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Dynamics of dark solitons in quasi-one-dimensional Bose-Einstein condensates
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We develop a systematic analytical approach to consider the dynamics of linear and nonlinear excitations in
trapped quasi-one-dimensional Bose-Einstein condensates with repulsive atom-atom interactions. We show
that, for a condensate strongly confined in two transverse directions, the ground state of the system involves the
high-order eigenmodes of the transverse confining potential in the transverse directions and effective high-
order Thomas-Fermi wave functions in the axial direction. The linear excitations of the system have a
Bogoliubov-type spectrum with the excitation frequency varying slowly along the axial direction. We find that,
in a weak nonlinear approximation, the amplitude of a nonlinear excitation is governed by a variable coefficient
Korteweg–de Vries equation with additional terms contributed from the transverse structure and the inhomo-
geneity in the axial direction of the condensate, which results in varying amplitude, width, and velocity for
dark solitons. Because of the inhomogeneity the dark solitons undergo deformation and emit radiations when
traveling along the axial direction. We finally demonstrate that a dark soliton will disintegrate into several ones
plus a residual wave train when passing over a steplike potential.
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I. INTRODUCTION

The successful experimental demonstration of Bo
Einstein condensation in weakly interacting atomic ga
@1–5# has opened the possibility to investigate the nonlin
properties of matter waves. Several macroscopically exc
Bose-condensed states, e.g., dark solitons and vortices,
been observed@6–9# and the four-wave mixing has also bee
realized in Bose-Einstein condensates~BECs! @10#. These
studies have stimulated a large amount of research activ
on nonlinear atom optics@11#.

Up to now there have been several theoretical approa
for the soliton dynamics in trapped one-component BE
One of them is based on the assumption that the par
number in the condensate is very large and hence the kin
energy of particle can be neglected so that a Thomas-F
~TF! approximation can be used for getting the ground-s
wave function of the condensate. The condensate in this
is three-dimensional~3D! and the dark solitons are the exc
tations from the TF ground-state@12#. However, the dark
soliton obtained in this way is dynamically unstable for
long-wavelength transverse perturbation@13# and it will de-
cay into vortices@12#. This phenomenon has been observ
in recent experiments@14#. Another theoretical approach i
taking the condensate as one dimensional~1D!, which im-
plies that the confinement of atoms in two transverse~radial!
directions are very strong and hence the transverse part o
order parameter are taken as being ‘‘frozen’’ to the grou
state wave function of the transverse confining potent
which has a Gaussian-type form for a 2D harmonic oscilla
potential@15–22#. But this treatment is less rigorous becau
the contribution of the higher-order eigenmodes of the tra
verse confining potential in the transverse directions
been completely disregarded. We also mention the study
solitons and breathers in periodic traps and in array of BE
1050-2947/2002/65~5!/053605~12!/$20.00 65 0536
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@23,24#, where the transverse structure of the condensate
also been neglected.

Recently, the trapped low-dimensional BECs have be
realized experimentally in optical and magnetic traps@25#, in
which the energy level spacing in one or two dimensio
exceeds the interaction energy between atoms. Some au
refer to such an energy restriction as quasi-low-dimensio
@26#. As mentioned in Ref.@25#, the trapped quasi-low-
dimensional condensates will offer many possibilities for
vestigating the nonlinear excitations such as solitons and
tices, which are more stable than in 3D, where the solit
suffer from the transverse instability and the vortices c
bend@9,12–14#. Thus both theory and experiment call for
detailed study on the soliton excitations in quasi-lo
dimensional BECs.

The aim of this paper is to investigate analytically t
soliton excitations in trapped quasi-1D BECs in a consist
and systematic way. Note that although in recent decades
soliton excitations have been widely studied in many fie
@27#, the theoretical approach on soliton dynamics in inh
mogeneous systems has not yet developed well. In the
of trapped quasi-1D BECs, a soliton moves in a trapp
potential along the axial direction. The situation is similar
the motion of a surface wave soliton in a water channel w
deformed walls or an uneven bottom@29#. Thus we expect
that, in addition to some transverse structure contributed
not only the ground-state but also the higher-order eig
modes of strong transverse confining potential, the soli
will undergo a deformation, i.e., it will have varying ampl
tude, width, and velocity due to the inhomogeneity arisi
from the weak trapping potential in the axial direction. W
also anticipate that the soliton will radiate phonons beca
of the inhomogeneity and disintegrate into several differ
ones plus a residual wave train when passing over a step
potential.
©2002 The American Physical Society05-1



o
a

se
e

d
n

m

an
a

w
tio
th
te
T
e
.
e-
ax
th
,

th
s

on
he
st
o

a
os

te

t

-

ia

rm

e

lu

r-

the

s-
d by

he
ne-
ing

ive
ys-
tion
this
s the

lysis
of
rba-

GUOXIANG HUANG, JACOB SZEFTEL, AND SHANHUA ZHU PHYSICAL REVIEW A65 053605
To demonstrate the conjecture stated above, in this w
we develop a systematic analytical approach to investig
the motion of dark solitons in a trapped quasi-1D BEC ba
on a generalized method of multiple scales. There are sev
advantages in this approach:~i! it contains explicit dimen-
sionless small parameters denoting the relative magnitu
of the confining potential and the excitation under study, a
hence is controllable in asymptotic expansion,~ii ! it reduces
original 3D nonlinear order-parameter equation to a 1D a
plitude equation that can be handled easily;~iii ! it provides a
clear-cut physical picture for some physical processes
for the formation for some coherent structures such as d
solitons. The paper is organized as follows. In Sec. II
give the dimensionless form of the order parameter equa
and present its ground-state solution, which involves
higher-order eigenmodes of 2D transverse confining po
tial in the transverse directions and effective high-order
wave functions in the axial direction. Section III discuss
the linear excitations that arose from the ground-state
Bogoliubov-type excitation spectrum with the excitation fr
quency and the sound speed depending on an effective
trapping potential are obtained. In Sec. IV we derive
amplitude equation for a weak nonlinear excitation, i.e.
varying coefficient Korteweg–de Vries~KdV! equation with
additional terms originating from the inhomogeneity and
transverse confinement. Section V presents dark soliton
lutions of the amplitude equation and studies their radiati
The dark soliton disintegration for a steplike potential in t
axial direction is investigated in Sec. VI. Finally, the la
section contains the discussion and the summary of
results.

II. GROUND-STATE WAVE FUNCTION

The dynamic behavior of a weakly interacting Bose gas
low temperature is described by the time-dependent Gr
Pitaevskii~GP! equation@4,5#

i\
]C

]t
5F2

\2

2m
¹21Vext~r !1guCu2GC, ~1!

where C is order parameter~also called condensed-sta
wave function!, *dr uCu25N is the number of atom in the
condensate, andg54p\2as /m is the interaction constan
with m the atomic mass andas the s-wave scattering length
(as.0 for a repulsive interaction!. We consider an aniso
tropic cigar-shaped harmonic trap of the form

Vext~r !5
m

2
@vx

2x21v'
2 ~y21z2!#, vx!v' , ~2!

wherevx andv' are the frequencies of the trap in the ax
~x! and the transverse (y and z) directions, respectively. A
generalization to a more general potential with the fo
Vext(r )5Vi(x)1V'(y,z) is straightforward, whereVi(V')
are the weak~strong! confining parts of the potential in th
axial ~transverse! directions, respectively.

Expressing the order parameter in terms of its modu
and phase, i.e.,C5Anexp(if), we obtain a set of coupled
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equations forn andf. In order to obtain a consistent pertu
bation analysis for the solution of Eq.~1!, we introduce the
dimensionless variablesx85 l 0

21x,(y8,z8)5a'
21(y,z),t8

5v't,n85n0
21n with l 05(4pn0as)

21/2 ~healing length!,
and a'5@\/(mv')#1/2 ~harmonic oscillator length in the
transverse directions! andn05N/( l 0a'

3 ), we obtain the fol-
lowing dimensionless equations of motion after dropping
primes:

]n

]t
1¹'•~n¹'f!1S a'

l 0
D 2 ]

]x S n
]f

]x D50, ~3!

F]f

]t
2

1

2
¹'

2 1
1

2
~y21z2!1

1

2
~¹'f!2GAn1S a'

l 0
D 2F2

1

2

]2

]x2

1
1

2 S vx

v'
D 2S a'

l 0
D 24

x21
1

2 S ]f

]x D 2

1nGAn50, ~4!

where¹'5(]/]y,]/]z) is the gradient operator in the tran
verse directions. We see that the system is characterize
two dimensionless parametersa[a' / l 05@n0g/(\v')#1/2

and b[vx /v' . The former denotes the ratio between t
atomic interaction and the strength of the transverse confi
ment and the later describes the anisotropy of the trapp
potential. The normalization condition ofC now reads
*dr n51.

Although an exact solution of Eqs.~3! and~4! is not avail-
able, we can simplify the problem by considering the relat
importance of the physical quantities appearing in the s
tem. Then we can obtain an approximated analytical solu
of the problem based on a perturbation expansion. To
end we consider a trapped quasi-1D condensate that ha
property

a'! l 0 , ~5!

\vx!n0g!\v' . ~6!

Thus we have«[a25n0g/(\v')!1, which can be taken
as a small expansion parameter in our perturbation ana
given below. This condition also excludes the instability
dark solitons due to a long-wavelength transverse pertu
tion @13#. By Eq. ~6! we getb!«!1. In order to obtain a
consistent asymptotic expansion, a relation betweenb and«
should be determined. We assume thatb5Vx

2«5/2 with Vx a
number of order unity. Then Eqs.~3! and ~4! become

]F

]t
1¹'F•¹'f1

1

2
F¹'

2 f1«S ]F

]x

]f

]x
1

1

2
F

]2f

]x2 D 50,

~7!

F]f

]t
2

1

2
¹'

2 1
1

2
~y21z2!1

1

2
~¹'f!2GF

1«F2
1

2

]2

]x2
1Vi~X!1

1

2 S ]f

]x D 2

1F2GF50,

~8!
5-2
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whereF5An,Vi(X)5(1/2)Vx
2X2 with X5«3/2x. Note that

the results given in the following do not rely on the concre
form of Vi(X). Thus hereafter we assume thatVi(X) is an
arbitrary function. Equations~7! and ~8!, in which only one
dimensionless small parameter appears, are our basic e
tions for studying the ground-state, linear, and nonlinear
citations of the system.

The ground-state of the system corresponds to set]f/]t

52m̃ ~dimensionless chemical potential! and v5¹f50
~i.e., no flow in the system!. From Eq. ~7! we see thatF
5FGS is time-independent in the ground-state. Then Eq.~8!
is reduced to

F2
1

2 S ]2

]y2
1

]2

]z2D 1
1

2
~y21z2!2m̃GFGS

1«F2
1

2

]2

]x2
1Vi~X!1FGS

2 GFGS50. ~9!

To solve the ground-state equation~9! we make the pertur-
bation expansion

FGS5FGS
(0)1«FGS

(1)1«2FGS
(2)1•••, ~10!

m̃5m (0)1«m (1), ~11!

whereFGS
( j ) 5FGS

( j ) (y,z,X). Obviously,y and z play a role of
‘‘fast’’ variables while X is a ‘‘slow’’ variable of the system.
Thus one has]/]x5«3/2]/]X. The expansion onm̃ can in-
clude higher-order termsm ( j )( j 52,3, . . . ) but we findthat
they are not necessary and hence are taken as zero. S
tuting Eqs.~10! and ~11! into Eq. ~9! we obtain

F2
1

2 S ]2

]y2
1

]2

]z2D 1
1

2
~y21z2!2m (0)GFGS

( j ) 5M ( j ),

~12!

j 50,1,2,3, . . . with

M (0)50, ~13!

M (1)5@m (1)2Vi~X!#FGS
(0)2~FGS

(0)!3, ~14!

M (2)5@m (1)2Vi~X!#FGS
(1)23~FGS

(0)!2FGS
(1) , ~15!

M (3)5@m (1)2Vi~X!#FGS
(2)23~FGS

(0)!2FGS
(2)23FGS

(0)~FGS
(1)!2,

~16!

•••. ~17!

In the leading order (j 50) one has an eigenvalue problem
a 2D harmonic oscillator. Its eigensolution has t
form FGS

(0)5AGS,nynz

(0) (X)cny
(y)cnz

(z) with the eigen-

valuem (0)5vnynz
5(ny1nz11), whereny andnz are non-

negative integers.cn(y)5Nnexp(2y2/2)Hn(y) with Nn

5@1/(Ap2nn!) #1/2. Hn(y) is a Hermitain polynomial of or-
der n. cn(y) satisfies the orthogonality conditio
*2`

` dy cn1
(y)cn2

(y)5dn1n2
. Note that the transverse leve
05360
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spacing, being equal to\v' in physical unit, is one that is
larger than the interaction energy between particles acc
ing to the assumption~6!. Since we consider ground-sta
thus we takeny5nz50, i.e.,

FGS
(0)5A~X!c0~y!c0~z! ~18!

with v0051, whereA(X)5AGS,00
(0) (X) is a function to be

determined yet.
In the next order (j 51) we have the equation

L̂FGS
(1)5@m (1)2Vi~X!#A~X!c0~y!c0~z!

2A3~X!c0
3~y!c0

3~z!, ~19!

where

L̂52
1

2 S ]2

]y2
1

]2

]z2D 1
1

2
~y21z2!21. ~20!

Note that the eigenfunctions of the operatorL̂ constitutes a
complete set. ThusFGS

(1) can be expressed as

FGS
(1)5 (

ny ,nz

AGS,nynz

(1) ~X!cny
~y!cnz

~z!. ~21!

Substituting Eq.~21! into Eq.~19! and using the orthogonal
ity of cny

(y)cnz
(z), one obtains

AGS,nynz

(1) ~X!~vnynz
21!5@m (1)2Vi~X!#A~X!dny0dnz0

2A3~X!I nynz
, ~22!

where I nynz
5*2`

` dydzc0
3(y)c0

3(z)cny
(y)cnz

(z). From

~22!, for ny5nz50 we have

A~X!5I 0
21/2@m (1)2Vi~X!#1/2 ~23!

with I 05I 0051/A2p. Thus we obtain aneffectiveTF wave
function for the axial part ofFGS

(0) . Equation~23! is indeed a
result of a solvability condition of Eq.~19!. The correction of
the dimensionless chemical potentialm (1) plays a role of an
effective chemical potential in the TF wave function. If on
of ny andnz is not zero, Eq.~22! gives

AGS,nynz

(1) ~X!52A3~X!
I nynz

vnynz
21

. ~24!

Hence we have

FGS
(1)5AGS,00

(1) ~X!c0~y!c0~z!

2A3~X! ( 8
ny ,nz

I nynz

vnynz
21

cny
~y!cnz

~z!, ~25!

whereAGS,00
(1) is a function yet to be determined. The prime

the second term of Eq.~25! means thatny and nz are not
taken to vanish simultaneously. In the same way, one
5-3
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solve Eq. ~12! for j 52. We obtain in this orderAGS,00

5@3I 1 /(2I 0)#A3 with I 15(ny ,nz
8 I nynz

2 /(vnynz
21!, and

FGS
(2)5AGS,00

(2) ~X! c0~y!c0~z!

1A5~X! ( 8
ny ,nz

aGS,nynz

(2) cny
~y!cnz

~z!, ~26!

whereAGS,00
(2) is a undetermined function and

aGS,nynz

(2) 5
1

vnynz
21 F2

9I 1I nynz

2I 0
2

I 0I nynz

vnynz
21

13 ( 8
ny8 ,nz8

I n
y8n

z8
Jnyn

y8nznz8

vn
y8n

z8
21 G , ~27!

with

Jnyn
y8nznz8

5E
2`

`

dydzc0
2~y!c0

2~z!cny
~y!cn

y8
~y!cnz

~z!cn
z8
~z!.

~28!

In the orderj 53 we obtainAGS,00
(2) 5A5 aGS,00

(2) with

aGS,00
(2) 5

3

2I 0
F 3I 1

2

4I 0
2 ( 8

ny ,nz

I nynz
aGS,nynz

(2)

2 ( 8
ny ,nz

( 8
ny8 ,nz8

I nynz
I n

y8n
z8
Jnyn

y8nznz8

~vnynz
21!~vn

y8n
z8
21!

G . ~29!

Therefore, up to the second-order approximation we ob
the ground-state solution expressed as

FGS5A~X!h0~y,z!1«A3~X!h1~y,z!1«2A5~X!h2~y,z!

1O~«3!, ~30!

where

h0~y,z!5c0~y!c0~z!, ~31!

h1~y,z!5
3I 1

2I 0
c0~y!c0~z!2 ( 8

ny ,nz

I nynz

vnynz
21

cny
~y!cnz

~z!,

~32!

h2~y,z!5aGS,00
(2) c0~y!c0~z!1 ( 8

ny ,nz

aGS,nynz

(2) cny
~y!cnz

~z!.

~33!

From Eq.~30! we see that the ground-state of the trapped
condensate displays some structure. In addition to
Gaussian-type ground state,c0(y)c0(z), it involves also the
higher-order eigenmodes of the transverse confining po
tial. Furthermore, by the expression ofA(X) given in Eq.
05360
in

e

n-

~23!, we know that in the axial direction the ground-state
the condensate is composed of effective higher-order
wave functions. Figure 1~a! shows the norm (An) of the
ground-state wave function for the case of the harmonic tr
ping potential when only the leading term, i.e.,U
5A(X)h0(y,z), in Eq. ~30! is considered~taking z50 for
illustration!, in which the transverse part is clearly a Gaus
ian function. In order to visualize the contribution comin
from the high-order transverse modes, in Fig. 1~b! we have
plotted the first-order correction term of Eq.~30! @V
5«A3(X)h1(y,z)# for the case of«50.08 andVx59. Be-
cause the integralI nynz

decreases rapidly asny and nz in-

crease,ny and nz are only taken to be 6 in our calculation
We see that, in the transverse~y! direction, the ground-state
wave function indeed displays some structures. There is a
along they direction due to mainly the contribution of th
Hermite function H2(y)52y222. The correction to the
Gaussian distribution in the transverse directions, howeve
negligible when« becomes small.

The correction of the dimensionless chemical poten
m (1) can be obtained in the following way. From the norma
ized condition*dr n51 one has

E
2`

`

dX A2~X!'a3. ~34!

For the harmonic potentialVi(X)5Vx
2X2/2, we have

E
2Rx

Rx
dXFm (1)2

1

2
Vx

2X2G5I 0a3, ~35!

whereRx5(2m (1)/Vx
2)1/2. Note thatVx5ba25, by Eq.~35!

we get

m (1)5S 3I 0b

4A2a2D 2/3

. ~36!

The chemical potential of the system with physical unit
given by m5\v'm̃5\v'1a2\v'm (1). Using Eq. ~36!
and the definitions ofa andb, we obtain

m5
\2

2mF 2

a'
2

1S 6pI 0asN

a'
2 ax

2 D 2/3 G , ~37!

whereax5@\/(mvx)#1/2 is the harmonic oscillator length in
the axial direction. The correction of the chemical potent
@the second term of Eq.~37!# is due to the contribution of
atom-atom interaction.

III. LINEAR EXCITATIONS

We now consider the linear excitations from the groun
state given in the preceding section. Because the syste
strongly confined in the transverse directions and the tr
ping potential in the axial direction,Vi , is a function of the
slowly variableX, the system can be considered as a wa
guide. The excitations can be sound waves propagating in
axial direction with a smaller wavelength comparing with t
5-4
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FIG. 1. ~a! The norm of the ground-state wav
function (An) for the case of a harmonic trappin
potential withVx59 when only the leading term
i.e., U[A(X)h0(y,z), in Eq. ~30! is considered
~taking z50 for illustration!. The transverse par
is clearly a Gaussian function.~b! The contribu-
tion due to first-order correction in Eq.~30! @V
[«A3(X)h1(y,z)# for the case«50.08 andVx

59. ny and nz are taken up to 6 in the calcula
tion. A dip along they direction appears due to
mainly the contribution of the Hermite function
H2(y)52y222.
u
e

y
ode
axial size of the condensate. Here we are interested in so
wavelike excitations of the system and hence we assum

F5F~x,y,z,t!, ~38!

f52m̃t1f̃~x,t!, ~39!

wheret5«t. Then Eqs.~7! and ~8! become

]F

]t
1

]F

]x

]f̃

]x
1

1

2
F

]2f̃

]x2
50, ~40!

F2
1

2 S ]2

]y2
1

]2

]z2D 1
1

2
~y21z2!2m̃GF

1«F ]f̃

]t
2

1

2

]2

]x2
1Vi~X!1

1

2
S ]f̃

]x
D 2

1F2GF50.

~41!

Making the perturbation expansion

F2FGS5« f (1)1«2f (2)1•••, ~42!

f̃5«f (1)1«2f (2)1•••, ~43!

together with m̃5m (0)1«m (1) and assuming f ( j )

5 f ( j )(x,y,z,X,t) andf ( j )5f ( j )(x,X,t), by Eq.~41! we ob-
tain
05360
nd F2
1

2 S ]2

]y2
1

]2

]z2D 1
1

2
~y21z2!2m (0)G f ( j )5N( j ),

~44!

j 51,2, . . . with N(1)50, N(2)5I 0A2(X) f (1)2FGS
(0)]f (1)/]t

1(1/2)]2f (1)/]x223(FGS
(0))2f (1). When getting Eq.~44! we

have used the ground-state equation~12! and thusm (0)51,
FGS

(0)5A(X)c0(y)c0(z), and m (1) is given by Eq. ~36!.
Equation~44! for j 51 gives rise to the solution

f (1)5aLE,00
(1) ~x,X,t!c0~y!c0~z!, ~45!

whereaLE,00
(1) is a undetermined function. Here for simplicit

we have assumed that the system has excited only one m
related to the Gaussian-type wave functionc0(y)c0(z).
Multimode excitations related tocny

(y)cnz
(z) can also be

considered in a similar way.
A solvability condition of Eq.~44! for j 52 results in

1

2

]2aLE,00
(1)

]x2
2A~X!

]f (1)

]t
22I 0A2~X!aLE,00

(1) 50, ~46!

and
5-5
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f (2)5aLE,00
(2) ~x,X,t!c0~y!c0~z!

23A2~X!aLE,00
(1) ~x,X,t! ( 8

ny ,nz

I nynz

vnynz
21

cny
~y!cnz

~z!,

~47!

whereaLE,00
(2) can be obtained in the next order but it is n

needed here.
The expansion of Eq.~40! up to O(«)-order yields the

equation

] f (1)

]t
1

1

2
FGS

(0)]
2f (1)

]x2
50. ~48!

By using the solution~45! it is reduced to

]aLE,00
(1)

]t
1

1

2
A~X!

]2f (1)

]x2
50. ~49!

Equations~46! and ~49! are basic equations for linear exc
tations. To get the linear dispersion law of the excitations
take the plane-wave solution

~aLE,00
(1) ,f (1)!5~a0

(1) ,f0
(1)!exp@ i ~qx2vt!#1c. c.,

~50!

wherea0
(1) andf0

(1) are independent onx andt but may be
the functions ofX. Substituting Eq.~50! into Eqs.~46! and
~49! we obtain

v5v~q,X!56
1

2
q@4I 0A2~X!1q2#1/2. ~51!

It is a Bogoliubov-type excitation spectrum but with the e
citation frequencyv depending on the slow variableX. The
sound speed is found to be local and is given by

csound56I 0
1/2A~X!56@m (1)2Vi~X!#1/2. ~52!

Thus the amplitude, frequency, and thus the sound spee
the excitations are the functions of the slow variableX due to
the inhomogeneity in the axial direction. Such local prope
for the sound speed comes from the inhomogeneous b
ground, i.e., the space-dependent ground-state of the con
sate. The phenomenon is similar to the sound propagatio
a slowly varying nonuniform medium@28#. The positive-
negative sign of Eq.~52! means that the sound wave ca
propagate in two opposite directions in the elongated axi
the condensate.

IV. AMPLITUDE EQUATION FOR NONLINEAR
EXCITATIONS

As mentioned above, an excitation in the trapped BEC
local amplitude and sound speed. We expect that this is
the case for a nonlinear excitation of the system. Note
for weak nonlinear excitations Eqs.~40! and ~41! are still
valid. In order to study the dynamics of a weak nonline
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excitation in such nonuniform system we introduce t
multiple-scale variable

j5«1/2S E c21~«3/2x! dx2t D , ~53!

and make the asymptotic expansionsF2FGS5« f (1)

1«2f (2)1«3f (3)1•••,f̃5«1/2@f (1)1«f (2)1«2f (3)1•••#,
with m5m (0)1m (1), f ( j )5 f ( j )(y,z,j,X) and f ( j )

5f ( j )(j,X). Thus we have the derivative expansion

]

]x
5«1/2c21~X!

]

]j
1«3/2

]

]X
, ~54!

]

]t
52«1/2

]

]j
. ~55!

Then Eqs.~40! and ~41! are transferred into

L̂ f ( j )5P( j ), ~56!

] f ( j )

]j
2

1

2
c22~X!FGS

(0)]
2f ( j )

]j2
5Q( j ), ~57!

j 51,2, . . . ,where L̂ is defined by Eq.~20! and the explicit
expressions ofP( j ) andQ( j ) are given in the the Appendix
Solving Eq.~56! order by order we obtain

f (1)5aNL,00
(1) ~j,X!c0~y!c0~z!, ~58!

f (2)5aNL,00
(2) ~j,X!c0~y!c0~z!

23A2~X!aNL,00
(1) ~j,X! ( 8

ny ,nz

I nynz

vnynz
21

cny
~y!cnz

~z!

~59!

with the solvability condition

A~X!
]f ( j )

]j
22I 0A2~X!aNL,00

( j ) 5R( j ), ~60!

j 51,2, . . . , where aNL,00
( j ) ( j 51,2) are undetermined func

tions. Note that Eq.~60! with j 52 is obtained by the solv-
ability condition of the equationL̂ f (3)5P(3).

Using ~58! and ~59!, Eq. ~57! is simplified as

]aNL,00
( j )

]j
2

1

2
c22~X!A~X!

]2f ( j )

]j2
5S( j ), ~61!

j 51,2, . . . ,where the definitions ofR( j ) andS( j ) on the right-
hand side of Eqs.~60! and ~61! are also presented in th
Appendix.

Since we are interested in the weak nonlinear excitation
the system, we need an equation controlling the leadi
order approximation of the excitation, i.e., the equation
aNL,00

(1) , appeared in Eq.~58!. For this aim we solve Eqs.~60!
and ~61!. In the orderj 51 we obtain
5-6
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@12I 0A2~X!c21~X!#
]aNL,00

(1)

]j
50, ~62!

f (1)52I 0A~X!E dj aNL,00
(1) ~j,X!. ~63!

From Eq. ~62! we see that to get a nontrivial solution fo
aNL,00

(1) we must set

c~X!56I 0
1/2A~X!56@m (1)2Vi~X!#1/2. ~64!

It is just the sound speed given in the last section@see Eq.
~52!#. Equation ~63! presents a relation betweenf (1) and
aNL,00

(1) . OnceaNL,00
(1) is obtained one can get the leading-ord

approximation for the phasef (1) by directly integrating
aNL,00

(1) .
In the order j 52, Eqs. ~60! and ~61! give rise to the

closed equation foraNL,00
(1) ([U),

]3U

]j3
1m1~X!U

]U

]j
1m2~X!

]U

]X
1m3~X!U1m4~X!

]U

]j
50

~65!

with

m1~X!5224I 0
2A3~X!, ~66!

m2~X!528d1I 0
5/2A5~X!, ~67!

m3~X!5212d1I 0
5/2A4~X!

]A

]X
, ~68!

m4~X!512I 0I 1A6~X!, ~69!

where d1561, representing the two possible propagati
directions of the excitation. Equations~65! is a variable co-
efficient KdV equation with additional terms contribute
from the inhomogeneity in the axial direction~denoted by
]A/]X) and the strong transverse confinement of the c
densate~denoted byI 1). Such nonlinear amplitude equatio
was also obtained for water waves propagating in a cha
with deformed walls or an uneven bottom@29#. It is obvious
that the derivation and the results given in Secs. II–IV can
easily generalized to any trapping potential with a stro
transverse confinement.

V. DEFORMATION AND RADIATION OF A DARK
SOLITON

In this section, we discuss the soliton solutions of t
variable coefficient KdV equation with additional terms, E
~65!. Using the variable transformationU52r(s)u(s,z)
with r526m1

21m4
22, z5m4

21j2*dX m2
21, and s

5*dX m2
21m4

23, Eq. ~65! becomes

]u

]s
16u

]u

]z
1

]3u

]z3
52g~s! u, ~70!

with
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g~s!52
27

2

d

ds
~ ln A!. ~71!

If the term on the right-hand side of Eq.~70! does not exist,
i.e., g(s)50, we have a standard KdV equation that is
completely integrable system and can be solved exactly
the inverse scattering transform@27#. Its single-soliton solu-
tion has the form

u5us~w!52a2sech2w, w5a~z2b!, ~72!

with b54a2s1z0, wherea and z0 are two arbitrary con-
stants characterizing the amplitude and initial position of
soliton. Note that ifg(s) vanishes the system is reduced to
uniform waveguide in whichVi5V05const ~maybe taking
as zero! and hencemj ( j 51,2,4) take constant values an
m350. Hencef (1) in Eq. ~58! reads

f (1)5
12a2

m1m4
2

sech2@a~z24a2s2z0!#c0~y!c0~z!, ~73!

with z5m4
21j2m2

21X,s5m2
21m4

23X, and j5«1/2(c21x
2t), wherec5Am (1) is a constant. Becausem1,0, the ex-
citation digs a ‘‘hole’’ on the background condensate a
hence is a dark soliton. We see that in this case although
transverse confinement of the waveguide modifies the am
tude and velocity, but these quantities are still constants
thus the soliton can propagate in the axial direction with
deformation. However, in the presence of the axial nonu
form, i.e., whenViÞ constant, the situation will be quite
different, as will be seen below.

To consider the effect due to the axial nonuniform, he
we assume thatA is a slowly varying function ofX, i.e., we
takeg(s) as a small quantity and thus being a perturbat
of the KdV equation. We apply the perturbation theory
soliton @32# to get the soliton solutions of Eq.~70!. Antici-
pating that the axial nonuniform will result in the modulatio
of the soliton parametersa andz0 appeared inus @see~72!#
and some additional radiation~i.e., phonons!, one has

u5us~w!1du, ~74!

whereus(w) has the form of Eq.~72! but a andb now are
controlled by the equations@32#

]a

]s
52

1

4aE2`

`

dw sech2w g~s!us~w!, ~75!

]b

]s
54a22

1

4a3E2`

`

dw ~ tanhw1w sech2w!g~s!us~w!.

~76!

The radiation partdu, contributed by the continuous spe
trum of a scattering problem when solving the KdV equati
using the inverse scattering transform~correspondingly, the
soliton partus is relevant to the discrete spectrum of th
scattering problem, see@27#!, is given by
5-7
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du52P E
2`

`

dk
g(1)~k!

ik~k214!a3
@12eik(k214)a3s#F0~w,k!,

~77!

g(1)~k!52E
2`

`

dw g~s!us~w!C0~w,k!, ~78!

where P represents the principal value of the integral,F0
andC0 are defined by@32#

F0~w,k!5
1

A2p k~k214!
@k~k214!14i ~k212!tanhw

28k tanh2w28i tanh3w#eikw, ~79!

C0~w,k!5
1

A2p ~k214!
@k224ik tanhw24 tanh2w#e2 ikw.

~80!

Substituting Eqs.~71! and~72! into Eqs.~75! and~76!, com-
pleting the integrations and then using the definition
mj (X) given in Eqs.~66!–~69!, we obtain

a5a0A9~X!, ~81!

b52
4d1a0

2

83123I 0
11/2I 1

3E dX

A5~X!
, ~82!

wherea0 is an integral constant. The soliton part of the s
lution ~74! can be obtained by the expression~72!, but witha
and b being replaced by Eqs.~81! and ~82!, respectively.
Then we have

Us52r us52ã0
2A3~X! sech2Q, ~83!

whereã05(A2•12I 0
2I 1)21a0, andQ, the phase of the soli

ton, is defined by

Q5A2I 0
1/2ã0A3Fd1«21E dX

A
1d1

3I 1

2I 0
S 11

2I 0

3I 1
ã0

2DA6E dX

A

2«3/2I 0
1/2t G . ~84!

From Eqs.~83! and ~84! we see that, due to the axial inho
mogeneity, the amplitude, width, and velocity of the da
soliton are not constants but varying slowly along the ax
direction. This means that the dark soliton undergoes a
formation, i.e., its shape will change when propagating alo
the elongated direction of the condensate. This result ag
with the recent experimental observation reported by Bur
et al. @7# and Denschlaget al. @8#. Needless to say that in
experiment the dissipation originating from the interacti
between the soliton and thermal cloud also results in
change of the soliton parameters@7#. It is obvious that the
result presented above is generic and does not depend o
concrete form ofVi(X).
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Furthermore, we show that, if taking the harmonic pote
tial Vi(X)5Vx

2X2/2, the dark soliton will display an oscillat
ing motion in the trap. This can be seen by considering
phase of the soliton, given by Eq.~84!, and calculating the
soliton position as a function of time. It is easy to show th
the position of the soliton satisfies the equation of motion

dX

dt
5d1«5/2I 0

1/2 A~X!

11«
3I 1

2I 0
S 11

2I 0

3I 1
ã2

0DA6~X!

. ~85!

Equation~85! can be reduced to the one provided by Bus
and Anglin@17# if on the right-hand side the second term
the denominator is neglected. Solving Eq.~85! we get

X5RxsinF 1

A2

1

~11B0!

vx

v'

tG , ~86!

where for the definitions ofRx and m (1), see Eq.~36!. The
constantB0 reads

B05«4
27I 1

2I 0
2

1

AVx
S 11

2I 0

3I 1
ã0

2D . ~87!

Thus the oscillating frequency of the dark soliton position
different from the trap frequencyvx /v' ~dimensionless
from!. It is decreased by a factor 1/@A2(11B0)#. The factor
1/A2 is due to the nonlinear effect of the lowest-order tra
verse confining mode.B0 is contributed by the higher-orde
transverse confining modes of the transverse trap poten
which is absent if these higher-order modes are not ta
into account, as done in Ref.@17#. This type of oscillating
behavior has not been observed in experiment. The reas
that at finite temperature, the dark soliton is thermodyna
cal unstable. The interaction of the soliton with therm
cloud causes dissipation that accelerates the soliton. In m
cases, the soliton has disappeared before reaching the bo
ary of the condensate@7#.

Now we consider the radiation part of the solution. Usi
Eq. ~80!, from Eq. ~78! we obtain

g(1)~k!5
A2p

3

a2k

sinh~pk/2!
g~s!. ~88!

When obtaining Eq.~88!, some useful integration formula
provided in Ref.@32# have been used. Then by Eq.~77!,
through a detailed calculation we get

du5
g~s!

3a F2E
2`

(z2z0)/(3s)1/3

dk Ai ~k!1u~z2z024a2s!G ,
~89!

where Ai(k) is the Airy function, defined by

Ai ~k!5
1

2pE2`

`

dsexp@ i ~sk1s3/3!#, ~90!
5-8
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u(x) is the step function withu(x)51 for x.0 andu(x)
50 for x,0.

From Eq. ~89! we see thatdu represents a continuou
wave radiated by the soliton. The continuous wave can
taken as a superposition of many phonons. One can take
process as soliton radiation, in which initially there is a da
soliton in the homogeneous region whereVi5constant,
propagating stably to an inhomogeneous region whereVi
5Vi(X). When arriving at this region the soliton begins
deform and emit phonons. If the inhomogeneity is sign
cant, the soliton will emit a large amount of phonons a
hence possibly disappears.

VI. DISINTEGRATION OF A DARK SOLITON

According to the results presented in the last section
dark soliton in a trapped quasi-1D condensate will defo
and emit phonons when propagating in an inhomogene
region. For this phenomenon to happen, the width of
inhomogeneous region should be larger than the sol
width, which is the order of magnitude of the healing leng
But there may exist such situation in which the inhomog
neous region is local and its width is small~less or equal to
the soliton width!. In this case the dark soliton can pass t
region adiabatically, and then undergo a fission. The fiss
phenomenon of soliton has been widely studied and
served for water-wave solitons traveling onto a slowly va
ing beach@29–31#. In this section we show that this type o
fission is also possible in BECs.

For convenience we takeu52v for Eq. ~70!, then it
becomes

]v
]s

26v
]v
]z

1
]3v

]z3
52g~s! v. ~91!

Note that Eq.~91! admits the following two integrals of mo
tion ~conservative quantities!

A227/2E
2`

`

dz v5C1 , ~92!

A227E
2`

`

dz v25C2 , ~93!

where C1 and C2 are constants. Assume thatVi(X) has a
steplike shape~as shown in Fig. 1!. For instance, one ha
Vi(X)5V0(12tanhX)/2. But the results presented in the fo
lowing are generic and hence are not limited to such part
lar potential.

The potential shown in Fig. 1 can be divided into thr
regions. Region I~upstream! is X<X1, where Vi(X)'V0
~positive constant!. Region II (X1,X,X2) is a transition
region whereVi(X) has an obvious, steplike change. Regi
III ~downstream! is X>X2 whereVi(X) is another constan
~taking as zero!.

Now we study the disintegration of a dark soliton. Let
assume that initially one has excited a soliton at the regio
Because in this regionVi50 thusg(s)50. The excitation is
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hence a standard KdV soliton of Eq.~91! @with g(s)50#,
which has fixed amplitude, width, and velocity,

v1522a1
2sech2@a1~z24a1

2s2z01!#, ~94!

wherea1 andz10 are constants. Equation~94! can be written
as

v152D1sech2FAD1

2
~z22D1s2z01!G , ~95!

whereD152a1
2 is the soliton amplitude. The soliton trave

to the right with the velocity 2D1. When passing over the
region II and arriving at the starting pointX5X2 of the re-
gion III, its parameters undergo a transformation, i.e.,
soliton becomes

v252D2sech2@D3~z2D4s2z02!#. ~96!

The parametersD j ( j 52,3) can be determined by using th
integrals of motion~92! and ~93!. It is easy to get

D25D1FA~X2!

A~X1!G
27/2

, D35AD1

2
. ~97!

Thus we have

v252D2sech2FAD1

2
~z2D4s2z02!G . ~98!

The parameterD4 is still undetermined but it is not needed
our following analysis.

Note that the wave packet~98! is no longer a soliton
because it does not satisfy the KdV equation~91! although in
the region IIIg(s) also vanishes. The question is about t
evolution of the wave packet~98!.

In order to answer this question we take Eq.~98! as an
initial condition of Eq.~91!. Becauseg(s)50 in the region
III, we have the following initial value problem:

]v
]s

26v
]v
]z

1
]3v

]z3
50, X.X2, ~99!

v~z,s50!52D2sech2FAD1

2
~z2z02!G , ~100!

where D2 is given in Eq.~97!. According to the inverse-
scattering theory of the KdV equation@27#, related eigen-
value problem of Eqs.~99! and ~100! is

d2c

dz2
1H D2sech2FAD1

2
~z2z02!G1lJ c50, ~101!

wherel and c are the eigenvalue and eigenfunction to
sought. In general, depending onD1 andD2 the eigenvalue
l consists of two parts. One part is a discrete spectrum,ln ,
which is relevant to the soliton solution of Eq.~99!. The
number of soliton,N, equals the number of discrete spectru
ln . If N.1 we have a multiple-soliton solution that corr
5-9
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sponds to the disintegration of the incident soliton~95!. Now
we discuss how to calculateln andN.

Equation~101! can be written as

d2c

dz8 2
1@s~s11!sech2z81l8#c50, ~102!

wherez85AD1/2(z2z02), l852l/D1 and

s~s11!5
2D2

D1
52FA~X2!

A~X1!G
27/2

. ~103!

There are two cases for the solutions of the eigenequa
~102!. The first one is thats in Eq. ~103! is a positive integer.
In this circumstance all eigenvalues are discrete@33#

l85ln852ln /D152~s2n!2 ~104!

with n50,1,2, . . . ,s21. The eigenfunctions corresponding
these discrete eigenvalues are bound states. By soliton th
@27,33#, the KdV equation~99! for this case hasN-soliton
solution with N5s. Thus the incident soliton~95! in the
upstream will disintegrate intoN solitons in the downstream

The second case is thats is a positive number, e.g.,s
5@s#1c, where@s# is a positive integer not larger thans and
c is a positive number less than one. In this case the eig
value of Eq.~102! possesses not only discrete but also c
tinuous spectrum. The discrete spectrum is still given by
~104! but with n50,1,2, . . . ,@s#. Thus in this case Eq.~99!
admits the multisoliton solution with the number of solito
beingN5@s#11. In addition, corresponding to the contin
ous spectrum the eigenfunctions are extended states. C
sponding to these extended states Eq.~99! has continuous
wave ~or wave train! solution. Since a continuous wave ca
be taken as the superposition of many phonons, in the se
case due to the steplike trap the incident soliton will disin
grate into@s#11 solitons plus a residual wave train.

Combined with the two cases discussed above, it is e
to show that the number of disintegrated solitons,N, satisfies
the following inequality

N~N21!,2FA~X2!

A~X1!G
27/2

<N~N11!, ~105!

where the equality in Eq.~105! is valid only if s is a positive
integer. By the inverse scattering theory of the KdV equat
@27,33#, the asymptotic amplitude ofnth soliton is 2ln .
Through the relation~104! we have 2ln52(s2n)2D1.
Thus the asymptotic expression for the disintegratedN soli-
tons reads

v52 (
n50

N

2kn
2 sech2@kn~z24kn

2s2z0n!#, X@X2,

~106!

where kn5(s2n)AD1. Therefore, forf (1) in Eq. ~58!, we
obtain
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f (1)5
12a1

2

m1m4
2

sech2@a1~z24a1
2s2z01!#c0~y!c0~z!,

X<X1, ~107!

i.e., only one soliton in the upstream, wherea15AD1/2 @see
Eq. ~95!#, and

f (1)5
12kn

2

m1m4
2 (

n50

N

sech2@kn~z24kn
2s2z0n!#c0~y!c0~z!,

X@X2, ~108!

i.e., there is a train of soliton in the downstream. The phon
part contributed by the continuous spectrum in the dow
stream is not given explicitly here. Note thatm1,0, thus the
solitons are dark ones~relative to the condensate bac
ground!. The disintegrated solitons propagate to the right a
the soliton with the larger amplitude has greater velocity.

By Eq. ~105! we can predict the number of the disint
grated dark solitons. Obviously, whenA(X2)/A(X1)<1
there is no disintegration but when passing over the tra
tion region ~the region II! the incident soliton will radiate
phonons. Note that A(X)5I 0

21/2@m (1)2Vi(X)#1/2.
A(X2)/A(X1)<1 means that in this situation one must ha
Vi(X1)<Vi(X2).

Soliton disintegration occurs whenA(X2)/A(X1).1, i.e.,
Vi(X1).Vi(X2). As mentioned before, without loss of gen
erality we can assumeVi(X1)5V05rm (1) and Vi(X2)50.
In this case, from Eq.~105! we obtain the soliton that will
disintegrate into two ones plus phonons if 0,r<0.1502~the
phonons disappear whenr 50.1502). If 0.1502,r<0.2331
we have three disintegrated solitons plus phonons~again
when r 50.2331, the phonon part vanishes!. If 0.2331,r
,0.2890 one gets four disintegrated solitons plus phon
~the phonons disappear whenr 50.2890), and so on. Thus b
adjusting the depth of the step potential, i.e.,V0, one can
control the number of the disintegrated solitons.

From the results given above we see that when a d
soliton in the region whereVi is larger~thusuCu2 is smaller!
passes over a transition region and goes into the reg
where Vi is smaller ~thus uCu2 is larger!, it undergoes a
fission. But in the reverse situation, i.e., when travelling fro
a region of smallerVi ~thus largeruCu2) to a region of larger
Vi ~thus smalleruCu2), it does not show disintegration ex
cept for radiating phonons. A schematic representation o
dark soliton disintegration has been shown in Fig. 2.

VII. DISCUSSION AND SUMMARY

We have studied, in a systematic and consistent way,
ground state, linear, and nonlinear excitations in trapped o
dimensional Bose-Einstein condensates with a repuls
atom-atom interaction. We have shown analytically that fo
condensate with a strong transverse confinement, the gro
state of the system involves the high-order eigenmodes of
transverse trapping potential in the transverse directions
effective high-order Thomas-Fermi wave functions in t
5-10
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elongated axial direction. For a linear excitation with wav
length much less than the axial length of the condensate
dispersion law is Bogoliubov-type with excitation frequen
changing slowly along the axial direction. We have fou
that, for a weak nonlinear excitation, its amplitude is co
trolled by a variable coefficient Korteweg–de Vries equat
with additional terms coming from the transverse struct
and the axial nonuniform in the condensate, which resul
slowly changing amplitude, width, and velocity for dark so
tons. We have also shown that due to the inhomogeneity
dark solitons may emit radiation when propagating along
elongated direction. Finally, using the inverse scatter
theory for the Korteweg–de Vries equation, we have dem
strated that, when a dark soliton passes over a local, ste
potential, it will disintegrate into multiple dark solitons plu
a residual wave train. Note that not like many approaches
soliton excitations in the Bose-Einstein condensate, wher
assumption of small condensate has been used@15,34,35#, in
our approach the condensate can be large because
ground-stateFGS is assumed to be of order unity. On th
other hand, the solitons we obtained here are the excitat
excited from the ground-state of the system.

The method of multiple scales has been widely used
fluid physics and nonlinear optics@31,36#. The theoretical
approach presented above based on a generalized meth
multiple-scales are not limited to a harmonic trapping pot
tial. It can be easily generalized to any potential with
strong transverse confinement and to a trapped t
dimensional condensate. Our theory can at least partially
plain the experimental observations reported by Burgeret al.
@7# and Duttonet al. @9#, where the condensates can be tak
as approximately one-dimensional ones and the dark soli
observed display slowly changing amplitude, width, and

FIG. 2. A schematic representation of a dark soliton disinteg
tion. When a dark soliton in the region I (X<X1), where Vi is
larger and henceuCu2 is smaller, passes over the transition region
(X1<X<X2) and goes into the region III (X>X3), whereVi is
smaller and henceuCu2 is larger, it undergoes a fission. Only tw
disintegrated dark solitons are shown that correspond to takeV0

5rm (1) with r 50.1502. But inversely if traveling from the regio
III to the region I, the dark soliton does not disintegrate except
radiating some phonons.
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locity. In addition, some phononlike radiations are also o
vious in their experiments.

Recently, trapped low-dimensional Bose-Einstein cond
sates have been realized in a more rigorous sense@25#, in
which the energy-level spacing in the transverse direction
larger than the atom-atom interaction energy and hence
conditions given by Eqs.~5! and ~6! can be easily satisfied
The steplike potential in the axial direction can also be ea
realized using present-day optical methods. This paves
way to the study of radiation and disintegration of the solit
in such systems and tests our theoretical predictions prov
in this paper.
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APPENDIX

The definition ofP( j ) andQ( j ) ( j 51,2, . . . ) inEqs. ~56!
and ~57! are given by

P(1)50, ~A1!

P(2)5I 0A2~X! f (1)1FGS
(0) ]f (1)

]j
23~FGS

(0)!2f (1), ~A2!

P(3)5I 0A2~X! f (2)23~FGS
(0)!2f (2)23~FGS

(0)!@2FGS
(1)f (1)

1~ f (1)!2#1~FGS
(1)1 f (1)!

]f (1)

]j
1FGS

(0) ]f (2)

]j

2
1

2
FGS

(0)c22~X!S ]f (1)

]j D 2

1
1

2
c22~X!

]2f (1)

]j2
,

~A3!

Q(1)50, ~A4!

Q(2)5c22~X!
] f (1)

]j

]f (1)

]j
1c21~X!

]FGS
(0)

]X

]f (1)

]j

1
1

2
FGS

(0)Fc21~X!
]2f (1)

]j]X
1

]

]X S c21~X!
]f (1)

]j D G
1

1

2
c22~X!@FGS

(1)1 f (1)#
]2f (1)

]j2
,1•••. ~A5!

The explicit expressions ofR( j ) and S( j ) appearing in Eqs.
~60! and ~61! read

-

r

5-11
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R(1)50, ~A6!

R(2)526I 1A4~X!aNL,00
(1) 2

3

2

I 1

I 0
A3~X!

]f (1)

]j

2
1

2
c22~X!

]2aNL,00
(1)

]j2
2aNL,00

(1) ]f (1)

]j

1
1

2
A~X!c22~X!S ]f (1)

]j D 2

13I 0A~X!~aNL,00
(1) !2,

~A7!

S(1)50, ~A8!
05360
S(2)5
3I 1

4I 0
A3~X!c22~X!

]2f (1)

]j2
1c21~X!

]A

]X

]f (1)

]j

1
1

2
A~X!Fc21~X!

]2f (1)

]j]X
1

]

]X S c21~X!
]f (1)

]j D G
1c22~X!

]aNL,00
(1)

]j

]f (1)

]j
1

1

2
c22~X!aNL,00

(1) ]2f (1)

]j2
.

~A9!

The other higher-orderP( j ),Q( j ),R( j ), andS( j ) are not needed
in our discussion.
v.
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