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Dynamics of dark solitons in quasi-one-dimensional Bose-Einstein condensates
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We develop a systematic analytical approach to consider the dynamics of linear and nonlinear excitations in
trapped quasi-one-dimensional Bose-Einstein condensates with repulsive atom-atom interactions. We show
that, for a condensate strongly confined in two transverse directions, the ground state of the system involves the
high-order eigenmodes of the transverse confining potential in the transverse directions and effective high-
order Thomas-Fermi wave functions in the axial direction. The linear excitations of the system have a
Bogoliubov-type spectrum with the excitation frequency varying slowly along the axial direction. We find that,
in a weak nonlinear approximation, the amplitude of a nonlinear excitation is governed by a variable coefficient
Korteweg—de Vries equation with additional terms contributed from the transverse structure and the inhomo-
geneity in the axial direction of the condensate, which results in varying amplitude, width, and velocity for
dark solitons. Because of the inhomogeneity the dark solitons undergo deformation and emit radiations when
traveling along the axial direction. We finally demonstrate that a dark soliton will disintegrate into several ones
plus a residual wave train when passing over a steplike potential.

DOI: 10.1103/PhysRevA.65.053605 PACS nuntber03.75.Fi, 03.65.Ge, 42.65.Tg

I. INTRODUCTION [23,24], where the transverse structure of the condensate has
also been neglected.

The successful experimental demonstration of Bose- Recently, the trapped low-dimensional BECs have been
Einstein condensation in weakly interacting atomic gasesealized experimentally in optical and magnetic trgg#s, in
[1-5] has opened the possibility to investigate the nonlineawhich the energy level spacing in one or two dimensions
properties of matter waves. Several macroscopically excitedxceeds the interaction energy between atoms. Some authors
Bose-condensed states, e.g., dark solitons and vortices, harefer to such an energy restriction as quasi-low-dimensional
been observefb—9] and the four-wave mixing has also been [26]. As mentioned in Ref[25], the trapped quasi-low-
realized in Bose-Einstein condensat@&ECs [10]. These dimensional condensates will offer many possibilities for in-
studies have stimulated a large amount of research activitiegestigating the nonlinear excitations such as solitons and vor-
on nonlinear atom opticgl1]. tices, which are more stable than in 3D, where the solitons

Up to now there have been several theoretical approachesiffer from the transverse instability and the vortices can
for the soliton dynamics in trapped one-component BECsbend[9,12—14. Thus both theory and experiment call for a
One of them is based on the assumption that the particldetailed study on the soliton excitations in quasi-low-
number in the condensate is very large and hence the kinetimensional BECs.
energy of particle can be neglected so that a Thomas-Fermi The aim of this paper is to investigate analytically the
(TF) approximation can be used for getting the ground-statesoliton excitations in trapped quasi-1D BECs in a consistent
wave function of the condensate. The condensate in this casad systematic way. Note that although in recent decades the
is three-dimensiondBD) and the dark solitons are the exci- soliton excitations have been widely studied in many fields
tations from the TF ground-sta{ed.2]. However, the dark [27], the theoretical approach on soliton dynamics in inho-
soliton obtained in this way is dynamically unstable for amogeneous systems has not yet developed well. In the case
long-wavelength transverse perturbat{dr3] and it will de-  of trapped quasi-1D BECs, a soliton moves in a trapping
cay into vorticed12]. This phenomenon has been observedpotential along the axial direction. The situation is similar to
in recent experimentgl4]. Another theoretical approach is the motion of a surface wave soliton in a water channel with
taking the condensate as one dimensigdd@), which im-  deformed walls or an uneven bottdr9]. Thus we expect
plies that the confinement of atoms in two transveradial) that, in addition to some transverse structure contributed by
directions are very strong and hence the transverse part of tm®t only the ground-state but also the higher-order eigen-
order parameter are taken as being “frozen” to the groundimodes of strong transverse confining potential, the soliton
state wave function of the transverse confining potentialwill undergo a deformation, i.e., it will have varying ampli-
which has a Gaussian-type form for a 2D harmonic oscillatotude, width, and velocity due to the inhomogeneity arising
potential[15—22. But this treatment is less rigorous becausefrom the weak trapping potential in the axial direction. We
the contribution of the higher-order eigenmodes of the transalso anticipate that the soliton will radiate phonons because
verse confining potential in the transverse directions hasf the inhomogeneity and disintegrate into several different
been completely disregarded. We also mention the study oones plus a residual wave train when passing over a steplike
solitons and breathers in periodic traps and in array of BECgotential.
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To demonstrate the conjecture stated above, in this workquations fon and ¢. In order to obtain a consistent pertur-
we develop a systematic analytical approach to investigatbation analysis for the solution of E¢l), we introduce the
the motion of dark solitons in a trapped quasi-1D BEC basediimensionless variablesx’ =1, x,(y’,z')=a; }(y,2),t’
on a generalized method of multiple scales. There are severaly t,n'= ngln with 1o=(4mnyas) Y2 (healing length
advantages in this approachi) it contains explicit dimen- and a, =[#/(mw,)]¥? (harmonic oscillator length in the
sionless small parameters denoting the relative magnitudegansverse directiopsand no=N/(l,a%), we obtain the fol-

of the confining potential and the excitation under study, andoying dimensionless equations of motion after dropping the
hence is controllable in asymptotic expansian, it reduces  primes:
2
a J Jd
W e o
0

original 3D nonlinear order-parameter equation to a 1D am-

plitude equation that can be handled eadiiy) it provides a an

clear-cut phys_|cal picture for some physical processes and E+V¢'(HV¢¢)+ ax | M ox
for the formation for some coherent structures such as dark

solitons. The paper is organized as follows. In Sec. Il we 2 2
) . . .1 do 1 1 a; 19

give the dimensionless form of the order parameter equatio — V2 (Y2 + )+ (V)2 Vn+ | —| | -5 —

and present its ground-state solution, which involves the 9t 2 2 2 lo 2 9x?
higher-order eigenmodes of 2D transverse confining poten- 5 . 5

tial in the transverse directions and effective high-order TF 1loxas 2t 1(o¢ nlyn=0 @

wave functions in the axial direction. Section IlI discusses 2\w, ) \lg 2\ ox e

the linear excitations that arose from the ground-state. A
Bogoliubov-type excitation spectrum with the excitation fre-whereV, = (d/dy,d/ 9z) is the gradient operator in the trans-
quency and the sound speed depending on an effective axiaérse directions. We see that the system is characterized by
trapping potential are obtained. In Sec. IV we derive thetwo dimensionless parametets=a, /lo=[nyg/(hw,)]*?
amplitude equation for a weak nonlinear excitation, i.e., aand B=w,/w, . The former denotes the ratio between the
varying coefficient Korteweg—de Vrig&dV) equation with  atomic interaction and the strength of the transverse confine-
additional terms originating from the inhomogeneity and thement and the later describes the anisotropy of the trapping
transverse confinement. Section V presents dark soliton sgotential. The normalization condition o¥ now reads
lutions of the amplitude equation and studies their radiationfdr n=1.
The dark soliton disintegration for a steplike potential in the  Although an exact solution of Eq&3) and(4) is not avail-
axial direction is investigated in Sec. VI. Finally, the last able, we can simplify the problem by considering the relative
section contains the discussion and the summary of oufmportance of the physical quantities appearing in the sys-
results. tem. Then we can obtain an approximated analytical solution
of the problem based on a perturbation expansion. To this
Il. GROUND-STATE WAVE FUNCTION end we consider a trapped quasi-1D condensate that has the

. . . . Property
The dynamic behavior of a weakly interacting Bose gas a
low temperature is described by the time-dependent Gross- a, <lg, (5)
Pitaevskii(GP) equation[4,5]
hwy<ngg<fio, . (6)
oY ’ 2 2
ih——= =55V +Vexdr)+g|W[* |V, (1) Thus we haves=a?=nyg/(kw,)<1, which can be taken
as a small expansion parameter in our perturbation analysis
wave functio, fdr|¥|2=N is the number of atom in the dark solitons due to a long-wavelength transverse perturba-
condensate, ang=4m#%%as/m is the interaction constant tion [13]. By Eq. (6) we getB<e<1. In order to obtain a
with m the atomic mass anal, the swave scattering length Consistent asymptotic expansion, a relation betwgemde
(a.>0 for a repulsive interaction We consider an aniso- Should be determined. We assume thatQ5s>? with O, a

tropic cigar-shaped harmonic trap of the form number of order unity. Then Eq&3) and (4) become
m JF 1 IF dp 1 _3%¢
Vex(n) = S0+ 0l (y2+2)], ox<w,, (2 STV Vgt 5FV§¢+8<5 —~*3 §> =0,
. . . @)
wherew, andw, are the frequencies of the trap in the axial
(x) and the transversey(and z) directions, respectively. A ip 1 _, 1 ., 1 )
generalization to a more general potential with the form Vit (Y )+ S (V)| F
Vexd{) =V (x) + V. (y,2) is straightforward, wher&/|(V,)
are the weakstrong confining parts of the potential in the 1 92 1 2
axial (transversgdirections, respectively. te| — 2.2 + V) (X) + 2l ax +F2|F=0,
Expressing the order parameter in terms of its modulus

and phase, i.e'W = Jnexp(¢), we obtain a set of coupled (8)
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where F = yn,V|(X) = (1/2)Q5X? with X=¢?. Note that
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spacing, being equal thw, in physical unit, is one that is

the results given in the following do not rely on the concretelarger than the interaction energy between particles accord-

form of V|(X). Thus hereafter we assume thg(X) is an
arbitrary function. Equationé7) and (8), in which only one

dimensionless small parameter appears, are our basic equa-
tions for studying the ground-state, linear, and nonlinear ex-

citations of the system.
The ground-state of the system corresponds ta)gept

=—7 (dimensionless chemical potenfizand v=V ¢=0

(i.e., no flow in the systeimn From Eq.(7) we see thaf

=Fgg s time-independent in the ground-state. Then @j.
is reduced to

1/ 9% 92\ 1 5
+5 (y‘+2) P

FGS

J’_
ay? 972
2

19 )
— > —+V|(X)+F3g|Fes=0. (9

+
22

To solve the ground-state equati@®) we make the pertur-
bation expansion

Foom FOLHoFELH e @t (10

p=pn O+ e, (11)

whereF{L=FUX(y,z,X). Obviously,y andz play a role of
“fast” variables while X is a “slow” variable of the system.

Thus one hag/ax=¢%29/9X. The expansion op can in-
clude higher-order termg)(j=2,3, ...) but we findthat

they are not necessary and hence are taken as zero. Substi-

tuting Egs.(10) and(11) into Eq. (9) we obtain

1( ¢ & ,
—‘<ay +azz>+ S(y2+ 28— O | Flk= M),
(12
j=0,1,2,3... with
M©@=0, (13
M =[ @ =V (X)JFEE-(FEY®, (14)
ME=[uD-V|(X)IFEE-3(FEY?FES,  (19)
MO =[u®=v(X)IFEE-3(FEY?FEL-3FEYFEY?,

(16
(17

In the leading orderj(=0) one has an eigenvalue problem of
Its eigensolution has the

a 2D harmonic oscillator.
form FQ=A g’%n 0, (Xt (V) () with the eigen-
value ,u(o):wnyn —(n +n +1) whereny andn, are non-
negative integers. z//n(y)anexp(—yZ/Z)Hn(y) with N,

=[1/(J72"n1) 1*2 H,(y) is a Hermitain polynomial of or-
der n. y,(y) satisfies

ing to the assumptioli6). Since we consider ground-state
thus we taken,=n,=0, i.e.,

FQ2=A(X) oY) tho(2)

with wge=1, where A(X)=A%2((X) is a function to be
determined yet.
In the next order =1) we have the equation

(18

LREL=[ M=V, () TAX) oY) o(2)
— A3 X) Y3y ¥3(2), (19)
where
R 1/ 9* &2 1
L=—3| 5t 5|3 +)-1 (20)
ay? 9z%?) 2

Note that the eigenfunctions of the operafoconstitutes a
complete set. ThuB{ can be expressed as

F&2= 2 AL 0, (XU, (V) o (2). (21)

Substituting Eq(21) into Eqg.(19) and using the orthogonal-
ity of apny(y) wnz(z), one obtains

AG4n 0 (X0 (@nn,~ 1) =[P =V ;(X)TAX) 8 061,0

—A3(X)I iy (22)
where 1, o =/"..dydzyg(y) ¢5(2) ¥ (V) ¥n (7). From
(22), for ny=n,=0 we have

AX)= 1o [ M=V (X) ]2 (23)

with 15=19o=1/\27r. Thus we obtain aeffectiveTF wave
function for the axial part oF &). Equation(23) is indeed a
result of a solvability condition of Eq19). The correction of
the dimensionless chemical potential") plays a role of an
effective chemical potential in the TF wave function. If one
of ny, andn, is not zero, Eq(22) gives

AL 0 (X) = =A% X) — 2 (24)
nynz
Hence we have
F8%=A8§oo<xwo<y>wo<z)
—A%(X) 2 —— U (2, (29

nynz

WhereAGSOO is a function yet to be determined. The prime in

the orthogonality ~condition the second term of Eq25 means than, andn, are not

[Z..dy z//nl(y) t//nz(y)=5nln2. Note that the transverse level taken to vanish simultaneously. In the same way, one can
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solve Eg.(12) for j=2. We obtaln in this ordegsgo
=[31,/(21o)JA% with 1,=3 ; Vo0 /(wnp,~1), and

FE=AZLod X) tho(y) tho(2)
A0 2" a0 Yo (N, (2), (26
y 'z
whereAZ . is a undetermined function and
91,41 Iol
ag%'n = 1 _ 1 nynz_ 0 nynZ
YNz wnynz—l AR wnynz—l
In’n’Jn n/nn’
+3 2/ y'z YVyzz , (27)
n;,né wn)’/né_l
with
Jnynynznz

_ fldydz%(y)%(z)wnyw)wn;(y)wnz<z)¢né<z).
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(23), we know that in the axial direction the ground-state of
the condensate is composed of effective higher-order TF
wave functions. Figure (&) shows the norm (n) of the
ground-state wave function for the case of the harmonic trap-
ping potential when only the leading term, i.ely
=A(X)hg(y,2), in Eqg. (30) is consideredtaking z=0 for
illustration), in which the transverse part is clearly a Gauss-
ian function. In order to visualize the contribution coming
from the high-order transverse modes, in Fig)lwe have
plotted the first-order correction term of Ed30) [V
=eA3(X)hy(y,2)] for the case ok=0.08 and,=9. Be-
cause the integrailnynZ decreases rapidly as, andn, in-

creaseny andn, are only taken to be 6 in our calculation.
We see that, in the transver§g direction, the ground-state
wave function indeed displays some structures. There is a dip
along they direction due to mainly the contribution of the
Hermite function H,(y)=2y?—2. The correction to the
Gaussian distribution in the transverse directions, however, is
negligible whens becomes small.

The correction of the dimensionless chemical potential
Y can be obtained in the following way. From the normal-
ized conditionfdr n=1 one has

(29) j_mdx A(X)~a®. (34)

In the orderj =3 we obtaiNAGs = A aGSOO with For the harmonic potentia!||(X)=Q§X2/2, we have

3 |31% Ry 1
(2 =2 |71 ! (2) M_Z02x2|= 3
aGs00 20| 41, nz;h InynZaGSnynZ f—Rxdx{M ZQXX } loa”, (35
TR whereR, = (2uM/Q2)2 Note thatQ,= Ba~°, by Eq.(35)
' 2/ y'z My Yy (29) we get
Ny Nz n;,né (wn n, 1)(wn’n’_1) 23
1= 308 (36)
Therefore, up to the second-order approximation we obtain M= 4\2a?

the ground-state solution expressed as

Fos=AX)ho(y,2) +eA%(X)hy(y,2) +6?A%(X)hy(y,2)

+0(&%), (30
where
ho(Y,2) = ¢ho(y) ¢ho(2), (31
hi(y.2)= 5 %(y)%(z)—nzn o Un V(2.
o (32)

ho(y.2)=aloo(y) do(2)+ 2" alln o tn (¥) (D).
Ny Nz
(33

The chemical potential of the system with physical unit is
given by u=hw, u=ho, +o’he, u®. Using Eq. (36)
and the definitions ofr and 8, we obtain

hZ

2 [6mlgaN|??
“omlz T T || (37)

a‘a;

wherea,=[#%/(mw,)]*? is the harmonic oscillator length in
the axial direction. The correction of the chemical potential
[the second term of Eq37)] is due to the contribution of
atom-atom interaction.

Ill. LINEAR EXCITATIONS

We now consider the linear excitations from the ground-
state given in the preceding section. Because the system is

From Eq.(30) we see that the ground-state of the trapped 1Dstrongly confined in the transverse directions and the trap-
condensate displays some structure. In addition to theing potential in the axial direction/, is a function of the
Gaussian-type ground staigs(y) ¢o(2), it involves also the  slowly variableX, the system can be considered as a wave-
higher-order eigenmodes of the transverse confining poterguide. The excitations can be sound waves propagating in the
tial. Furthermore, by the expression A{X) given in Eq. axial direction with a smaller wavelength comparing with the
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axial size of the condensate. Here we are interested in sound
wavelike excitations of the system and hence we assume

F=F(x,y,z,7), (38
b= —pt+d(x,7), (39
wherer=et. Then Egs(7) and(8) become
OF oF dp 1 _d°¢
ot o EFﬁ—o, (40)
1 ¢ 2\ 1
-S| —=+—=|+z(y?*+2D)—u|F
Z(ayZ 7 5y )~ p
9 _1 az+v x+1 2+F2 F=0
f|or 20 TVIT 21 -0
(41)
Making the perturbation expansion
F—Fgg=efM+e2f@ ... (42)
b=edpD+e2p@ ... (43)

together with u=u@+eu® and assuming 0
=f0)(x,y,z,X,7) andp = ¢ (x,X, 7), by Eq.(41) we ob-
tain

PHYSICAL REVIEW A 65 053605

-40
FIG. 1. (a) The norm of the ground-state wave
function (v/n) for the case of a harmonic trapping
potential withQ,=9 when only the leading term,
i.e., U=A(X)hy(y,z), in Eg. (30) is considered
(taking z=0 for illustration. The transverse part
is clearly a Gaussian functiob) The contribu-
tion due to first-order correction in Eg30) [V
=eA3(X)h;(y,2)] for the casee=0.08 andQ),
=9. ny, andn, are taken up to 6 in the calcula-
tion. A dip along they direction appears due to
mainly the contribution of the Hermite function

Ha(y)=2y*-2.
1 9 1 _ _
el I A S NN () ] FI) BNTO)!
2(&y2 7 5 (Y 20) = =N,

(44)

j=1,2,... with NM=0, N®@=| A2(X)fD-FLopD)/ o7
+(1/2)0*F D ox?— 3(F ) %M. When getting Eq(44) we
have used the ground-state equatitd) and thusu (=1,
FO=AMX) oY) #o(2), and u® is given by Eq. (36).
Equation(44) for j=1 gives rise to the solution

fM=alP o, X, 7) o(y) tho(2), (49

wherea{ o is a undetermined function. Here for simplicity
we have assumed that the system has excited only one mode
related to the Gaussian-type wave functigi(y)¥qo(z).
Multimode excitations related tdfny(y) wnz(z) can also be

considered in a similar way.
A solvability condition of Eq.(44) for j=2 results in

1 9*a(d oo gt
5 A2 oA%(X)a{2 0o=0, (46)

and
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f(Z):aEZIgOO(XIX!T)¢O(y)¢O(Z) excitation in such nonuniform system we introduce the
’ multiple-scale variable
In n
—3A%(X)alY o X, X, —r 2),
(X)aie od T %Z wnynz_ll/fny(y)‘/’nz( ) 5281/2<J‘C_1(83/2 ) dx— 7 (53)
(47)

and make the asymptotic expansiors—Fgg=gf®
wherea{? o, can be obtained in the next order but it is not +g2f@ + 3¢ 1 ... G=e12[ gDt p@ 420 1 ...,
needed here. with  u= ,u(o)+,u(1) fO=f0)(y,z,£&,X) and W

The expansion of Eq(40) up to O(e)-order yields the = ¢U)(¢ X). Thus we have the derivative expansion
equation

Jd Jd J
L 2a-1 N7
gf@ oo Py % 4 e X GE T EaX ®4
e Tafes e 0 48
J 1/2 J
. . o —=—gt—. (55
By using the solutior{45) it is reduced to ar &
aa(LE)OO 1 PLVAS) Then Egs.(40) and(41) are transferred into
ar + EA(X)—ZZO (49)
IX L) =p0), (56)
Equations(46) and (49) are basic equations for linear exci- 0 2.4(0)
tations. To get the linear dispersion law of the excitations we Jf _ chz(x)F(O)‘? ¢ —QW (57)
take the plane-wave solution 9E 2 ©S ye2 ’
a® 1y —(4(1) 4(1) i — . ~ L . -
(a0, 0 =(ag” 05 ) exdi(gx—wn)]+c.c, j=1,2,...,whereL is defined by Eq(20) and the explicit

(50 expressions 0P and Q) are given in the the Appendix.

wherea$" and ¢{" are independent ox and r but may be Solving Eq.(56) order by order we obtain

the functions ofX. Substituting Eq(50) into Egs.(46) and f(l)_a(l) X 7 58
(49) we obtain ool & X) oY) o(2), (58

f@=a@ of &X) oY) ¥o(2)

1
0=w(q,X)=*5q[410A%(X) + g2 (51)
—3A2(X)a{) o £,X) Z —— U (V) ¥ (2)
It is a Bogoliubov-type excitation spectrum but with the ex- @nyn, ™
citation frequencyw depending on the slow variable The (59)

sound speed is found to be local and is given by
with the solvability condition
Csound= *15°AX) = =[P =V ()] (52

) ) )
Thus the amplitude, frequency, and thus the sound speed of A(X) 9E —2loA (X)af\{l).oo RO, (60)
the excitations are the functions of the slow variakléue to
the inhomogeneity in the axial direction. Such local propertyj = , where af\f)Loo(l 1,2) are undetermined func-

for the sound speed comes from the inhomogeneous bacl_qons Note that Eq(60) with j=2 is obtained by the solv-

ground, i.e., the space-dependent ground-state of the condegblmy condition of the equat|0|llf(3)= p®)

sate. The phenomenon is similar to the sound propagation in |2 E is simplifi
a slowly varying nonuniform mediunh28]. The positive- Using (58) and (59), Eq. (57) is simplified as

negative sign of Eq(52) means that the sound wave can gall) 1 2¢“)
&ropagag[e in t;/vo opposite directions in the elongated axis of %) ¢ 2(X)A(X) =g, (61)
e condensate.

j=1,2,... where the definitions dR() andS!)) on the right-
hand side of Eqs(60) and (61) are also presented in the
Appendix.

As mentioned above, an excitation in the trapped BEC has Since we are interested in the weak nonlinear excitation in
local amplitude and sound speed. We expect that this is alséie system, we need an equation controlling the leading-
the case for a nonlinear excitation of the system. Note tha@rder approximation of the excitation, i.e., the equation for
for weak nonlinear excitations Eq§40) and (41) are still af\,L)OO, appeared in Eq58). For this aim we solve Eq$60)
valid. In order to study the dynamics of a weak nonlinearand(61). In the orderj=1 we obtain

IV. AMPLITUDE EQUATION FOR NONLINEAR
EXCITATIONS
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(1)

27 d
&a‘NL,OOZ 0' (62) y( a') = — (In A) . (71)

[1-1A%(X)e ()] 54

(1y_ o If the term on the right-hand side of E(/0) does not exist,
¢ =210A(X) | dEayied X)- (63 i.e., y(o)=0, we have a standard KdV equation that is a
completely integrable system and can be solved exactly by
From Eq.(62) we see that to get a nontrivial solution for the inverse scattering transfofi@7]. Its single-soliton solu-
a({ oo We must set tion has the form

c(X)=*+1gPAX) = £[uP =V (X" (69 u=ugw)=2a%sechw, w=a({—b), (72

It is just the.sound speed given in the last secﬂsie)\e Ead.  with b=4a%0+ o, wherea and ¢, are two arbitrary con-
(5(12))]_ Equatlorl)(63? prese_nts a relation betweep _ and  gants characterizing the amplitude and initial position of the
aNL,00- Onceayy oo is obtained c()?)e can get the leading-ordergiion. Note that ify( o) vanishes the system is reduced to a
approximation for the phase™ by directly integrating  yniform waveguide in whichvj=V,=const(maybe taking

1 .
afv@,oo- as zerg and hencem;(j=1,2,4) take constant values and

In the orderj=2, Egs.(60) and (61) give rise to the m,=0. Hencef® in Eq. (58) reads
closed equation foaf; o, (=U),
2

12a
°U ) 9y J tM=—— secia(¢{—4a%r— Lo) Jo(Y) ho(2), (73)
—+ —+ —+ + —= 2 ’
983 my(X)U IE My(X) X Ma(X)U +my(X) 9E 0 m;mj
©5  yith {=m,te—m, X, o=m,'m, 3X, and é=eY%(cx
with — 1), wherec=/u is a constant. Because, <0, the ex-
X citation digs a “hole” on the background condensate and
m;(X)=—2415A%(X), (66)  hence is a dark soliton. We see that in this case although the
6/ transverse confinement of the waveguide modifies the ampli-
my(X) = —88,15°A%(X), (67)  tude and velocity, but these quantities are still constants and
thus the soliton can propagate in the axial direction without
JdA deformation. However, in the presence of the axial nonuni-
_ 51274 - )
ma(X) = —125,15"A%(X) X (68) form, i.e., whenV|# constant, the situation will be quite

different, as will be seen below.
my(X) =121 ;A8%(X), (69 To consider the effect due to the axial nonuniform, here
we assume thah is a slowly varying function o, i.e., we
where 6,=*+1, representing the two possible propagatingtake y(o) as a small quantity and thus being a perturbation
directions of the excitation. Equatioii€5) is a variable co- of the KdV equation. We apply the perturbation theory of
efficient KdV equation with additional terms contributed soliton [32] to get the soliton solutions of E¢70). Antici-
from the inhomogeneity in the axial directigdenoted by  pating that the axial nonuniform will result in the modulation
dAldX) and the strong transverse confinement of the conpf the soliton parameters and ¢, appeared ing [see(72)]
densate(denoted byl;). Such nonlinear amplitude equation and some additional radiatidine., phonons one has
was also obtained for water waves propagating in a channel
with deformed walls or an uneven bottdi29]. It is obvious u=ug(w)+ éu, (74)
that the derivation and the results given in Secs. lI-IV can be

easily generalized to any trapping potential with a strongwhereug(w) has the form of Eq(72) but a andb now are

transverse confinement. controlled by the equatior$82]
V. DEFORMATION AND RADIATION OF A DARK Ja 1 (=
SOLITON 90" 2a| dwsechw y(o)ugw), (75

In this section, we discuss the soliton solutions of the

variable coefficient KdV equation with additional terms, Eq. b ) 1 (=
(65). Using the variable transformatiod = — p(o)u(o,¢) Ty 4at— Efmdw(tanhwrw sechw) y(o)ug(w).
with p=—6m;'m;2, ¢=m;'¢—fdXm,!, and o 76)

=[dX m,'m; 3, Eq. (65 becomes
3 The radiation partSu, contributed by the continuous spec-
M. 6L o s (o) u (70 trum of a scattering problem when solving the KdV equation
do TENFYE 4 ' using the inverse scattering transfofcorrespondingly, the
soliton partug is relevant to the discrete spectrum of the
with scattering problem, sd@7]), is given by
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- g(l)(k) . . Furthermore, we show that, if taking the harmonic poten-
Su=— j ———[1-e* TN Do(w k), tial Vj(X) = Q4X?/2, the dark soliton will display an oscillat-
-« ik(k*t+4)a ing motion in the trap. This can be seen by considering the

(77) phase of the soliton, given by E(4), and calculating the
soliton position as a function of time. It is easy to show that

gM(k)=— fm dw (o) ug(w) ¥ o(w,k), (78)  the position of the soliton satisfies the equation of motion
oo : dXx 5/2) 112 A(X)
where P represents the principal value of the integrdl, 52518 15 30 ol (85
and¥ are defined by32] 1+e—1| 1+ =22 | AS(X)
21, 3l
1
Do(w, k)= —2[k(k2+ 4)+ 4i (k?+ 2)tanhw Equation(85) can be reduced to the one provided by Busch
V2mk(k“+4) and Anglin[17] if on the right-hand side the second term in
_ 8K tanw— 8i tanFw]e' " (79 the denominator is neglected. Solving E§5) we get
1 X=Rsin = ——_ 2% (86)
i =R,sSiIN —= 75~ —
Wo(W,k) = —————[k®—4ik tanhw— 4 tantfw]e k" T2 (1+4Bg) o) |’
O( ) \/ﬁ(k2+4)[ ] \/— 0 1

(80 \where for the definitions oR, and »(Y), see Eq.(36). The

Substituting Eqs(71) and(72) into Egs.(75) and(76), com-  cONstantBo reads
pleting the integrations and then using the definition of o7, 1 o]
m;(X) given in Egs.(66)—(69), we obtain N 0=2

By=¢ 1+ dp | .
° 213 \/Q_X( 3l 0)

Thus the oscillating frequency of the dark soliton position is
451a§ dX different from the trap frequency,/w, (dimensionless
= a1 11,2|3f A0 (82 from). It is decreased by a factor[1/2(1+ B,)]. The factor
0 1 1/\/2 is due to the nonlinear effect of the lowest-order trans-
verse confining modeBy is contributed by the higher-order
transverse confining modes of the transverse trap potential,
which is absent if these higher-order modes are not taken
into account, as done in Rgfl7]. This type of oscillating
behavior has not been observed in experiment. The reason is
that at finite temperature, the dark soliton is thermodynami-
cal unstable. The interaction of the soliton with thermal
cloud causes dissipation that accelerates the soliton. In most
cases, the soliton has disappeared before reaching the bound-
ary of the condensate].
dx Now we consider the radiation part of the solution. Using
Asf T Eq. (80), from Eqg.(78) we obtain

P27 a%

"3 sint(ki2) ")

(87)
a=agA%(X), (81)

wherea, is an integral constant. The soliton part of the so-
lution (74) can be obtained by the expressi@i2), but witha
and b being replaced by Eq¥81) and (82), respectively.
Then we have

Ug=—p ug=—a2A3(X) secifO, (83

whereag=(y2-12131,) ‘a,, and®, the phase of the soli-
ton, is defined by

dx 3l 21
518—1f +6 1(1 %2

@Z\/ElélzéoAS K 17{) + 3|1

gM(k)= (89)

—&%7 3’%} . (84)

- When obtaining Eq(88), some useful integration formulas
From Egs.(83) and (84) we see that, due to the axial inho- provided in Ref.[32] have been used. Then by E(7),

mogeneity, the amplitude, width, .and velocity of the da_rkthrough a detailed calculation we get
soliton are not constants but varying slowly along the axial
direction. This means that the dark soliton undergoes a de- o) (- t0)/(3o) 13
formation, i.e., its shape will change when propagating alongsu= —[ - J 0

the elongated direction of the condensate. This result agrees 3a

with the recent experimental observation reported by Burger

et al. [7] and Denschlagt al. [8]. Needless to say that in (89
experiment the dissipation originating from the interaction o . . ]

between the soliton and thermal cloud also results in th&vhere Ai(x) is the Airy function, defined by

change of the soliton parametdid|. It is obvious that the 1 (e

::%snli:l:ep;;ei)errrlrt]egﬁzt();\)/fa is generic and does not depend on the Ai(x)= Ef_mdSeXIii(SK"‘Ss/?))], (90)

drx Ai(k)+ 60(L— {o—4a%0) |,

— o0
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6(x) is the step function withg(x)=1 for x>0 and §(x)  hence a standard KdV soliton of E1) [with y(o)=0],

=0 for x<0. which has fixed amplitude, width, and velocity,
From Eq. (89 we see thatdu represents a continuous 2sch 5
wave radiated by the soliton. The continuous wave can be v1=—2aisechfa;({—4ajo— o) ], (94)

: (95

VI. DISINTEGRATION OF A DARK SOLITON

he parameter®;(j=2,3) can be determined by using the
thtegrals of motion92) and(93). It is easy to get

taken as a superposition of many phonons. One can take suc

process as soliton radiation, in which initially there is a dark

soliton in the homogeneous region whe¥g=constant,

propagating stably to an inhomogeneous region whére D

=V|(X). When arriving at this region the soliton begins to v,=—D;sech| /%(g—ZDlo'— Lo

Eiﬂzeﬂ;eosssci)gsndi\;vgép?g:sa large amount of phonons andwhereD1=2a§ is the soliton amplitude. The soliton travels
' to the right with the velocity P,. When passing over the

region Il and arriving at the starting poixi= X, of the re-
According to the results presented in the last section, &0liton becomes

dark soliton in a trapped quasi-1D condensate will deform _ B B

and emit phonons when propagating in an inhomogeneous vy=—Djsech[D3({—Dyo— (o). (96)

region. For this phenomenon to happen, the width of theT

width, which is the order of magnitude of the healing length.

But there may exist such situation in which the inhomoge- A(X,)]272 D,

neous region is local and its width is smé#ss or equal to 0= 1[A M )} , Dj3= > (97)

the soliton width. In this case the dark soliton can pass the (Xq

phenomenon of soliton has been widely studied and ob-

served for water-wave solitons traveling onto a slowly vary-

ing beach29-31. In this section we show that this type of v,=—D,sech

fission is also possible in BECs.

wrhereal and (o are constants. Equatid@4) can be written
deform and emit phonons. If the inhomogeneity is signifi-
gion lll, its parameters undergo a transformation, i.e., the
inhomogeneous region should be larger than the solito
region adiabatically, and then undergo a fission. The fissioR, ;s we have
For convenience we taka=—uv for Eq. (70), then it

D,
V5 D4(T_§oz)] (98)

The parameteD, is still undetermined but it is not needed in

becomes our following analysis.
3 Note that the wave packd®8) is no longer a soliton
v 6o W T (o) v (91  because it does not satisfy the KdV equatiem) although in
do 978 Y ' the region llly(o) also vanishes. The question is about the
evolution of the wave pack&8).
Note that Eq(91) admits the following two integrals of mo-  In order to answer this question we take Eg8) as an
tion (conservative quantiti¢s initial condition of Eq.(91). Becausey(o)=0 in the region
I1l, we have the following initial value problem:
A727/2f d{v=Cy, (92 dv v v
= 6v <9§+(9§3_0’ X>X,, (99

A‘”F dZv?=C,, (93
o v({,0=0)=—D,sech

D,
\/7(5—502)}, (100
whereC, and C, are constants. Assume thej(X) has a o ) ) )
steplike shapdas shown in Fig. 1 For instance, one has WhereD, is given in Eq.(97). According to the inverse-
V|(X) =V,(1—tanhX)/2. But the results presented in the fol- Scattering theory of the KdV equatidi27], related eigen-
lowing are generic and hence are not limited to such particuvalue problem of Eqs(99) and (100 is
lar potential. - 5
The potential shown in Fig. 1 can be divided into three ay P _
regions. Region Kupstream is X<X;, where V|(X)~V, ds? +[Dzsecﬁ 7 (67 %02 H\] ¥=0, (101
(positive constant Region Il (X;<X<X,) is a transition
region whereV|(X) has an obvious, steplike change. Regionwhere\ and ¢ are the eigenvalue and eigenfunction to be
Il (downstreamis X=X, whereV|(X) is another constant sought. In general, depending @y andD, the eigenvalue
(taking as zerp \ consists of two parts. One part is a discrete spectium,
Now we study the disintegration of a dark soliton. Let uswhich is relevant to the soliton solution of E(9). The
assume that initially one has excited a soliton at the region Inumber of solitonN, equals the number of discrete spectrum
Because in this regiow|= 0 thusy(o) =0. The excitationis  \,. If N>1 we have a multiple-soliton solution that corre-
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sponds to the disintegration of the incident solit®6). Now 2

12a
we discuss how to calculate, andN. f= 12 secllay({—4aia— {o)]¥o(Y) tho(2),
Equation(101) can be written as mymy
dzl/l X$X1, (107)
—+[s(s+1)secR¢"+\']y=0, (102
dg/ 2 i.e., only one soliton in the upstream, wherg=+/D4/2 [see
Eqg. (95)], and
wherel'=+D1/2({— ¢y, N'=2N/D4 and , N
12
2D, [A(X,)]?™ fW=——"% 3 sechilkn({ =450~ Lon) 10o(y) do(2),
S(s+1)=——-=2 103 1My =
X>X,, (108

There are two cases for the solutions of the eigenequation ) ) o
(102). The first one is thas in Eq. (103 is a positive integer. I-€., there is a train of soliton in the downstream. The phonon

In this circumstance all eigenvalues are discfe@ part contributed by the continuous spectrum in the down-
stream is not given explicitly here. Note tha{ <0, thus the
N'=\,=2\,/D;=—(s—n)? (104  solitons are dark onesrelative to the condensate back-

ground. The disintegrated solitons propagate to the right and

with n=0,1,2... s— 1. The eigenfunctions corresponding to the soliton with the larger amplitude has greater velqc@ty.
these discrete eigenvalues are bound states. By soliton theory BY Ed. (105 we can predict the number of the disinte-
[27,33, the KdV equation(99) for this case had-soliton  grated dark solitons. Obviously, wheA(X;)/A(Xy)=<1
solution with N=s. Thus the incident solitor{95) in the there is no dlsmteg_ranon but _wh.en passing over the.transr
upstream will disintegrate intl solitons in the downstream. tion region (the region 1y the mmdegtl/sollton will rad|/ate

The second case is thatis a positive number, e.gs  Phonons.  Note  that A(X)=1o "4 u®—V|(X)]"2
=[s]+c, where[s] is a positive integer not larger tharand ~ A(X2)/A(X;)<1 means that in this situation one must have
c is a positive number less than one. In this case the eigeﬁlu(xl)$V||(Xz)-
value of Eq.(102 possesses not only discrete but also con- Soliton disintegration occurs whek(X;)/A(X,)>1, i.e.,
tinuous spectrum. The discrete spectrum is still given by EqY|(X1)>V|(Xz). As mentioned before, without loss of gen-
(104) but with n=0,1,2...[s]. Thus in this case Eq99)  erality we can assum¥(X;)=V,=ru) andV(X,)=0.
admits the multisoliton solution with the number of soliton In this case, from Eq(105 we obtain the soliton that will
beingN=[s]+1. In addition, corresponding to the continu- disintegrate into two ones plus phonons #6<0.1502(the
ous spectrum the eigenfunctions are extended states. Corfehonons disappear wher=0.1502). If 0.1502°r<0.2331
sponding to these extended states E®) has continuous We have three disintegrated solitons plus phon¢again
wave (or wave train solution. Since a continuous wave can When r=0.2331, the phonon part vanishe#f 0.2331<r
be taken as the superposition of many phonons, in the secorid0.2890 one gets four disintegrated solitons plus phonons
case due to the steplike trap the incident soliton will disinte{the phonons disappear whes 0.2890), and so on. Thus by

grate into[ s]+ 1 solitons plus a residual wave train. adjusting the depth of the step potential, i¥p, one can
Combined with the two cases discussed above, it is easgontrol the number of the disintegrated solitons.
to show that the number of disintegrated solitddssatisfies From the results given above we see that when a dark
the following inequality soliton in the region wher¥ is larger(thus|¥|? is smalley
passes over a transition region and goes into the region
A(X,) 1?72 where V| is smaller (thus |W|? is larged, it undergoes a
N(N— 1)<2[m <N(N+1), (105  fission. But in the reverse situation, i.e., when travelling from

a region of smallek/‘g (thus largef W |?) to a region of larger

where the equality in Eq105) is valid only if sis a positive V) (thus Smf"‘”?d‘lfl ), it does not show disintegration ex-
integer. By the inverse scattering theory of the KdV equatiorf:ept for_rad|af[|r)g phon.ons. A schematic representation of a
[27,33, the asymptotic amplitude ofth soliton is 2. dark soliton disintegration has been shown in Fig. 2.
Through the relation(104 we have 2,=—(s—n)?D;.

Thus the asymptotic expression for the disintegrdtesbli- VII. DISCUSSION AND SUMMARY

tons reads We have studied, in a systematic and consistent way, the

N ground state, linear, and nonlinear excitations in trapped one-
- 2 AKZ s dimensional Bose-Einstein condensates with a repulsive
v ngo 2kn sechilkn({= ko —Lan)], X=X atom-atom interaction. We have shown analytically that for a
(106 condensate with a strong transverse confinement, the ground-
state of the system involves the high-order eigenmodes of the
wherek,=(s—n)+y/D;. Therefore, forf®) in Eq. (58), we transverse trapping potential in the transverse directions and
obtain effective high-order Thomas-Fermi wave functions in the
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locity. In addition, some phononlike radiations are also ob-
- U - vious in their experiments.

Recently, trapped low-dimensional Bose-Einstein conden-
sates have been realized in a more rigorous sg2SEg in
which the energy-level spacing in the transverse directions is

ot larger than the atom-atom interaction energy and hence the
conditions given by Eq95) and (6) can be easily satisfied.
The steplike potential in the axial direction can also be easily

- realized using present-day optical methods. This paves the
Vi(X) way to the study of radiation and disintegration of the soliton
in such systems and tests our theoretical predictions provided

in this paper.

Xi X, X
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elongated axial direction. For a linear excitation with wave-

length much less than the axial length of the condensate, its APPENDIX

dispersion law is Bogoliubov-type with excitation frequency  The definition ofP) and QW (j=1,2,...) inEgs. (56)
changing slowly along the axial direction. We have foundgnq (57) are given by

that, for a weak nonlinear excitation, its amplitude is con-

trolled by a variable coefficient Korteweg—de Vries equation PM=0, (A1)
with additional terms coming from the transverse structure

and the axial nonuniform in the condensate, which result in @)1 A2 1) (O)ad)(l) (O 2¢(1)

slowly changing amplitude, width, and velocity for dark soli- PE=10A(X)f Y+ Fes— - —3(Fga "t (A2)

tons. We have also shown that due to the inhomogeneity the
dark solitons may emit radiation when propagating along the = p(3)=| A2(X){@ - 3(F))2f(@ - 3(FOY[2F T D)
elongated direction. Finally, using the inverse scattering
theory for the Korteweg—de Vries equation, we have demon- (2] 4 (FQ+ f(l))ﬂ(l)jL £(0) )
strated that, when a dark soliton passes over a local, steplike GS & GS g¢
potential, it will disintegrate into multiple dark solitons plus
. . . 2 2¢(1)

a residual wave train. Note that not like many approaches for _ 1 (0).—2 1, 0f
soliton excitations in the Bose-Einstein condensate, where an EFGSC (X) * EC X)
assumption of small condensate has been [E8®34,33, in
our approach the condensate can be large because the (A3)
ground-stateF g5 is assumed to be of order unity. On the oW=0 (A4)
other hand, the solitons we obtained here are the excitations '
excited from the ground-state of the system. 0

The method of multiple scales has been widely used in Q(Z):sz(x)i(l) i aF(Gi):» gt
fluid physics and nonlinear optid81,36. The theoretical & 9§ axX  9¢
approach presented above based on a generalized method of 2D g PPLey
multiple-scales are not limited to a harmonic trapping poten- + —FQ&[C%X) + _( c XX ”
tial. It can be easily generalized to any potential with a 2 9&IX X 9¢
strong transverse confinement and to a trapped two- 1 P2
dimensional condensate. Our theory can at least partially ex- + = X)) [ FE+ fD]—— |
plain the experimental observations reported by Buejexl. 2 9E?
[7] and Duttonet al.[9], where the condensates can be taken
as approximately one-dimensional ones and the dark solitoriBhe explicit expressions dR()) and S appearing in Egs.
observed display slowly changing amplitude, width, and ve{60) and(61) read

(1)
¢

FI

+c X(X)

+oen (A5)
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R(1)=0, (AB)
31 dpt)
RO)=—61,AYX)alll g 5 1A%
1, . 323&1&00_ a 9D
A )—(952 ANL00 52
1 - 0—,¢(l) 2
# 3A00E 200 0| 431600 (il
(A7)
sh=p, (A8)
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EYPAE) IA ,9¢(1)

-1 o
+c (X)&x E

EPAC)
X) ¢
2
aag\lllz 00 ’9¢(1) (1) (92(1)(1)

+072(X)a—§' a—§+ chz(x)aNL,oo Py
(A9)

3l
(2)=""1 A3(x)c 2
S 4|0A (X)c2(X) pre
Pp g
¢ L2 ey
JEIX X

1
+ 5A(X) c Y(X)

The other higher-ordeg?®, QW) R andS() are not needed
in our discussion.
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