδ) −
kf (ω + εδ) = −2εδ ∂kf /∂ω + kf (2εδ) + O(ε3) which is
zero to order ε3 if ∂kf /∂ω � kf (2εδ)/2εδ, i.e., Vg � Vp [22].

In our system, a broad parameter region for Vp ≈ Vg

exists. Illustrated in Fig. 3(a) is the denominator 1/V 2
p − 1/V 2

g

of χ
(3)
SL as functions of the frequency detuning δ and the

coupling coefficient κ [see Eqs. (1)]. The rectangle enclosed
by purple dashed lines in upper part of the figure illustrates
the parameter region where Vg ≈ Vp. Consequently, the
longwave-shortwave resonance can indeed occur in the present
PIT metamaterial, and based on this the effective third-order
nonlinear susceptibility χ

(3)
eff of the system can be enhanced

greatly.
Shown in Fig. 3(b) are curves of the real part Re(χ (3)

eff ) (or-
ange solid line) and the imaginary part Im(χ (3)

eff ) (green dashed
line) of the effective third-order nonlinear susceptibility χ

(3)
eff

as functions of δ for κ = 180 GHz. We observe that Re(χ (3)
eff )

[which is much larger Im(χ (3)
eff ) near δ = 0] is enhanced one

order of magnitude (up to the value 6.64 × 10−5 m2 V−2),
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FIG. 3. (a) The denominator 1/V 2
p − 1/V 2

g of χ
(3)
SL as functions

of frequency detuning δ and the coupling coefficient κ . System
parameters used are given in the text. The rectangle enclosed by
purple dashed lines shows the region where the longwave-shortwave
resonance occurs (i.e., Vg ≈ Vp). (b) Real part Re(χ (3)

eff ) (orange solid
line) and imaginary part Im(χ (3)

eff ) (green dashed line) of the effective
third-order nonlinear susceptibility χ

(3)
eff as functions of frequency

detuning δ for κ = 180 GHz.

which is contributed by the longwave-shortwave resonance
interaction.

When plotting Fig. 2 and Fig. 3, the system parameters
used are γ1 = 60 GHz, γ2 = 10 GHz, g = 1.79 × 1011C kg−1,
κ0 = 2.8 × 10−8 kg C−1 cm−1 GHz2, obtained by fitting the
numerical result given in Fig. 1(d). The parameters α and β,
introduced in Eq. (1b) for describing the nonlinear property
of the hyperabrupt tuning varactors mounted onto the gaps
of SRRs [23], have been elaborated in detail in Appendix D,
which read α = −1.27 × 1015 cm−1 GHz2 and β = 2.26 ×
1025 cm−2 GHz2.

IV. PLASMON DROMIONS

Now we turn to the formation and propagation of high-
dimensional nonlinear plasmon polaritons in the system by
examining possible dromion solutions of the Eq. (5) and
Eq. (7). After returning to original variables and converting
them into dimensionless forms, Eq. (5) and Eq. (7) become

i
∂u

∂s
+

(
∂2

∂ξ 2
+ gy

∂2

∂η2
+ gd1

∂2

∂σ 2

)
u

+ 2g1|u|2u + g2vu = −id0u, (10a)

gd2
∂2v

∂σ 2
−

(
∂2

∂ξ 2
+ gy

∂2

∂η2

)
v + g3

∂2|u|2
∂σ 2

= 0, (10b)

where u = εF exp(−ᾱz2)/U0, v = ε2G/V0, s = z/(2LDiff),
σ = (t − z/Ṽg)/τ0, ξ = x/Rx , η = y/Ry , gy = (Rx/Ry)2,
gd1 = LDiff/LDisp, gd2 = R2

x(1/V 2
p − 1/V 2

g )/τ 2
0 , g1 = LDiff/

LNonl, g2=LDiffm1ω0V0χ
(2)/(cnD), g3=χ (2)R2

xU
2
0 /(c2τ 2

0 V0),
and d0 = 2LDiff/LA. Here Rx (Ry) is typical radius of the
incident pulse in x (y) direction, τ0 is typical temporal length
of the incident pulse; U0 and V0 are respectively ampli-
tudes of the shortwave envelope and the longwave; LDisp =
−τ 2

0 /K̃2, LDiff = ω0nDR2
x/c, LNonl = 2cnD/[ω0χ̃

(3)U 2
0 ], and

LA = 1/Im(K) are respectively typical dispersion length,
diffraction length, nonlinear length, and absorption length (the
tilde above corresponding quantity means taking its real part).
Note that when obtaining Eq. (10) we have neglected the
imaginary parts of K2 and χ (3). This is reasonable because

the system works under the PIT condition κ2 � ω0
√

γ1γ2 so
that their imaginary parts are much smaller than their real parts.

Expressions (10a) and (10b) are coupled (3+1)D non-
linear partial differential equations including effects of dis-
persion, diffraction, nonlinearity, and a small loss caused
by Im(K). Because a general consideration to obtain sta-
ble high-dimensional nonlinear solutions of such equations
is not available yet, here we consider only a specific
case to seek possible (2+1)D dromion solutions by us-
ing some assumptions for simplification. First, we assume
LDisp, LDiff , and LNonl have the same order of magnitude,

which can be achieved by taking τ0 =
√

−ω0nDK̃2/cRx

and U0 =
√

2c2nD/(ω2
0nDR2

xχ̃
(3)). Second, we choose re-

alistic system parameters δ = −10 GHz, Rx = 0.47 cm,
Ry = 2.5 cm, τ0 = 2.21 × 10−11s, V0 = 0.51V cm−1, α =
−3.99 × 1014 cm−1 GHz2, β = 4.36 × 1025 cm−2 GHz2, κ =
198 GHz. Then we obtain LDiff (= LDisp = LNonl) = 4.99 cm,
d0 = 0.064, U0 = 4.57 Vcm−1, and gd1 = g1 = g2 = gd2 =
1, g3 = 4, gy ≈ 0. In order to have LNonl = 4.99 cm, 22 layers
or more of the unit cell array are needed. Because d0 is small,
the term on the right-hand side of Eq. (10a) can be taken as
a perturbation. As a first step, we neglect such perturbation
and hence Eq. (10a) and Eq. (10b) are simplified into standard
Davey-Stewartson-I (DSI) equations

i
∂u

∂s
+ ∂2u

∂σ 2
+ ∂2u

∂ξ 2
+ 2|u|2u + vu = 0, (11a)

∂2v

∂σ 2
− ∂2v

∂ξ 2
+ 4

∂2|u|2
∂σ 2

= 0, (11b)

which are completely integrable and can be solved ex-
actly by the use of inverse scattering transform. One
of remarkable properties of the DSI equations is that
they allow various dromion solutions [28]. A single
dromion solution of the DSI equations reads u = Q/P ,
v = 4∂2lnP/∂σ 2, where P = 1 + exp(η1 + η∗

1) + exp(η2 +
η∗

2) + γ exp(η1 + η∗
1 + η2 + η∗

2) and Q = ρ exp(η1 + η2),
with η1 = (kr + iki)(ξ + σ )/

√
2 + (�r + i�i)s, η2 = (lr +

ili)(ξ − σ )/
√

2 + (ωr + iωi)s, �r = −2krki , ωr = −2lr li ,
�i + ωi = k2

r + l2
r − k2

i − l2
i , ρ = |ρ|exp(iϕρ), and |ρ| =

2[2kr lr (γ − 1)]1/2. Here, kr , ki , lr , li , |ρ|, ϕρ , and γ are
real integration constants. If we choose kr lr > 0, we have
γ = exp(2ϕγ ) with ϕγ > 0. By taking kr = √

2μ, ki =√
2a1, lr = √

2λ, li = √
2p (λμ � 0), �i = 2(μ2 − a2

1), ωi =
2(λ2 − p2), �r = −4aμ, and ωr = −4λp, we obtain explicit
expressions

u = 2μexp(ih)

mcosh f1 + ncosh f2
, (12a)

v = 4(m2 + n2)(μ2 + λ2) − 8μ2

(mcosh f1 + ncosh f2)2

+ 8mn[(μ2+λ2)cosh f1cosh f2−(μ2−λ2)sinh f1sinh f2]

(mcosh f1+ncosh f2)2
,

(12b)

where m = {μ/[λ(γ − 1)]}1/2, n = {μγ/[λ(γ − 1)]}1/2, h =
a1(σ + ξ ) + p(σ − ξ ) + 2(μ2 + λ2 − a2

1 − p2)s + ϕρ , f1 =
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FIG. 4. A single dromion excitation in the PIT metamaterial,
which consists of a localized envelope for the shortwave component
and two tracks for the longwave component. Plotted here is the
shortwave envelope |u| = |U |/U0 (the hump at the center) and the
longwave (rectification) field v = V/U0 [the two crossed tracks
(plane solitons)] as functions of ξ = x/Rx and σ = (t − z/Ṽg)/τ0.
System parameters are chosen as μ = 1, λ = 1, a1 = 0, p = 0,
ϕρ = 0, ϕγ = 0 at s = 0.

μ(σ + ξ ) − λ(σ − ξ ) − 4(a1μ − λp)s, f2=μ(σ+ξ )+λ(σ −
ξ ) − 4(a1μ + λp)s + ϕγ . Obviously, the dromion given above
consists of a localized envelope u for the shortwave com-
ponent, which decays exponentially in all spatial directions
(shown by the hump at the center of Fig. 4), and two plane
solitons for the longwave component v, in which each plane
soliton decays in its traveling direction (shown by the two
tracks in Fig. 4).

The result presented above is the dromion solution based on
Eq. (11a) and Eq. (11b) without considering the loss (although
it is small under the PIT condition) in the system. It is necessary
to investigate the spatiotemporal evolution of the dromion and
its stability starting directly from Eq. (5) and Eq. (7). For
this aim, we make a numerical simulation on Eq. (5) and
Eq. (7) by taking the dromion solution (12) with a random
disturbance as an initial condition. Concretely, we take U (z =
0,x,t) = U0u × (1 + εfR), with u being the dromion solution
(12), ε being a typical amplitude of the perturbation, and fR

being a random variable uniformly distributed in the interval
[0,1]. Shown in Fig. 5 is the evolution of the dromion pulse
as a function of ξ = x/Rx and σ = (t − z/Ṽg)/τ0 by taking
ε = 0.1. The profiles from Figs. 5(a)–5(e) in the figure are
respectively for the propagation distance z = 0,0.5LDiff , Ldiff ,
1.5Ldiff , and 2Ldiff , with LDiff = 4.99 cm. We see that the
shape of the dromion undergoes no apparent change, but its
amplitude is reduced a little during propagation due to the
small loss inherent in the dark oscillator q2.

FIG. 5. Spatiotemporal evolution of the plasmon dromion as a
function of ξ = x/Rx and σ = (t − z/Ṽg)/τ0 based on Eq. (5) and
Eq. (7), by taking the solution (12) plus 10% random disturbance as
an initial condition. (a) Initial profile of the dromion (z = 0). (b), (c),
(d), and (e) are dromion profiles when propagating respectively to
z = 0.5 LDiff , 1.0 LDiff , 1.5 LDiff , 2.0 LDiff , with LDiff = 4.99 cm.

The threshold of the power density of the incident radiation
P̄peak for generating the plasmon dromion given above can be
estimated by using Poyntings vector [22]. With our system
parameters, the average peak power of the plasmon dromion is

P̄peak = 814 mW, (13)

which corresponds average peak intensity Īpeak =
361mW/cm2. We see that in the PIT metamaterial extremely
low generation power is needed for generating (2+1)D
spatiotemporal dromions.

V. CONCLUSIONS

In this article, we have proposed a scheme to realize a
giant Kerr nonlinearity and create stable (2+1)D nonlinear
plasmon polaritons via PIT in a metamaterial. We have shown
that, due to the PIT effect and the nonlinearity contributed by
the varactor the system can possess very large second-order
and third-order nonlinear susceptibilities. We have further
shown that the effective third-order nonlinear susceptibility
χ

(3)
eff can be further enhanced one order of magnitude (up to

6.8 × 10−5 m2V−2) through the resonant interaction between
longwave and shortwave, which happens when Vp ≈ Vg and is
shown to be possible in our system. Based on these important
properties in the proposed system, we have derived the
Davey-Stewartson (DS) equations, which govern the evolution
of longwave and shortwave envelope, and demonstrated that it
possible to generate plasmon dromions with very low genera-
tion power. Our study raises the possibility for obtaining giant
Kerr effect and stable high-dimensional nonlinear plasmon
polaritons at rather low radiation intensity by the use of
nonlinear PIT metamaterials.
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APPENDIX A: EQUATIONS FOR qμ j AND Eμ BASED ON
THE MAXWELL-LORENTZ EQUATIONS

Equations of motion of the oscillators qμj read

q̈f 1 + (γ1 − 2iω0)q̇f 1 − iγ1ω0qf 1 − κ2qf 2 = gEf , (A1a)

q̈f 2 + (γ2 − 2iω0)q̇f 2 − iγ2ω0qf 2 − κ2qf 1 + 2αqd2qf 2

+ 3β|qf 2|2qf 2 = 0, (A1b)

q̈d1 + γ1q̇d1 + ω2
0qd1 − κ2qd2 = gEd, (A1c)

q̈d2 + γ2q̇d2 + ω2
0qd2 − κ2qd1 + 2α|qf 2|2 = 0, (A1d)

q̈s1 + (γ1 − 4iω0)q̇s1 + (
ω2

0 − 2iγ1ω0 − 4ω2
0

)
qs1 − κ2qs2

= gEse
i�kz, (A1e)

q̈s2 + (γ2 − 4iω0)q̇s2 + (
ω2

0 − 2iγ2ω0 − 4ω2
0

)
qs2

−κ2qs1 + αq2
f 2 = 0. (A1f)
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The equation of motion for electric field Eμ are given by

i

(
∂

∂z
+nD

c

∂

∂t

)
Ef + c

2ω0nD

(
∂2

∂x2
+ ∂2

∂y2

)
Ef + κ0qf 1 = 0,

(A2a)(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
Ed − n2

D

c2

∂2

∂t2
Ed = Ne

ε0c2

∂2

∂t2
qd1,

(A2b)

i

(
∂

∂z
+ nD

c

∂

∂t

)
Es + c

4ω0nD

(
∂2

∂x2
+ ∂2

∂y2

)
Es

+ 2κ0qs1e
−i�kz = 0, (A2c)

where nD =
√

1 + χ
(1)
D , and κ0 = (Neω0)/(2ε0cnD).

APPENDIX B: ASYMPTOTIC EXPANSION OF THE
MAXWELL-LORENTZ EQUATIONS

The asymptotic expansions of the equations of motion for
qμj read

∂2

∂t2
0

q
(l)
f 1 + (γ1 − 2iω0)

∂

∂t0
q

(l)
f 1 − iγ1ω0q

(l)
f 1 − κ2q

(l)
f 2

− gE
(l)
f = A(l), (B1a)

∂2

∂t2
0

q
(l)
f 2 + (γ2 − 2iω0)

∂

∂t0
q

(l)
f 2 − iγ2ω0q

(l)
f 2 − κ2q

(l)
f 1 = B(l),

(B1b)
∂2

∂t2
0

q
(l)
d1 + γ1

∂

∂t0
q

(l)
d1 + ω2

0q
(l)
d1 − κ2q

(l)
d2 − gE

(l)
d = C(l),

(B1c)
∂2

∂t2
0

q
(l)
d2 + γ2

∂

∂t0
q

(l)
d2 + ω2

0q
(l)
d2 − κ2q

(l)
d1 = D(l), (B1d)

∂2

∂t2
0

q
(l)
s1 + (γ1 − 4iω0)

∂

∂t0
q

(l)
s1 + (

ω2
0 − 2iγ1ω0 − 4ω2

0

)
q

(l)
s1

−κ2q
(l)
s2 = E(l), (B1e)

∂2

∂t2
0

q
(l)
s2 + (γ2 − 4iω0)

∂

∂t0
q

(l)
s2 + (

ω2
0 − 2iγ2ω0 − 4ω2

0

)
× q

(l)
s2 − κ2q

(l)
s1 = F (l). (B1f)

The asymptotic expansion of the Maxwell equation is

i

(
∂

∂z0
+ nD

c

∂

∂t0

)
E

(l)
f + κ0q

(l)
f 1 = M (l), (B2a)

∂2

∂z2
0

E
(l)
d − n2

D

c2

∂2

∂t2
0

E
(l)
d − Ne

ε0c2

∂2

∂t2
0

q
(l)
d1 = N (l). (B2b)

The quantities on the right-hand side of Eqs. (B1) and
(B2) are given by A(1) = B(1) = C(1) = D(1) = E(1) = F (1) =
M (1) = N (1) = C(2) = E(2)=N (2)=N (3)=0, A(2)= − 2∂2q

(1)
f 1/

∂t0∂t1 − (γ1 − 2iω0)∂q
(1)
f 1/∂t1, B(2) = −2∂2q

(1)
f 2/∂t0∂t1 −

(γ2 − 2iω0)∂q
(1)
f 2/∂t1, D(2) = −2α|q(1)

f 2 |2, F (2) = −α(q(1)
f 2)2,

M (2) = −i[∂/∂z1 + (nD/c)∂/∂t1]E(1)
f , A(3) = −2∂2q

(2)
f 1/

∂t0∂t1 − ∂2q
(1)
f 1/∂t2

1 − (γ1−2iω0)∂q
(2)
f 1/∂t1, B(3)= − 2∂2q

(2)
f 2/

∂t0∂t1 − ∂2q
(1)
f 2/∂t2

1 − (γ2 − 2iω0)∂q
(2)
f 2/∂t1 − 2αq

(2)
d2 q

(1)
f 2 −

3β|q(1)
f 2 |2q(1)

f 2 , M (3) = −i[∂/∂z1 + (nD/c)∂/∂t1]E(2)
f − c/

(2nDω0)(∂2/∂x2
1 + ∂2/∂y2

1 )Ef − i∂E
(1)
f /∂z2, and N (4) =

−(∂2/∂x2
1 + ∂2/∂y2

1 + ∂2/∂z2
1)E(2)

d + (nD/c)2∂2E
(2)
d /∂t2

1 +
Ne/(ε0c

2)∂2q
(2)
d1 /∂t2

1 .

APPENDIX C: EXPLICIT EXPRESSIONS OF
THE SECOND-ORDER SOLUTIONS

The second-order solution reads

q
(2)
f 1 = gD2(δ)2[2i(ω0 + δ) − γ1] + gκ4[2i(ω0 + δ) − γ2]

(D1(δ)D2(δ) − κ4)2

× ∂F

∂t1
ei(Kz0−δt0), (C1a)

q
(2)
f 2 = gκ2D1(δ)[2i(ω0+δ)−γ2]+gκ2D2(δ)[2i(ω0+δ)−γ1]

(D1(δ)D2(δ)−κ4)2

× ∂F

∂t1
ei(Kz0−δt0), (C1b)

q
(2)
d1 = ω2

0gG

ω4 − κ4
− 2g2κ6α(

ω4
0 − κ4

)|D1(δ)D2(δ) − κ4|2 |F |2e−2ᾱz2 ,

(C1c)

q
(2)
d2 = gκ2G

ω2
0 − κ4

− 2αω2
0g

2κ4(
ω4

0 − κ4
)|D1(δ)D2(δ) − κ4|2 |F |2e−2ᾱz2 ,

(C1d)

q
(2)
s1 = − g2κ6α

[D1(δ)D2(δ) − κ4]2[D1(2δ)D2(2δ) − κ4]

×F 2e2i(Kz0−δt0), (C1e)

q
(2)
s2 = − αg2κ4D1(2δ)

[D1(δ)D2(δ) − κ4]2[D1(2δ)D2(2δ) − κ4]

×F 2e2i(Kz0−δt0). (C1f)

APPENDIX D: CALCULATION OF NONLINEAR
COEFFICIENTS α AND β IN EQ. (1b)

The nonlinear property of the SRRs with mounted hyper-
abrupt tuning varactors has been theoretically analyzed and
experimentally measured in Ref. [23]. The hyperabrupt tuning
varactors provide a nonlinear voltage-dependent capacitance
C(V ), which can be described by the expression C(V ) =
C0(1 − V/V̄ )−M , where C0 is the dc rest capacitance, V̄ is
the intrinsic potential, and M is a dimensionless number less
than one. From the definition C(V ) = dQ/dV (Q is electric
charge), the voltage V across the varactors can be expressed

as a function of q, i.e., V (q) = V̄ [1 − (1 − q 1−M

V̄
)

1
1−M ], where

q = Q/C0 is renormalized voltage. Expanding V (q) by a
Taylor series for a small oscillation (with the oscillation
amplitude satisfying (1 − M)|q| < V̄ ), one has V (q) ≈ q −
M/(2V̄ )q2 + M(2M − 1)/(6V̄ 2)q3 when keeping to the third-
order approximation. As a result, we obtain the second-
and third-order nonlinear coefficients, given, respectively, by
−M/(2V̄ ) and M(2M − 1)/(6V̄ 2).

013818-7



ZHENGYANG BAI AND GUOXIANG HUANG PHYSICAL REVIEW A 93, 013818 (2016)

The value of q in Ref. [23] (the renormalized voltage) has
the dimension of volt, while the value of q2 in our model (the
amplitude of the dark mode) has the dimension of centimeter
with the order of magnitude around 10−10 cm based on
our analytical result. To make a comparison we switch the
dimension of our Eq. (1a) and Eq. (1b), which reads

ẍ1 + γ1ẋ1 + ω2
0x1 − κ2x2 = g

Q0
E, (D1)

ẍ2 + γ2ẋ2 + (ω0 + �)2x2 − κ2x1 + Q0αx2
2 + Q2

0βx3
2 = 0,

(D2)

where qj = Q0xj (j = 1,2). xj has the dimension of volt
with the order of magnitude around 10 V, Q0 has the
dimension cm V−1 with the order of magnitude around
10−11 cm V−1. Thus, nonlinear coefficients α and β in Eq. (1a)
and Eq. (1b) can be calculated by using the expressions
of α = Q−1

0 M1(ω0 + �)2 and β = Q−2
0 M2(ω0 + �)2, where

M1 = −M/(2V̄ ) and M2 = M(2M − 1)/(6V̄ 2). Choosing
Q0 = 1.2 × 10−11 cm V−1, M = 0.9, V̄ = 1.3V, and us-
ing (ω0,�) = (2π × 32,8) GHz, we obtain α = −1.27 ×
1015 cm−1 GHz2 and β = 2.26 × 1025 cm−2 GHz2.
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