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Abstract
We investigate the interference pattern evolution process for a coherent array
of Bose–Einstein condensates in a magnetic trap after the optical lattices are
switched off. It is shown that there is a decay and revival of the density
oscillation for the condensates confined in the magnetic trap. We find that,
due to the confinement of the magnetic trap, the interference effect is much
stronger than that found in the experiment performed by Pedri et al (Pedri P
et al 2001 Phys. Rev. Lett. 87 220401), where the magnetic trap is also switched
off. The interaction correction to the interference effect is also discussed for
the density distribution of the central peak.

1. Introduction

The development of laser trapping and evaporative cooling technologies has yielded intriguing
Bose–Einstein condensates (BECs) [1], a state of matter in which many atoms are in the same
quantum mechanical state. The realization of BECs has enabled remarkable theoretical and
experimental advances to be made on this exotic quantum system [2, 3]. Recently, optical
lattices were used to investigate further the unique character of ultra-cold atoms [4]. The
applications of optical lattices to ultra-cold atoms show great promise; for example, the
quantum computing scheme proposed in [5, 6]. Experimentally, the macroscopic quantum
interference effect [7] and thermodynamic properties [8] of the BECs in optical lattices have
been thoroughly investigated. In addition, the superfluid and dissipative dynamics [9, 10] of a
BEC in the optical lattices have also been investigated experimentally. In particular, through
the application of optical lattices, the quantum phase transition from a superfluid to a Mott
insulator in Bose–Einstein condensed gases has been observed in a recent experiment [11].
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Recently, in an experiment performed by Pedri et al [12], the expansion of a coherent
array of BECs was carried out to illustrate the interference effect when both the magnetic trap
and optical lattices are switched off. In another experiment performed by Morsch et al [13],
the expansion of the condensates is investigated when only the magnetic trap is switched off.
In this paper, we present a theoretical investigation of the expansion of the condensates when
only the optical lattices are switched off. Due to the confinement of the harmonic potential, we
find that there are several interesting phenomena not encountered in the experiments by Pedri
et al [12] and Morsch et al [13]. In the presence of the harmonic potential, the interference
effect would be much stronger than the case when the magnetic trap is also switched off. In this
situation, research shows that the interaction between atoms would give rise to an important
correction, in contrast to the case investigated by Pedri et al [12].

2. The wavefunction in harmonic potential after optical lattices are switched off

In the experiment conducted by Pedri et al [12], the external potential of the Bose gas was
given by [12]

V = 1

2
m(ω2

x x2 + ω2
⊥(y2 + z2)) + s ER cos2

(
2πx

λ
+

π

2

)
. (1)

The last term represents the external potential due to the presence of the optical lattices. In the
above expression, ωx and ω⊥ are the axial and radial frequencies of the harmonic potential,
respectively. In addition, λ is the wavelength of the retroreflected laser beam, and s ER denotes
the depth of the optical lattices. For the optical lattices created by the retroreflected laser
beam, the last term has a period d = λ/2. In other words, d can be regarded as the distance
between two neighbouring wells induced by the optical lattices. In this paper, the experimental
parameters in [12] are used to calculate various physical quantities, thus it would be useful to
give them here. The experimental parameters in [12] are ωx = 2π × 9 Hz, ω⊥ = 2π × 92 Hz,
λ = 795 nm, ER = 2π h̄ × 3.6 kHz and s = 5.

Due to the presence of the optical lattices, there is an array of condensates formed in the
combined potential, when the temperature is lower than the critical temperature. In this work,
we investigate the case of the strong tunnelling between neighbouring BECs, which holds in
the experiment peformed by Pedri et al [12]. In this situation, all the condensates are fully
coherent, and can be described by a single order parameter. To emphasize the role of the
optical lattices, our research is carried out mainly on the character of the coherent array of
condensates in the x-direction.

In the presence of a magnetic trap, the number of atoms in each well should be different.
Based on the analysis of the three-dimensional model of the condensates in the combined
potential [12], the ratio between the number of condensed atoms in the kth and central wells is
given by Nk/N0 = (1−k2/k2

M)2, where 2kM +1 [12] represents the total number of condensates
induced by the optical lattices. In this situation, using the Gaussian approximation in the x-
direction for each well, the normalized wavefunction in coordinate space takes the form

ϕ0(x) = An

kM∑
k=−kM

(
1 − k2

k2
M

)
exp[−(x − kd)2/2σ 2], (2)

where σ denotes the width of the condensate in each well. It can be calculated by numerical
minimization of the energy of the condensates [12]. In the calculations that follow in this
paper, σ = 0.25d [12] is used for s = 5. In the above expression, the normalized constant An
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takes the form

An = 1√
(16k4

M − 1)/15k3
Mπ1/4σ 1/2

. (3)

It is well known that once the wavefunction at an initial time is known, the wavefunction
at a later time can be obtained through the following integral equation [14]:

ϕ0(x, t) =
∫ ∞

−∞
K (x, t; y, t = 0)ϕ0(y, t = 0) dy, (4)

where ϕ0(y, t = 0) is the wavefunction at the initial time t = 0 which is given by equation (2),
and K (x, t; y, t = 0) is the well known propagator. For the atoms in the harmonic potential,
the propagator can be expressed as [14]

K (x, t; y, t = 0) =
[

mωx

2π ih̄ sin ωx t

]1/2

exp

{
imωx

2h̄ sin ωx t
[(x2 + y2) cos ωx t − 2xy]

}
. (5)

From the formulae (2), (4) and (5),after a straightforward calculation,one obtains the analytical
result of the wavefunction confined in the magnetic trap

ϕ0(x, t) = An

√
1

sin ωx t (ctgωx t + iγ )

kM∑
k=−kM

(
1 − k2

k2
M

)
exp

[
− (kd cos ωx t − x)2

2σ 2 sin2 ωx t (ctg2ωx t + γ 2)

]

× exp

[
− i(kd cos ωx t − x)2ctgωx t

2γ σ 2 sin2 ωx t (ctg2ωx t + γ 2)

]

× exp

[
i(x2 cos ωx t + k2d2 cos ωx t − 2xkd)

2γ σ 2 sin ωx t

]
, (6)

where we have introduced a dimensionless parameter γ = h̄/mωxσ
2. Assuming N denotes

the total number of particles in the condensates, the density distribution in the x-direction is
n(x, t) = N |ϕ0(x, t)|2.

3. The periodicity of the density distribution and the motion of the n = ±1 peak

Due to the confinement of the harmonic potential, the density distribution in the x-direction
should exhibit periodic character. From equation (6) it is easy to show that the period of the
density distribution n(x, t) is determined by ωx T = π . For the experiment performed in [12],
ωx = 2π ×9 Hz, which means that the period of the density distribution is given by 500/9 ms.

In figure 1 n(x = 0, t) is displayed when only the optical lattices are switched off. The
periodicity of the density is clearly shown in the figure and is in agreement with the analytical
result given by T = π/ωx . We see that the density at x = 0 reaches a maximum value at time
tm = (2m − 1)π/2ωx , with m denoting a positive integer. At time tm , the wavefunction takes
the form

ϕ0(x, tm) = An

√
1

iγ

kM∑
k=−kM

(
1 − k2

k2
M

)
exp

[
− x2

2σ 2γ 2
− i

xkd

γ σ 2

]
. (7)

The maximum density at x = 0 is then

n(x = 0, tm) = N A2
n

γ

[ kM∑
k=−kM

(
1 − k2

k2
M

)]2

. (8)

In the case of kM � 1, the above expression can be approximated as follows:

n(x = 0, tm) ≈ Nα2
x−ideal , (9)
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Figure 1. Displayed is the density of the condensate at x = 0 versus time t , after the optical lattice
is switched off. Here the density n(x = 0, t) is in units of N A2

n . We can see clearly that there is a
decay and revival of the density oscillation. In addition, there is a periodicity of the density due to
the confinement of the magnetic trap.

where α2
x−ideal is given by

α2
x−ideal = 5kMmωxσ

3π1/2h̄
. (10)

In the experiments, the depth of the optical lattices can be changed through the variation
of the parameter s. From [12], we know σ ∝ 1/s1/4 and kM ∝ 1/σ 1/5. Therefore,
n(x = 0, tm) ∝ 1/s1/5. This shows that in the non-interacting model, the maximum density
at x = 0 decreases with the increase of the depth of the optical lattices.

In figures 2(a)–(d), we show the evolution of the density distribution of the condensates
confined in the magnetic trap, after the optical lattices are switched off. The density
distributions are shown at t = 0, 0.1π/ωx , 0.3π/ωx and 0.5π/ωx in these figures. The
motion of the n = ±1 peaks is also clearly shown in these figures. The oscillating motion of
the n = ±1 peaks is due to the confinement of the harmonic potential. In fact, the motion of
the n = ±1 peaks can be described very well using classical harmonic motion. Using classical
harmonic motion, the motion of the n = ±1 peaks is determined by the following expression:

xn=±1(t) = ± 2π h̄

mωxd
cos

(
ωx t − π

2

)
. (11)

When obtaining the above formula, we have used the fact that the momentum distribution is
characterized by sharp peaks at the values px = n2π h̄/d [12]. The solid curve in figure 3
shows the harmonic motion of the n = 1 peak using the above formula, while the circles show
the result given by equation (6). We see that the classical harmonic motion agrees quite well
with the result given by equation (6). In a sense, equation (11) describes the motion of the
centre of mass of the n = ±1 peak. Thus, we anticipate that the interaction between atoms
will not change the motion of the n = ±1, although it will affect the density and width of the
n = ±1 peak.

From figure 2(d) we see that at time tm the density distribution in the x-direction exhibits
a very sharp peak at the centre of the magnetic trap. The maximum density of the central
peak is given by equation (9). As a comparison, assume there are N atoms confined in an
identical magnetic trap, but there are no optical lattices to induce the interference effect. In
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Figure 2. (a)–(d) show the evolution of the density distribution with time t , after the optical lattices
are switched off. The density distributions are shown at t = 0, 0.1π/ωx , 0.3π/ωx and 0.5π/ωx .
The emergence and motion of the n = ±1 peaks are clearly shown in these figures. Here the
density distribution n(x, t) is in units of N A2

n , while the location x is in units of d, i.e. the distance
between two neighbouring condensates.
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Figure 3. Displayed is the motion of the n = 1 peak, after the optical lattices are switched off.
Here the location x(t)n=1 of the n = 1 peak is in units of d. The solid curve is the result calculated
from the classical harmonic motion given by equation (11). The squares show the motion of the
n = 1 peak obtained from the numerical result given by equation (6). We see that the classical
harmonic motion agrees quite well with the numerical result.

this situation, in the x-direction, the density distribution at x = 0 is given by

nmag(x = 0) = πµ2
mag

gmω2
⊥

, (12)
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where µmag is the chemical potential of the Bose gas confined in the magnetic trap. The ratio
between n(x = 0, tm) and nmag(x = 0) is then

n(x = 0, tm)

nmag(x = 0)
= Ngmω2

⊥α2
x−ideal

πµ2
mag

. (13)

For the experimental parameters in [12], n(x = 0, tm)/nmag(x = 0) = 29.6. This shows
clearly that there is a very strong interference effect for the case considered here.

If both the magnetic trap and optical lattices are switched off, there is also a sort of
interference effect. The maximum value of the density distribution in this case is given by

nbs(x = 0) = N0√
πσ

. (14)

From equation (14) nbs(x = 0) ∝ s1/4. In contrast to the case where only the optical lattices
are switched off, nbs(x = 0) decreases with the decrease of the depth of the optical lattices.

The ratio between nbs(x = 0) and nmag(x = 0) is then

nbs(x = 0)

nmag(x = 0)
= N0gmω2

⊥
π3/2σµ2

mag

. (15)

For the experimental parameters presented in [12], we have nbs(x = 0)/nmag(x = 0) = 2.2.
From equations (9) and (14), n(x = 0, tm)/nbs(x = 0) = 13.7. Therefore, when only the
optical lattices are switched off, the interference effect would be much stronger than the case
when the magnetic trap is also switched off. When only the optical lattices are switched off,
at tm the density of the central peak is very high, and we anticipate that in this situation the
interaction between atoms would give important correction.

4. The decay and revival of the density oscillation

From figure 1 we see that there is a decay and revival phenomenon of the density oscillation at
x = 0. We now discuss this unique character. To proceed, it is useful to introduce an important
timescale which determines when the interference between two neighbouring condensates
begins to occur. Before the magnetic trap and optical lattices are switched off, from the
Gaussian approximation of the condensates in each well, the width of the condensates in each
well is given by

�x2
0 =

∫
x2 exp[−x2/σ 2] dx∫

exp[−x2/σ 2] dx
. (16)

It is easy to obtain �x0 = σ/
√

2 from the above formula. When the optical lattices are
switched off, for a time period much smaller than π/ωx , the condensates can be approximated
as a free expansion and the width of the condensates would increase in this situation. Based
on the analysis of the spreading of the wavepacket, the width of each condensate is given by

�x(t) = �x0

√
1 +

h̄2t2

m2�x4
0

. (17)

When �x(t) = d , the condensates in neighbouring wells begin to interfere with each other.
By setting �x(t) = d in the above formula, we obtain a timescale tw which determines when
the interference between neighbouring condensates begins to occur. From equation (17) it is
easy to find that the following analytical result for tw can give a rather good approximation:

tw = σdm√
2h̄

. (18)
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Figure 4. Displayed is the density of the condensate at x = kM d/2 versus time t , after the optical
lattices are switched off. Here the density n(x, t) is in units of N A2

n . There is a decay and revival
phenomenon of the density oscillation.

From equations (17) and (18), for t > tw , one obtains the following useful result:

�x(t) = t

tw
d. (19)

As illustrated in figure 1, the oscillation of the density at x = 0 will ultimately cease when
t > kMtw . However, when the time approaches π/ωx , the density oscillation will reappear.
Note that the time for the revival of the density oscillation is determined solely by the axial
frequency of the harmonic potential. This shows that the confinement of the harmonic potential
plays a crucial role in the revival phenomenon of the density oscillation. To further verify the
decay and revival of the density oscillation, figure 4 shows the density at x = kMd/2. The
analogous decay and revival of the density oscillation are illustrated clearly in the figure.
However, the density oscillation disappears at a longer time t = 1.47kMtw , in comparison with
the case at x = 0.

In figure 5 we display the disappearance time of the density oscillation for different
locations in the region 0 < t < π/ωx . We can give a rather simple interpretation of this
result. When the optical lattices are switched off, the width of the expanding condensates in
each well will increase. For the location at x = 0, there are more and more expanding BECs
which interfere at this point with the time development. This is the reason why the density at
the point x = 0 will oscillate intensely. When t > kMtw , however, all expanding BECs have
participated in the interference at the point x = 0. Therefore, the oscillation of the density at
x = 0 will cease at a time greater than kMtw . Generalizing this result, the disappearance time
of the density oscillation for different locations is given by the following simple expression:

t = (kM + x/d)tw. (20)

The solid line in figure 5 displays the above analytical result. We see from figure 5 that
this simple expression agrees well with the result given by equation (6). Perhaps the slight
difference from the result given by equation (6) lies in the fact that we do not account for the
effect of a non-uniform atom distribution in each well when obtaining equation (20).

It is worth pointing out that the disappearance of the density oscillation does not mean
the disappearance of the interference effect between the expanding condensates. When
0 < t � (2kM + 1)tw there are only a few expanding condensates interfering with
each other, and there are interference fringes (or density oscillation) in this situation. For
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Figure 5. Displayed is the disappearance time of the density oscillation for different locations.
Here the location x is in units of d, while the time t is in units of the timescale tw . The solid line
is obtained from the formula (20), while the squares show the result obtained directly from the
numerical result given by equation (6). We see that the analytical formula (20) can give a good
description for the disappearance of the density oscillation.

(2kM + 1)tw < t < π/ωx − (2kM + 1)tw, however, all expanding condensates will interfere
with each other, and this means the emergence of the diffraction fringes. In fact, n = 0
and ±1 peaks in figures 2(a)–(d) should be regarded as the diffraction fringes, rather than
the interference fringes. Note that the phenomena of diffraction and interference are basically
equivalent. Different from the interference phenomenon,however, the diffraction phenomenon
should be regarded as a consequence of interference from many coherent wave sources. In
a sense, equation (20) gives the emergence time of the diffraction fringes, which means the
disappearance of the density oscillation.

5. Interaction correction to the central peak at tm

In the case of the non-interacting model, we have shown that, at time tm , there would be a
sharp central peak in the magnetic trap. In this case, the interaction between atoms cannot be
simply omitted, in contrast to the case when the magnetic trap is also switched off. At time
tm , the central density peak in the x-direction can be approximated as a Gaussian distribution.
After the optical lattices are switched off, using the Thomas–Fermi approximation in the radial
direction, the square of the modulus of the three-dimensional wavefunction at time tm takes
the form

|ϕ0(x, r⊥, tm)|2 = α2
xα

2
⊥ exp

[
−2x2

R2
x

](
1 − r2

⊥
R2

⊥

)
, (21)

where R2
⊥ =

√
2µ0/mω2

⊥ with µ0 = mω2
xk2

Md2/2 [12]. In the above expression, αx =
(2/π)1/4/

√
Rx and α⊥ =

√
2/π R2

⊥ are the normalized constants in the axial and radial

directions, respectively. Obviously, Nα2
x represents the density n(x = 0, tm) in the x-direction.

Due to the repulsive interaction between atoms, we anticipate that α2
x < α2

x−ideal .
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Assume Eint and Ekin are the interaction energy and kinetic energy of the central peak at
tm , respectively. The interaction energy of the central peak is given by

Eint = gN2

2

∫
|ϕ0(x, r⊥, tm)|4 dV =

√
2gN2α2

x

3π R2
⊥

. (22)

Assuming the total energy of the condensates is Eall , we have

Ekin + Eint + Eho = Eall , (23)

where Eho is the potential energy of the condensates. For the central peak, Eho can be safely
omitted. In the case of the non-interacting model, Eall will transform fully to the kinetic energy
and potential energy of the condensates once the optical lattices are switched off. Due to the
presence of the repulsive interaction between the atoms, the maximum density of the central
peak would be smaller than the result of the non-interacting model.

Note that the kinetic energy of the central peak cannot be calculated using
N

∫
h̄2

2m (∇√|ϕ0(x, r⊥, tm)|2)2 dV , because the phase factor is different for a different well
(see equation (7)). From the uncertainty relation, assume Ekin ∝ 1/R2

x ∝ α4
x . In the presence

of repulsive interaction, we have

Ekin = α4
x

α4
x−ideal

Eall . (24)

From equations (22)–(24) one obtains the following equation to determine α2
x :

β2 + θβ − 1 = 0, (25)

where β = (αx/αx−ideal )
2. The value of β reflects how the repulsive interaction between

atoms reduces the density of the central peak. In the above expression, the dimensionless
parameter θ = Eint(αx = αx−ideal )/Eall . From equation (25) we have

β = −θ +
√

θ2 + 4

2
. (26)

Now let us turn to discuss the total energy of the condensates which is necessary to calculate
the value of β. The total energy of the condensates can be obtained through the sum of the
energy of the condensates in each well before the optical lattices are switched off. Before the
optical lattices are switched off, the normalized wavefunction in the kth well takes the form

ϕ0k(x, r⊥) = ϕ0k(x)ϕ0k(r⊥) (27)

where

ϕ0k(x) =
(

1√
πσ

)1/2

exp

[
− (x − kd)2

2σ 2

]
, (28)

and ϕ0k(r⊥) is the normalized wavefunction in the radial direction. From equation (27), we
have

Eall =
kM∑

k=−kM

{
Nk

∫
ϕ0k(x, r⊥)

[
− h̄2

2m
∇2 +

1

2
mω2

xe x2 +
1

2
mω2

⊥r2
⊥

]
ϕ0k(x, r⊥) dV

+
gN2

k

2

∫
|ϕ0k(x, r⊥)|4 dV

}
, (29)

where ωxe is the effective harmonic frequency in the x-direction of the well induced by the
optical lattices. The last term in the above expression represents the interaction energy of the
condensates in each well, and it is easy to verify that it can be safely omitted. In addition,
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Figure 6. Displayed is the ratio between n(x = 0, tm , s) and n(x = 0, tm , s = 5) for the interacting
and non-interacting models.

the kinetic energy and potential energy in the radial direction can be also omitted because
ωxe � ω⊥ and h̄ωxe � µ0. In this case, one gets

Eall ≈ N

(
h̄2

4mσ 2
+

1

4
mω2

xeσ
2

)
. (30)

For the experimental parameters presented in [12], from the formulae (22), (26) and (30),
calculation shows that β = 0.80. This clearly shows that the repulsive interaction between
atoms would reduce the density of the central peak at tm .

With the variation of the parameter s, the maximum density of the central peak can also
be calculated based on the method given here. In the interacting model, the solid curve in
figure 6 shows the ratio between n(x = 0, tm, s) and n(x = 0, tm, s = 5). The result of the
non-interacting model is also shown in the figure.

6. Discussion and conclusion

In brief, in this work the evolution process of the condensates is investigated after the optical
lattices are switched off. We find that the density oscillation exhibits a decay and revival
phenomenon, based on the numerical result of the evolution of the density distribution. The
decay of the density oscillation is interpreted as the emergence of the diffraction phenomenon,
which is considered to result as a consequence of interference from a large number of coherent
expanding condensates. Due to the confinement of the harmonic potential, the density
distribution displays periodic character, and it is this periodic character which leads to the
revival of the density oscillation. In contrast to the condensates in the magnetic trap, there is
no revival of the density oscillation, when both the magnetic and optical lattices are switched
off. In addition, in the case of the non-interacting model, it is shown that the maximum value
of the density distribution at x = 0 would be approximately 30 times larger than the case when
there are no optical lattices to induce the interference effect.

It is shown here that the repulsive interaction between atoms has the effect of reducing
the maximum density of the central peak. In a real experiment performed in the future, it
might be that the maximum density experimental result for the central peak is smaller than the
theoretical prediction given here, because it is possible that there is a loss of the total energy
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of the condensates during the optical lattice removal process. For attractive interaction, such
as for Li, the role of interaction would become very important when the atoms are confined
by the combined potential. For example, when only the optical lattices are removed, based on
the non-interacting model, the density at x = 0 would increase largely due to the interference
and confinement of the magnetic trap. In addition, due to the attractive interaction between
atoms, the density of the central peak would increase rapidly. In this situation, it is possible
that the condensates might collapse and even explode at a subsequent time, in analogy with the
dynamic process of collapsing and exploding atoms [15] produced by switching the interaction
from repulsive to attractive.
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