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Anomalous fluctuations of two-dimensional Bose-Einstein condensates
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We investigate the particle-number fluctuations due to the collective excitations created in a two-dimensional
(2D) and a quasi-2D Bose-Einstein condensd®EC9 at low temperature. We find that the fluctuations
display an anomalous behavior, i.e., for the 2D BEC they are proportioméd,tavhereN is the total number
of particles. For the quasi-2D BEC, the particle-number fluctuations are proportional not difiybtat also to
the square root of the trapping frequency in the strongly confined direction.
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The remarkable experimental realization of Bose-Einsteirwhere (N;) and (Ny) are, respectively, the number of ex-
condensatetBECS has stimulated intensive theoretical and cited atoms and atoms in the condenséte= 11 exp(Ben)
experimental studies on weakly interacting Bose gadés —1]is the average number of collective excitationpresent
Much attention has been paid to the investigations of then the system at thermal equilibriumB=1/(kgT), kg is
thermodynamic properties especially the particle-numbego|tzmann constant antl is temperaturg while &, =%y,
fluctuations of three-dl_mensmnéﬂD) interacting Bose gases g the energy of the collective mode characterized by the
[2—-7]. Recently, quasi-1D and quasi-2D BECs have beemyantum numbers and!. In the above equation, the term
realized]8,9), which with no doubt provides many new op- rfvﬁldv represents the effect of the quantum depletion which

portunities to explore the fascinating quantum statistica . a I
property of macroscopic quantum systems in low dimen_does not vanish even at=0. The quantities,,, andv, are

sions. For a 2D Bose gas, the particle-number fluctuationd€termined by the following coupled equations:
due to the exchange of atoms between condensate and ther- ,
mal atoms have been addressed recently in R&€s11]. _ 0 g2 _

It is well known that for the temperatﬁre far below the(-( 2mv FVex(r) = pt2gn(r)
critical temperature, the collective excitations play a domi- 2
nant role for the fluctuations of BEC. The fluctuations of
condensate due to collective excitations in 3D Bose gases h? )
have been discussed in Refg,5,19. The scaling behavior (‘ ﬁv +Vexd 1) —p+ 2gn(f))l)nlJrgno(f)Um
of a 2D interacting condensate confined in a box was inves-
tigated in Ref[5]. In the present paper, we shall discuss the =—&nUnl, 3
fluctuations originated from collective excitations for 2D and
quasi-2D interacting condensates confined in a magnetighere V,,(r) is the trapping potential confining the Bose
trap. ] _ _ gas, andu andg are, respectively, the chemical potential of

For the Bose-condensed gas confined in a magnetic traghe system and interatomic interaction constart) and
the total number of particleBl in the system is conserved , (1) are the density distributions of the Bose gas and the
and hence a canonicéabr microcanonicalensemble should a@ondensate, respectively. From Etj, we see thaN,,) can

be used. Within the canonical ensemble, a fairly gener :
' ; e taken as the average number of the excited atoms related
method has been developed recentl,13 for studying the et(? the collective modenl, while <NEI>:nt is the average

thermodynamic properties of the interacting Bose-condens ber of th lecti — he f fE
gases based on the calculation of probability distribution™UMber of the collective excitatiaml, From the form of Eq.
functions. The purpose of this work is to investigate the(1), we see that the ratio betwe¢N,,) and(Ny) is given by

particle-number fluctuations of a 2D BEC due to the collec-

Uni+9No(M)vn=&nUn,

tive excitations within a canonical ensemble. 2 2 2
For this purpose we first extend our previous theory de- (Nnp) (j u“'dv+f vndV f”'+f vndV
veloped in Refs[12,13 on particle-number fluctuations in 77n|:<NB> - for - (4
nl

BECs by including an effect of the quantum depletion. For a
Bose gas confined in a trap, based on Bogoliubov thEbty

one can obtain that at low temperature, the total number o .
particles out of the condensate due to the collective excital® system wittN atoms takes the form

tions is given by

f Within the canonical ensemble, the partition function of

Z[N]=2' ex;{—ﬁ(Nowngo Nﬁﬂem) .

<NT>:N_<NO>:n§0 (Nn)
In the above equation, we have omitted the interaction be-

2 2 2 tween collective excitations. The prime in the summation
us,dv+ dav|f, + davi, (1 . .
(f n! JU”' ) n fv”' } @ represents the condition that the total number of atoms in the

-3

nl#0
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system should be conserved within the canonical ensembléined based on the method developed in Réfg,13. The
i.e., Zn120Nn=2n1207mNE=N—Ng. One should note that normalized probability distribution function is given by
in Eq. (5), N§, is the occupation number of the collective [12,13
excitationnl and should be an integer. For the convenience

of calculations, by separating out the ground state=0 G (N,Ng) =A, exr{f oa(N,NO)dNO

from the statenl#0, we have ND

N
: (13

N whereA,, is a normalized constant aif) is the most prob-
Z[N]= > {exq —BNoeo]Zo(N)}, (6)  able value of the atomic number in the condensate. If taking
No=0 the ground-state energy of the system as the zero point of

whereZ(N+) stands for the partition function of a fictitious E"€"9%-@(N.No) is determined by

system comprisingNt=N— N, excited atoms which takes .
the form NB—Ng= i
0 0 ngo exd Benlexd —a(N,Ng) ] -1
ZoNp= X exd-pNjeal (D) T 14
Sn1£07nINg =Nt exp[ﬁsm]—l .
The free energy of the fictitious system &(N)= For temperature below the critical temperature of BEC and
—kgT In Zy(Ny). for Bhw, <1 (this condition is satisfied in the present-day

By using the developed saddle-point method proposed iexperiments of BEQs the above equation can be approxi-
Refs.[12,13, we introduce a generating functidBy(T,z) mated to be
that is given by

1
> Np—No= — —
Go(T,Z): E ZNTZO(NT). (8) nl#0 eXF{BEnI/WnI]eXF{ a(N’NO)/nI’H] 1
NTZ0
- ! (15
Due to the fact that there is a confinement condition exd Ben/nml—1)

= NE =Ny for Ny in the above equation, we have )
nl=0 il =7 T d In fact, one can get the result given by Ef5) through a

o . simple physical picture. Taking the ground-state energy as
Go(T.2)=M 40| >, z"MNniexg — BNEen] the zero point of energy, the total energy of the system is
NE =0 then
1
=Tlo © E=2 Nien=2 Noefl', (16

1-z"exd — Ben] '

ff ;
Zo(N7) can be obtained by noting that it is the coefficient of Wheree ni- can be regarded as the effective energy level of a
2T in the expansion 06,(T,z). Thus, we have single particle characterized by the quantum numieasd

|. From Eqs.(4) and(16), &' takes the form
Go(T,2)
N+l

(10

€nl
fuﬁ,dv+f uﬁ,dv+f v2dVIf,,

Thus at low temperature, the system can be regarded as a
fictitious noninteracting Bose system with the effective en-
ergy level given bysﬁ,”. The canonical partition function of

eff__
enl =

1
ZO(NT)_ ﬁ § dz 17)

Similar to the case of the developed saddle-point method
for the ideal Bose gafdl 2,13, it is easy to get the following
useful relations:

NT= > 7’”'_ (11)  the system reads as
70 exf Benlz, M —1
and Zep=2 exl{—ﬁ%‘z \WEMUE (18
J _ where the prime in the summation represents the condition
_’Ba_l\loAO(NT)_In Zor (12) S 20Ny =Nr. It is easy to confirm that one can get the

result given by Eq(15) from this canonical partition func-
wherez, is the well-known saddle point. tion.
By using the above relations, the probability distribution From Egq. (15), after a straightforward calculation, one
of the system withN, atoms in the condensate can be ob-obtains
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No—N§)?
G, (N,Ng)=A, exp[—( 02: 2 } (19)
where
2 k T 2
2=, U uﬁldv+fvﬁ|dv> ( 2 )
nl#0 €nl
keT
+2U uﬁldv+f vﬁldv)fvﬁ,dv( 8B|>
n
2
+(fv§|dv) : (20)

Below the critical temperatur&§>1, the fluctuations of the

condensate contributed from the collective excitations are

given by
(8°Ng)=(N§)—(Ng)*=E. (21)

Generally speaking, Eq$20) and (21) can be used to
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on L MO NPP(1-t7)  N¥A(1-t?)
(FN=22 | i " T
N(1-t?)
+T73 ) (20

where t=T/T? with T?=[N/{(2)]¥% o, /kg the critical
temperature corresponding to an ideal Bose gas in 2D. The
coefficientsy,, y,, and y; are given by

yy= 2 ﬂﬁl
Yo (2n2+2nfl[+2n+1)2’

yy= 2 :Bﬁl
2 ifZo (2n2+2n|l|+2n+[1))¥?’

_ B
nizo (2n?+2n|l[+2n+|I])’

(27)

Y3

investigate the fluctuations originated from the collective ex-
citations in any dimension. Now we specify the case of 2D With

For Egs.(2) and(3), u, andv,, are given by 15]

nl Unl \V 2 Xnl -

For a Bose gas confined in a harmonic potenti&l,(r)
=mw? (x*+y?)/2, xn and e, (=fiw,) are determined by
the eigenequation

(22

2

w
_TLV-[(Rf—rf)VXmeﬁXm, (23

fl(l—xz)x(Hn,)zdx
0

(28)

nl 1
J X(Hp)2dx
0

By a numerical calculation, we obtaiy,=0.87, y,=1.43,
and y;=4.37.

From Eg.(26), we have the following two conclusions:

(i) (8°Ny) is proportional to the interatomic interaction
constanig. Therefore, for an ideal Bose gas, there is no con-
tribution to the condensate fluctuations due to the collective

whereR, is the radius of the condensate. After a Stralight_excitations. This is physically reasonable because the collec-
forward calculation, one obtains the excitation frequencyiVe €xcitations, which are dominant at low temperature,

0=, \2n%+2n[l|+2n+]l| and

(24

originate from the interaction between atoms.

(ii) The leading term for the fluctuations of the particle
number in the condensate is proportionaNta This anoma-
lous behavior comes from the low-dimensional property of
the system. Noting that in the case of 3D Bose-condensed
gas, the fluctuations of the condensate due to the collective

where A, is a normalized constant determined by excitations are proportional 88%2[2,12]. Thus the lower the

[|xml?dV=1. In the above equatiot],(x) takes the form

Hm<x>=x"‘20 b;x?, (25)
e

whereby,=1 and the coefficienty; satisfy the recurrence
relation b 1 /b;=(4j%+4j +4j|l|—4n?—4n—4n|l|)/(4j?
+4j[l|+8j+4l|+4).

Substituting the above results into E§20) and(21), we

dimension of the system is, the larger the condensate fluc-
tuations are. Thus at low temperature, a 2D Bose gas con-
fined in a harmonic trapping potential, which has been real-
ized recently by Guitz et al.[8], is an ideal system for the
observation of anomalous behavior of the fluctuations of par-
ticle number in condensates.

In real experiment§8,9], the Bose gases are confined in a
quasi-2D harmonic trap. For a quasi-2D Bose gas, the cou-
pling constant is given by~ 227#%a,/(ml,) [16], which
is fixed by as-wave scattering length and the oscillator

obtain the fluctuations of particle number in the condensatéengthl,= (%/mw,)Y?in the z direction, wheraw, is the trap

for the 2D Bose gas:

frequency in thez direction. In this case, we have
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2\2ma [ N2t2(1—t?) N32(1—t?) we see that '_[he con_finement of thg Bose-condensed gas has
(6°Ng)= V1 RE the effect of increasing the fluctuations due to the collective
2 m£(2) m[¢(2)] excitations. This result is consistent with the role of the di-
N(1—t2) mensionality in the fluctuations of the condensate.
+——— . (29 In conclusion, we have studied the particle-number fluc-
4m tuations of a condensed 2D Bose gas confined in a harmonic

. . trapping potential by using the probability distribution ob-
From the at?ovezeiuatllon, we see(;hat Or? Onil'@himcg IS tained through a modified saddle-point method. We have
proportional toN* (for largeN), and on the other hand, itis {6, that the condensate fluctuations are proportional to the
also proportional tav; ~ because the factorl}/appearing in  jnteratomic interaction constagtand the square of total par-
Eq. (29). This shows that the trapping frequency in te icje number of the system. This anomalous behavior of the
direction plays an important role for the particle numbergy,cryations makes it very promising to experimentally ob-
fluctuations due to the collective excitations. Thus, one caRee the effect of the particle-number fluctuations. The the-
control the particle-number fluctuations by adjusting theg,atical method provided here is quite general and can be

trapping frequency in the direction. Compared with the gpplied to investigate the particle-number fluctuations of
contribution due to the thermal atorfisee Eq.(39) in Ref. quasi-1D Bose-condensed gases.

[10]], the particle-number fluctuations due to the collective
excitations are strongly dependent on the trapping frequency This work was supported by Natural Science Foundation
in thez direction. From the relation betwe¢d®N,) andw,,  of China under Grant Nos. 10205011 and 10274021.
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