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Anomalous fluctuations of two-dimensional Bose-Einstein condensates
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We investigate the particle-number fluctuations due to the collective excitations created in a two-dimensional
~2D! and a quasi-2D Bose-Einstein condensates~BECs! at low temperature. We find that the fluctuations
display an anomalous behavior, i.e., for the 2D BEC they are proportional toN2, whereN is the total number
of particles. For the quasi-2D BEC, the particle-number fluctuations are proportional not only toN2 but also to
the square root of the trapping frequency in the strongly confined direction.
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The remarkable experimental realization of Bose-Einst
condensates~BECs! has stimulated intensive theoretical a
experimental studies on weakly interacting Bose gases@1#.
Much attention has been paid to the investigations of
thermodynamic properties especially the particle-num
fluctuations of three-dimensional~3D! interacting Bose gase
@2–7#. Recently, quasi-1D and quasi-2D BECs have be
realized@8,9#, which with no doubt provides many new op
portunities to explore the fascinating quantum statisti
property of macroscopic quantum systems in low dim
sions. For a 2D Bose gas, the particle-number fluctuati
due to the exchange of atoms between condensate and
mal atoms have been addressed recently in Refs.@10,11#.

It is well known that for the temperature far below th
critical temperature, the collective excitations play a dom
nant role for the fluctuations of BEC. The fluctuations
condensate due to collective excitations in 3D Bose ga
have been discussed in Refs.@2,5,12#. The scaling behavior
of a 2D interacting condensate confined in a box was inv
tigated in Ref.@5#. In the present paper, we shall discuss
fluctuations originated from collective excitations for 2D a
quasi-2D interacting condensates confined in a magn
trap.

For the Bose-condensed gas confined in a magnetic
the total number of particlesN in the system is conserve
and hence a canonical~or microcanonical! ensemble should
be used. Within the canonical ensemble, a fairly gene
method has been developed recently@12,13# for studying the
thermodynamic properties of the interacting Bose-conden
gases based on the calculation of probability distribut
functions. The purpose of this work is to investigate t
particle-number fluctuations of a 2D BEC due to the colle
tive excitations within a canonical ensemble.

For this purpose we first extend our previous theory
veloped in Refs.@12,13# on particle-number fluctuations i
BECs by including an effect of the quantum depletion. Fo
Bose gas confined in a trap, based on Bogoliubov theory@14#
one can obtain that at low temperature, the total numbe
particles out of the condensate due to the collective exc
tions is given by

^NT&5N2^N0&5 (
nlÞ0

^Nnl&

5 (
nlÞ0

F S E unl
2 dV1E vnl

2 dVD f nl1E vnl
2 dVG , ~1!
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where ^NT& and ^N0& are, respectively, the number of ex
cited atoms and atoms in the condensate.f nl51/@exp(b«nl)
21# is the average number of collective excitationnl present
in the system at thermal equilibrium@b51/(kBT), kB is
Boltzmann constant andT is temperature#, while «nl5\vnl
is the energy of the collective mode characterized by
quantum numbersn and l. In the above equation, the term
*vnl

2 dV represents the effect of the quantum depletion wh
does not vanish even atT50. The quantitiesunl andvnl are
determined by the following coupled equations:

S 2
\2

2m
,21Vext~r !2m12gn~r ! Dunl1gn0~r !vnl5«nlunl ,

~2!

S 2
\2

2m
,21Vext~r !2m12gn~r ! D vnl1gn0~r !unl

52«nlvnl , ~3!

where Vext(r ) is the trapping potential confining the Bos
gas, andm andg are, respectively, the chemical potential
the system and interatomic interaction constant.n(r ) and
n0(r ) are the density distributions of the Bose gas and
condensate, respectively. From Eq.~1!, we see that̂Nnl& can
be taken as the average number of the excited atoms re
to the collective modenl, while ^Nnl

B &5 f nl is the average
number of the collective excitationnl. From the form of Eq.
~1!, we see that the ratio between^Nnl& and^Nnl

B & is given by

hnl5
^Nnl&

^Nnl
B &

5

S E unl
2 dV1E vnl

2 dVD f nl1E vnl
2 dV

f nl
. ~4!

Within the canonical ensemble, the partition function
the system withN atoms takes the form

Z@N#5( 8 expF2bS N0«01 (
nlÞ0

Nnl
B «nlD G . ~5!

In the above equation, we have omitted the interaction
tween collective excitations. The prime in the summati
represents the condition that the total number of atoms in
©2003 The American Physical Society01-1
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system should be conserved within the canonical ensem
i.e., (nlÞ0Nnl5(nlÞ0hnlNnl

B 5N2N0 . One should note tha
in Eq. ~5!, Nnl

B is the occupation number of the collectiv
excitationnl and should be an integer. For the convenien
of calculations, by separating out the ground statenl50
from the statenlÞ0, we have

Z@N#5 (
N050

N

$exp@2bN0«0#Z0~NT!%, ~6!

whereZ0(NT) stands for the partition function of a fictitiou
system comprisingNT5N2N0 excited atoms which take
the form

Z0~NT!5 (
SnlÞ0hnlNnl

B
5NT

exp@2bNnl
B «nl#. ~7!

The free energy of the fictitious system isA0(NT)5
2kBT ln Z0(NT).

By using the developed saddle-point method propose
Refs. @12,13#, we introduce a generating functionG0(T,z)
that is given by

G0~T,z!5 (
NT50

`

zNTZ0~NT!. ~8!

Due to the fact that there is a confinement condit
(nlÞ0hnlNnl

B 5NT for NT in the above equation, we have

G0~T,z!5PnlÞ0H (
Nnl

B
50

`

zhnlNnl
B

exp@2bNnl
B «nl#J

5PnlÞ0

1

12zhnl exp@2b«nl#
. ~9!

Z0(NT) can be obtained by noting that it is the coefficient
zNT in the expansion ofG0(T,z). Thus, we have

Z0~NT!5
1

2p i R dz
G0~T,z!

zNT11
. ~10!

Similar to the case of the developed saddle-point met
for the ideal Bose gas@12,13#, it is easy to get the following
useful relations:

NT5 (
nlÞ0

hnl

exp@b«nl#z0
2hnl21

~11!

and

2b
]

]N0
A0~NT!5 ln z0, ~12!

wherez0 is the well-known saddle point.
By using the above relations, the probability distributi

of the system withN0 atoms in the condensate can be o
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tained based on the method developed in Refs.@12,13#. The
normalized probability distribution function is given b
@12,13#

Gn~N,N0!5An expF E
N0

p

N0
a~N,N0!dN0G , ~13!

whereAn is a normalized constant andN0
p is the most prob-

able value of the atomic number in the condensate. If tak
the ground-state energy of the system as the zero poin
energy,a(N,N0) is determined by

N0
p2N05 (

nlÞ0
F hnl

exp@b«nl#exp@2a~N,N0!#21

2
hnl

exp@b«nl#21G . ~14!

For temperature below the critical temperature of BEC a
for b\v'!1 ~this condition is satisfied in the present-da
experiments of BECs!, the above equation can be approx
mated to be

N0
p2N05 (

nlÞ0
F 1

exp@b«nl /hnl#exp@2a~N,N0!/hnl#21

2
1

exp@b«nl /hnl#21G . ~15!

In fact, one can get the result given by Eq.~15! through a
simple physical picture. Taking the ground-state energy
the zero point of energy, the total energy of the system
then

E5(
nl

Nnl
B «nl5(

nl
Nnl«nl

e f f , ~16!

where«nl
e f f can be regarded as the effective energy level o

single particle characterized by the quantum numbersn and
l. From Eqs.~4! and ~16!, «nl

e f f takes the form

«nl
e f f5

«nl

E unl
2 dV1E vnl

2 dV1E vnl
2 dV/ f nl

. ~17!

Thus at low temperature, the system can be regarded
fictitious noninteracting Bose system with the effective e
ergy level given by«nl

e f f . The canonical partition function o
the system reads as

Zcp5( 8 expF2b(
nl

Nnl«nl
e f fG , ~18!

where the prime in the summation represents the condi
SnlÞ0Nnl5NT . It is easy to confirm that one can get th
result given by Eq.~15! from this canonical partition func-
tion.

From Eq. ~15!, after a straightforward calculation, on
obtains
1-2
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Gn~N,N0!5An expF2
~N02N0

p!2

2J G , ~19!

where

J5 (
nlÞ0

F S E unl
2 dV1E vnl

2 dVD 2S kBT

«nl
D 2

12S E unl
2 dV1E vnl

2 dVD E vnl
2 dVS kBT

«nl
D

1S E vnl
2 dVD 2G . ~20!

Below the critical temperature,N0
p@1, the fluctuations of the

condensate contributed from the collective excitations
given by

^d2N0&5^N0
2&2^N0&

25J. ~21!

Generally speaking, Eqs.~20! and ~21! can be used to
investigate the fluctuations originated from the collective
citations in any dimension. Now we specify the case of 2
For Eqs.~2! and ~3!, unl andvnl are given by@15#

unl'2vnl' iAgn0~r !

2«nl
xnl . ~22!

For a Bose gas confined in a harmonic potential,Vext(r )
5mv'

2 (x21y2)/2, xnl and «nl(5\vnl) are determined by
the eigenequation

2
v'

2

2
“•@~R'

2 2r'
2 !“xnl#5vnl

2 xnl , ~23!

whereR' is the radius of the condensate. After a straig
forward calculation, one obtains the excitation frequen
vnl5v'A2n212nu l u12n1u l u and

xnl5
Anl

R'

e2 i l fHnlS r'

R'
D , ~24!

where Anl is a normalized constant determined
* uxnlu2dV51. In the above equation,Hnl(x) takes the form

Hnl~x!5xu l u(
j 50

n

bjx
2 j , ~25!

where b051 and the coefficientsbj satisfy the recurrence
relation bj 11 /bj5(4 j 214 j 14 j u l u24n224n24nu l u)/(4 j 2

14 j u l u18 j 14u l u14).
Substituting the above results into Eqs.~20! and~21!, we

obtain the fluctuations of particle number in the condens
for the 2D Bose gas:
05560
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^d2N0&5
mg

\2 FN2t2~12t2!

pz~2!
g11

N3/2t~12t2!

p@z~2!#1/2
g2

1
N~12t2!

4p
g3G , ~26!

where t5T/Tc
0 with Tc

05@N/z(2)#1/2\v' /kB the critical
temperature corresponding to an ideal Bose gas in 2D.
coefficientsg1 , g2, andg3 are given by

g15 (
nlÞ0

bnl
2

~2n212nu l u12n1u l u!2
,

g25 (
nlÞ0

bnl
2

~2n212nu l u12n1u l u!3/2
,

g35 (
nlÞ0

bnl
2

~2n212nu l u12n1u l u!
, ~27!

with

bnl5

E
0

1

~12x2!x~Hnl!
2dx

E
0

1

x~Hnl!
2dx

. ~28!

By a numerical calculation, we obtaing150.87, g251.43,
andg354.37.

From Eq.~26!, we have the following two conclusions:
~i! ^d2N0& is proportional to the interatomic interactio

constantg. Therefore, for an ideal Bose gas, there is no co
tribution to the condensate fluctuations due to the collec
excitations. This is physically reasonable because the co
tive excitations, which are dominant at low temperatu
originate from the interaction between atoms.

~ii ! The leading term for the fluctuations of the partic
number in the condensate is proportional toN2. This anoma-
lous behavior comes from the low-dimensional property
the system. Noting that in the case of 3D Bose-conden
gas, the fluctuations of the condensate due to the collec
excitations are proportional toN4/3 @2,12#. Thus the lower the
dimension of the system is, the larger the condensate fl
tuations are. Thus at low temperature, a 2D Bose gas c
fined in a harmonic trapping potential, which has been re
ized recently by Go¨rlitz et al. @8#, is an ideal system for the
observation of anomalous behavior of the fluctuations of p
ticle number in condensates.

In real experiments@8,9#, the Bose gases are confined in
quasi-2D harmonic trap. For a quasi-2D Bose gas, the c
pling constant is given byg'2A2p\2as /(mlz) @16#, which
is fixed by as-wave scattering lengthas and the oscillator
lengthl z5(\/mvz)

1/2 in thez direction, wherevz is the trap
frequency in thez direction. In this case, we have
1-3
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^d2N0&5
2A2pas

l z
FN2t2~12t2!

pz~2!
g11

N3/2t~12t2!

p@z~2!#1/2
g2

1
N~12t2!

4p
g3G . ~29!

From the above equation, we see that on one hand,^d2N0& is
proportional toN2 ~for largeN), and on the other hand, it i
also proportional tovz

1/2 because the factor 1/l z appearing in
Eq. ~29!. This shows that the trapping frequency in thez
direction plays an important role for the particle numb
fluctuations due to the collective excitations. Thus, one
control the particle-number fluctuations by adjusting t
trapping frequency in thez direction. Compared with the
contribution due to the thermal atoms@see Eq.~39! in Ref.
@10##, the particle-number fluctuations due to the collect
excitations are strongly dependent on the trapping freque
in thez direction. From the relation between^d2N0& andvz ,
05560
r
n

cy

we see that the confinement of the Bose-condensed gas
the effect of increasing the fluctuations due to the collect
excitations. This result is consistent with the role of the
mensionality in the fluctuations of the condensate.

In conclusion, we have studied the particle-number flu
tuations of a condensed 2D Bose gas confined in a harm
trapping potential by using the probability distribution o
tained through a modified saddle-point method. We ha
found that the condensate fluctuations are proportional to
interatomic interaction constantg and the square of total par
ticle number of the system. This anomalous behavior of
fluctuations makes it very promising to experimentally o
serve the effect of the particle-number fluctuations. The t
oretical method provided here is quite general and can
applied to investigate the particle-number fluctuations
quasi-1D Bose-condensed gases.
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