Three-Wave Resonant Interactions in Self-Defocusing Optical Media

This content has been downloaded from IOPscience. Please scroll down to see the full text. 2003 Chinese Phys. Lett. 201279
(http://iopscience.iop.org/0256-307X/20/8/328)
View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 134.121.47.100
This content was downloaded on 04/10/2015 at 06:56

Please note that terms and conditions apply.

Three－Wave Resonant Interactions in Self－Defocusing Optical Media＊

CUI Wei－Na（崔维娜），HUANG Guo－Xiang（黄国翔），SUN Chun－Liu（孙春柳）
Department of Physics and Key Laboratory for Optical and Magnetic Resonance Spectroscopy， East China Normal University，Shanghai 200062

（Received 23 April 2003）

Abstract

A three－wave resonant interaction for nonlinear excitations created from a continuous－wave background is shown to be possible in an isotropic optical medium with a self－defocusing cubic nonlinearity．Under suitable phase－ matching conditions the nonlinear envelope equations for the resonant interaction are derived by using a method of multiple－scales．Some explicit three－wave solitary wave and lump solutions are discussed．

PACS：42．65．Ky，42．65．Tg，05．45．YV

It is well known that bright solitons do not ex－ ist in a self－defocusing medium，while dark solitons can be excited from a modulational stable cw back－ ground．Because of fundamental interest and poten－ tial applications，in recent years dark solitons in self－ defocusing optical media have attracted much atten－ tion theoretically and experimentally．${ }^{[1]}$ Recently，pos－ sible $(2+1)$－dimensional envelope solitons，called the dromions，have been shown to be possible in a self－ defocusing optical medium．${ }^{[2]}$ However，it seems that up to now nobody has been aware of the possibility of resonances between the excited waves created from a cw background．

Wave resonant interaction is a classical chapter in nonlinear Optics．${ }^{[3]}$ For a passive optical medium there exists a common belief for the wave resonant interaction，i．e．，under suitable phase－matching con－ ditions a three－wave resonance（TWR）（including second－harmonic generation as a special case）occurs if the medium has a quadratic $\left(\chi^{(2)}\right)$ nonlinearity， while four－wave mixing processes（including spatial and temporal solitons as special cases）appear if the medium is of a cubic（i．e．$\chi^{(3)}$ ）nonlinearity．It seems that a TWR cannot be realized if a medium is centre－ symmetric（and hence $\chi^{(2)}=0$ ）．We should note that such a conclusion is only valid for the excitations cre－ ated from a vanishing electric field background．

In this Letter，we show that a TWR can occur in a self－defocusing optical medium with only a cubic nonlinearity．The excited waves considered here are generated from a cw background and the interaction between them is shown to have a quadratic character． Under suitable phase－matching conditions，the enve－ lope equations for the TWR are derived by using a method of multiple－scales．Some explicit three－wave soliton solutions are provided and discussed．

We consider the propagation of a monochromatic electric field \mathcal{E} in a centre－symmetric self－defocusing optical medium（i．e．$\chi^{(2)}=0$ and $\chi^{(3)}<0$ ）．The intensity－dependent refractive index reads $n=n_{0}+$ $n_{2}|\mathcal{E}|^{2}$ ，where $n_{2}(<0)$ is the Kerr coefficient．When
looking for a solution of Maxwell＇s equations in the form of a slowly varying envelope of a carrier wave with propagation constant β_{0} ，one can obtain the $(2+1)$－dimensional nonlinear Schrödinger equation ${ }^{[4]}$

$$
\begin{equation*}
2 \mathrm{i} \beta_{0}\left(\frac{\partial \mathcal{E}}{\partial t}+v_{g} \frac{\partial \mathcal{E}}{\partial z}\right)+\frac{\partial^{2} \mathcal{E}}{\partial x^{2}}+\frac{\partial^{2} \mathcal{E}}{\partial y^{2}}+\beta_{0}^{2} \frac{n_{2}}{n_{0}}|\mathcal{E}|^{2} \mathcal{E}=0 \tag{1}
\end{equation*}
$$

where $\mathcal{E}(x, y, z, t)$ is a complex slowly varying enve－ lope of the electric field．The above equation can be rewritten as

$$
\begin{equation*}
2 \mathrm{i} \beta_{0} \frac{\partial \mathcal{E}}{\partial T}+\frac{\partial^{2} \mathcal{E}}{\partial x^{2}}+\frac{\partial^{2} \mathcal{E}}{\partial y^{2}}+\beta_{0}^{2} \frac{n_{2}}{n_{0}}|\mathcal{E}|^{2} \mathcal{E}=0 \tag{2}
\end{equation*}
$$

where T denotes time t（if \mathcal{E} does not depends on z ），or z / v_{g}（if \mathcal{E} does not depends on t ），or $\left(z+v_{g} t\right) /\left(2 v_{g}\right)$ ．Using the transformation $T \rightarrow \beta_{0} t^{\prime}$ and $\mathcal{E} \rightarrow\left[2 n_{0} /\left(\left|n_{2}\right| \beta_{0}^{2}\right)\right]^{1 / 2} \psi \exp \left(-i t^{\prime}\right)$ ，we can reduce Eq．（2）to the normalized form

$$
\begin{equation*}
2 \mathrm{i} \frac{\partial \psi}{\partial t}+\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}-2\left(|\psi|^{2}-1\right) \psi=0 \tag{3}
\end{equation*}
$$

where the prime has been dropped．Letting $\psi=$ $Q \exp (\mathrm{i} R)$ with Q and R being two real functions， Eq．（2）is recast into the hydrodynamic form

$$
\begin{align*}
\frac{\partial Q}{\partial t}+ & \frac{Q}{2}\left(\frac{\partial^{2} R}{\partial x^{2}}+\frac{\partial^{2} R}{\partial y^{2}}\right)+\frac{\partial Q}{\partial x} \frac{\partial R}{\partial x}+\frac{\partial Q}{\partial y} \frac{\partial R}{\partial y}=0 \tag{4}\\
Q \frac{\partial R}{\partial t}- & \frac{1}{2}\left(\frac{\partial^{2} Q}{\partial x^{2}}+\frac{\partial^{2} Q}{\partial y^{2}}\right)+\frac{Q}{2}\left[\left(\frac{\partial R}{\partial x}\right)^{2}\right. \\
& \left.+\left(\frac{\partial R}{\partial y}\right)^{2}\right]+Q^{3}-Q=0 \tag{5}
\end{align*}
$$

It is obvious that a cw solution，denoted by $(Q, R)=$ $(1,0)$［or equivalently $\left.\mathcal{E}=\left[2 n_{0} /\left(\left|n_{2}\right| \beta_{0}^{2}\right)\right]^{1 / 2} \exp (-\mathrm{i} t)\right]$ ， exists．It is well known that this cw solution is modu－ lationally stable．${ }^{[4]}$ It is noted that the dynamics of the excitations generated from the cw background［rep－ resented by $(\tilde{Q}, \tilde{R})==(Q-1, R)]$ is controlled by coupled nonlinear equations with both quadratic and cubic nonlinearities．It is easy to obtain the linear

[^0]dispersion relation of the excitations
\[

$$
\begin{equation*}
\omega^{2}=\frac{1}{4} k^{2}\left(k^{2}+4\right) \tag{6}
\end{equation*}
$$

\]

with $k^{2}=k_{x}^{2}+k_{y}^{2}$, where k and ω are the wavevector and the frequency of the excitations, respectively.

We are interested in a possible TWR of exciting waves. For an efficient TWR, the phase-matching conditions

$$
\begin{align*}
& \omega_{1}+\omega_{2}=\omega_{3} \tag{7}\\
& \boldsymbol{k}_{1}+\boldsymbol{k}_{2}=\boldsymbol{k}_{3} \tag{8}
\end{align*}
$$

should be required. From (6) it is easy to show that these conditions can be fulfilled if we choose $\boldsymbol{k}_{1}=$ $\left(k_{1} \cos \varphi, k_{1} \sin \varphi\right), \boldsymbol{k}_{3}=\left(k_{3}, 0\right)$ and $\boldsymbol{k}_{2}=\boldsymbol{k}_{3}-\boldsymbol{k}_{1}=$ $\left(k_{3}-k_{1} \cos \varphi,-k_{1} \sin \varphi\right)$, where k_{1} and k_{3} are positive, and φ satisfies

$$
\begin{align*}
\cos \varphi= & \frac{1}{2 k_{1} k_{3}}\left\{k_{1}^{2}+k_{3}^{2}+2-2\left[1+\left[k_{3}\left(1+\frac{1}{4} k_{3}^{2}\right)^{1 / 2}\right.\right.\right. \\
& \left.\left.\left.-k_{1}\left(1+\frac{1}{4} k_{1}^{2}\right)^{1 / 2}\right]^{2}\right]^{1 / 2}\right\} \tag{9}
\end{align*}
$$

It is easy to show that for any non-vanishing k_{1} and k_{3} we have $0<\cos \varphi<1$ and hence $-\pi / 2<\varphi<\pi / 2$. Consequently, in the self-defocusing optical medium a TWR is possible for the excitations created from the cw background.

We now derive the envelope equations controlling the TWR. It is assumed that $Q=1+\epsilon Q^{(1)}+\epsilon^{2} Q^{(2)}+$ $\cdots, R=\epsilon R^{(1)}+\epsilon^{2} R^{(2)}+\cdots$, where ϵ is a small parameter denoting the amplitude of an excitation, $Q^{(j)}$ and $R^{(j)}(j=1,2,3, \cdots)$ are the functions of the fast variables x, y, and t and the slow variables $x_{1}=\epsilon x$, $y_{1}=\epsilon y$ and $t_{1}=\epsilon t$. Then Eqs. (4) and (5) read

$$
\begin{align*}
& \frac{\partial Q^{(j)}}{\partial t}+\frac{1}{2}\left(\frac{\partial^{2} R^{(j)}}{\partial x^{2}}+\frac{\partial^{2} R^{(j)}}{\partial y^{2}}\right)=\alpha^{(j)} \tag{10}\\
& \frac{\partial R^{(j)}}{\partial t}-\frac{1}{2}\left(\frac{\partial^{2} Q^{(j)}}{\partial x^{2}}+\frac{\partial^{2} Q^{(j)}}{\partial y^{2}}\right)+2 Q^{(j)}=\beta^{(j)} \tag{11}
\end{align*}
$$

The explicit expressions of $\alpha^{(j)}$ and $\beta^{(j)}$ are omitted here.

In the leading order $(j=1)$, Eqs. (10) and (11) yield the solution $Q^{(1)}=Q_{11} \exp (\mathrm{i} \theta)+$ c.c. and $R^{(1)}=$ $R_{0}+\left[R_{11} \exp (\mathrm{i} \theta)+\right.$ c.c. $]$ with $\theta=\boldsymbol{k} \cdot \boldsymbol{r}-\omega t, \boldsymbol{k}=\left(k_{x}, k_{y}\right)$ and $\boldsymbol{r}=(x, y)$, where $R_{11}=\left(k^{2}+4\right) /(2 \mathrm{i} \omega) Q_{11} \exp (\mathrm{i} \theta)$, $\omega=\omega\left(k_{x}, k_{y}\right)$ has been given by Eq. (6). Obviously, any linear superposition of such modes is also a solution. Because we are interested in a TWR and hence we take $Q^{(1)}=\sum_{l=1}^{3}\left[Q_{1 l} \exp \left(\mathrm{i} \theta_{l}\right)+\right.$ c.c. $]$ and $R^{(1)}=$ $R_{0}+\sum_{l=1}^{3}\left[R_{1 l} \exp \left(\mathrm{i} \theta_{l}\right)+\right.$ c.c. $]$ with $\theta_{l}=\boldsymbol{k}_{l} \cdot \boldsymbol{r}-\omega_{l} t$ and $R_{1 l}=\left(k_{l}^{2}+4\right) /\left(2 \mathrm{i} \omega_{l}\right) Q_{1 l} \exp \left(\mathrm{i} \theta_{l}\right)$.

In the next order $(j=2)$, using the TWR conditions (7) and (8) we obtain the closed equations controlling the evolution of the envelopes $Q_{1 l}(l=1,2,3)$. Then by taking $Q_{l}=\epsilon Q_{1 l}$ and returning to the origi-
nal variables we obtain

$$
\begin{align*}
& \frac{\partial Q_{1}}{\partial t}+\boldsymbol{v}_{1} \cdot \nabla Q_{1}=\lambda_{1} Q_{2}^{*} Q_{3}^{*} \tag{12}\\
& \frac{\partial Q_{2}}{\partial t}+\boldsymbol{v}_{2} \cdot \nabla Q_{2}=\lambda_{2} Q_{1}^{*} Q_{3}^{*} \tag{13}\\
& \frac{\partial Q_{3}}{\partial t}+\boldsymbol{v}_{3} \cdot \nabla Q_{3}=\lambda_{3} Q_{1}^{*} Q_{2}^{*} \tag{14}
\end{align*}
$$

where $\nabla=(\partial / \partial x, \partial / \partial y), \boldsymbol{v}_{l}=\left(\mathrm{d} \omega_{l} / \mathrm{d} k_{l x}, \mathrm{~d} \omega_{l} / \mathrm{d} k_{l y}\right)$ $(l=1,2,3)$ is the group velocity of the l th waves; λ_{1}, λ_{2}, and λ_{3} are the complex coupling coefficients, which carry the signs of wave energy. Their explicit expressions are omitted here. Equations (12)-(14) are the envelope ones describing the TWR, as is well known in wave resonance theory. ${ }^{[5]}$

Next we discuss the soliton solutions of Eqs. (12)(14). Using the transformation $q_{j}=\left(\lambda_{i} \lambda_{k} / \gamma_{i} \gamma_{k}\right)^{1 / 2} Q_{j}$ Eqs. (12)-(14) can be cast into the form

$$
\begin{equation*}
\frac{\partial q_{i}}{\partial t}+\boldsymbol{v}_{i} \cdot \nabla q_{i}=\gamma_{i} q_{j}^{*} q_{k}^{*} \tag{15}
\end{equation*}
$$

where i, j, and k are cyclic and equal to $1,2,3 ; \gamma$ in Eq. (15) has been scaled to unity magnitude $\gamma_{i}^{2}=1$. It is interesting that the above equations are completely integrable and can be solved by the inverse scattering transform. ${ }^{[6]}$ Three types of three-wave soliton solutions can be obtained, which are presented in the following.

Let $\xi=x-u t, \eta=y-v t(u$ and v are constants), the (2+1)-dimensional Eq. (15) becomes the ($1+1$)-dimensional ones:

$$
\begin{equation*}
\frac{\partial q_{i}}{\partial \xi}+C_{i} \frac{\partial q_{i}}{\partial \eta}=\tilde{\gamma}_{i} q_{j}^{*} q_{k}^{*} \tag{16}
\end{equation*}
$$

where $C_{i}=\left(v_{i y}-v\right) /\left(v_{i x}-u\right)$ and $\tilde{\gamma}_{i}=\gamma_{i} /\left(v_{i x}-u\right)$. Then using the results from the inverse scattering method we obtain ${ }^{[6]}$

$$
\begin{align*}
q_{1}= & \frac{4 \sigma_{1}\left(\beta_{12} \beta_{13}\right)^{1 / 2}}{D\left(\widetilde{\gamma_{2}} \widetilde{\gamma_{3}}\right)^{1 / 2}} \exp \left[-\mathrm{i}\left(\phi_{1}-2 \rho_{1} Z_{1}\right)\right] \\
& \cdot\left[\exp \left(2 \sigma_{2} Z_{2}\right)+\frac{\zeta_{1}^{*}-\zeta_{2}^{*}}{\zeta_{1}^{*}-\zeta_{2}} \exp \left(-2 \sigma_{2} Z_{2}\right)\right] \tag{17}\\
q_{2}= & \frac{4 \sigma_{1}\left(\beta_{13} \beta_{32}\right)^{1 / 2}}{D\left(\widetilde{\gamma_{1}} \widetilde{\gamma_{3}}\right)^{1 / 2}} \exp \left[-\mathrm{i}\left(\phi_{2}-2 \rho_{2} Z_{2}\right)\right] \\
& \left.\cdot\left[\exp \left(-2 \sigma_{1} Z_{1}\right)\right)+\frac{\zeta_{1}-\zeta_{2}}{\zeta_{1}^{*}-\zeta_{2}} \exp \left(2 \sigma_{1} Z_{1}\right)\right] \tag{18}\\
q_{3}= & \frac{-16 \mathrm{i} \sigma_{1} \sigma_{2} \beta_{12}}{D\left(\zeta_{1}-\zeta_{2}^{*}\right)\left(\beta_{12} \beta_{13} \widetilde{\gamma_{1}} \widetilde{\gamma_{2}}\right)^{1 / 2}} \\
& \cdot \exp \left[\mathrm{i}\left(\phi_{1}+\phi_{2}-2 \rho_{1} Z_{1}-2 \rho_{2} Z_{2}\right)\right] \tag{19}
\end{align*}
$$

with

$$
\begin{align*}
D= & \exp \left(2 \sigma_{1} Z_{1}+2 \sigma_{2} Z_{2}\right)+\exp \left(-2 \sigma_{1} Z_{1}+2 \sigma_{2} Z_{2}\right) \\
& +\exp \left(-2 \sigma_{1} Z_{1}-2 \sigma_{2} Z_{2}\right) \\
& +\left|\frac{\zeta_{1}^{*}-\zeta_{2}^{*}}{\zeta_{1}-\zeta_{2}^{*}}\right| \exp \left(2 \sigma_{1} Z_{1}-2 \sigma_{2} Z_{2}\right) \tag{20}
\end{align*}
$$

where $Z_{1}=\xi-C_{1} \eta-\xi_{10}, Z_{2}=\xi-C_{2} \eta-\xi_{20}, \zeta_{1}=$
$2\left(\rho_{1}+\mathrm{i} \sigma_{1}\right) / \beta_{23}, \zeta_{2}=2\left(\rho_{2}+\mathrm{i} \sigma_{2}\right) / \beta_{13}, \beta_{i j}=C_{j}-C_{i}$ $\left(C_{2}>C_{3}>C_{1}\right), \rho_{j}, \sigma_{j}, \phi_{j}$ and $\xi_{j 0}(j=1,2)$ are the constants.

We can easily obtain the asymptotic form of the solution. As $t \rightarrow-\infty$ one has

$$
\begin{align*}
& q_{1} \simeq \frac{2 \sigma_{1}\left(\beta_{12} \beta_{13}\right)^{1 / 2}}{\left(\widetilde{\gamma_{2}} \widetilde{\gamma_{3}}\right)^{1 / 2}} \operatorname{sech}\left(2 \sigma_{1} Z_{1}\right) \exp \left(\mathrm{i} \phi_{1}\right) \\
& q_{2} \simeq \frac{2 \sigma_{1}\left(\beta_{13} \beta_{32}\right)^{1 / 2}}{\left(\widetilde{\gamma_{1}} \widetilde{\gamma_{3}}\right)^{1 / 2}} \operatorname{sech}\left(2 \sigma_{2} Z_{2}\right) \exp \left(\mathrm{i} \phi_{2}\right), q_{3} \simeq 0 \tag{21}
\end{align*}
$$

As $t \rightarrow \infty$, one can obtain

$$
\begin{align*}
q_{1} \simeq & \frac{2 \sigma_{1}\left(\beta_{12} \beta_{13}\right)^{1 / 2}}{\left(\widetilde{\gamma_{2}} \widetilde{\gamma_{3}}\right)^{1 / 2}} \operatorname{sech}\left(2 \sigma_{1} Z_{1}-\delta\right) \\
& \cdot \exp \left(\mathrm{i} \phi_{1}+\delta^{\prime}\right), \\
q_{2} \simeq & \frac{2 \sigma_{1}\left(\beta_{13} \beta_{32}\right)^{1 / 2}}{\left(\widetilde{\gamma_{1}} \widetilde{\gamma_{3}}\right)^{1 / 2}} \operatorname{sech}\left(2 \sigma_{2} Z_{2}-\delta\right) \\
& \cdot \exp \left(\mathrm{i} \phi_{2}-\delta^{\prime}\right), q_{3} \simeq 0, \tag{22}
\end{align*}
$$

where δ and δ^{\prime} are defined by $\left(\zeta_{1}-\zeta_{2}\right) /\left(\zeta_{1}^{*}-\zeta_{2}\right)=$ $e^{-\delta} e^{i \delta^{\prime}}$.

Fig. 1. Modula $|\psi|$ in the case of the three-wave soliton interaction (without energy transfer) created from the cw background. The parameters are chosen to be $k_{1}=2$, $k_{3}=6, u=-1, v=5, \xi_{10}=1, \xi_{20}=2, \phi_{1}=2, \phi_{2}=1$, $\rho_{1}=1, \rho_{2}=1, \sigma_{1}=0.3$, and $\sigma_{3}=3$ at time $t=1$.

From the above result we can see that the solution (17)-(19) describe a process of collision between the solitons q_{1} and q_{2}. In the colliding region, a new soliton q_{3}, called the Mach sterm, is produced. During the collision, there is no energy exchange between q_{1} and q_{2}. Figure 1 shows the modula of ψ (exact to the leading-order),

$$
\begin{align*}
|\psi| & =Q \approx 1+Q^{(1)} \\
& =1+\left(Q_{1} \mathrm{e}^{\mathrm{i} \theta_{1}}+Q_{2} \mathrm{e}^{\mathrm{i} \theta_{2}}+Q_{3} \mathrm{e}^{-\mathrm{i} \theta_{3}}+\text { c.c. }\right) . \tag{23}
\end{align*}
$$

The phase shift due to the collision can be clearly seen in the figure.

Fig. 2. Modula $|\psi|$ in the case of three-wave soliton interaction (with energy transfer) created from the cw background. The parameters are chosen as $k_{1}=2, k_{3}=1$, $d_{13}=1, \kappa_{1}=0, \kappa_{2}=0, \zeta=0, \nu=10, m=0, n=-1.5$, $B_{1}=1$, and $B_{2}=5$ at time $t=1$.

Another interesting case is a three-soliton resonance, i.e., two solitons are resonant with the third. To show this, in Eqs. (15) we choose $v_{2 x}>v_{3 x}>$ $v_{1 x}$ and define $b_{j}=\left(v_{i y}-v_{k y}\right) /\left(v_{k x}-v_{i x}\right)$ and $r=\left(b_{2}-b_{1}\right)\left(v_{2 x}-v_{3 x}\right)=\left(b_{2}-b_{3}\right)\left(v_{2 x}-v_{1 x}\right)$, where s, d_{13}, and d_{23} are the constants related by $s=d_{13}\left(v_{3 x}-v_{2 x}\right)=d_{23}\left(v_{2 x}-v_{1 x}\right)$. Then we have the following solution ${ }^{[7]}$

$$
\begin{align*}
& q_{1}=\sqrt{\frac{\lambda_{2} \lambda_{3}}{\gamma_{2} \gamma_{3}}} K_{1} \Gamma_{2} \Delta^{-1}, \quad q_{2}=\sqrt{\frac{\lambda_{1} \lambda_{3}}{\gamma_{1} \gamma_{2}}} K_{2} \Gamma_{1} \Gamma_{3}^{*} \Delta^{-1}, \\
& q_{3}=\sqrt{\frac{\lambda_{1} \lambda_{2}}{\gamma_{1} \gamma_{2}}} K_{3} \Gamma_{2} \Delta^{-1} \tag{24}
\end{align*}
$$

where

$$
\begin{align*}
K_{1}= & -\mathrm{i}\left[\left(v_{2 x}-v_{1 x}\right)\left(v_{3 x}-v_{1 x}\right) / \lambda_{2} \lambda_{3}\right]^{1 / 2} \vartheta /\left(v_{2 x}-v_{1 x}\right), \\
K_{2}= & \mathrm{i}\left[\left(v_{2 x}-v_{1 x}\right)\left(v_{2 x}-v_{3 x}\right) / \lambda_{1} \lambda_{3}\right]^{1 / 2}\left(b_{1}-b_{3}\right) \vartheta / r, \\
K_{3}= & -\mathrm{i}\left[\left(v_{2 x}-v_{1 x}\right)\left(v_{3 x}-v_{1 x}\right) / \lambda_{1} \lambda_{2}\right]^{1 / 2} \vartheta /\left(v_{2 x}-v_{3 x}\right), \\
\Delta= & 1+(1+r p)\left(\left|\Gamma_{1}\right|^{2}+\left|\Gamma_{2}\right|^{2}\right), \vartheta=2 \nu s(1+r p), \\
\Gamma_{1}= & B_{1} \exp \left\{\mathrm { i } \left[\left(b_{1} \kappa_{1}+\zeta d_{13}+m b_{1}-m b_{2}\right)\right.\right. \\
& \left.\left.\cdot\left(x-v_{3 x} t\right)+\kappa_{1}\left(y-v_{3 y} t\right)\right]\right\} \\
& \cdot \exp \left\{-\left(\nu d_{13}-n b_{3}\right)\left(x-v_{3 x} t\right)+n\left(y-v_{3 y} t\right)\right\}, \\
\Gamma_{2}= & B_{2} \exp \left\{\mathrm { i } \left[\left(b_{2} \kappa_{2}+\zeta d_{23}+m b_{2}-m b_{3}\right)\right.\right. \\
& \left.\left.\cdot\left(x-v_{1 x} t\right)+\kappa_{2}\left(y-v_{1 y} t\right)\right]\right\} \\
& \left.\cdot \exp \left\{-\left(\nu d_{23}-n b_{3}\right)\left(x-v_{1 x} t\right)+n\left(y-v_{1 y} t\right)\right]\right\}, \tag{25}
\end{align*}
$$

with $p=-n(\nu s)^{-1}, \kappa_{1}, \kappa_{2}, \zeta, \nu, m$, and n being the real constants. We note that for this solution to hold, the condition $1+r p>0$ is required. Figure 2 shows the modula $|\psi|$ in the case of the three-wave soliton solution (24). We can see that during a collision, the energies of q_{1} and q_{2} solitons are transferred into the q_{3} soliton which completes a resonant triad.

The three-wave interaction Eq. (15) also admits the so-called three-wave lump solutions. To show this we transform Eq. (15) from space-time coordinates to
the characteristic coordinates

$$
\begin{equation*}
\frac{\partial q_{i}}{\partial X_{i}}=\gamma_{i} q_{j}^{*} q_{k}^{*} \tag{26}
\end{equation*}
$$

where X_{i} is the i th characteristic, defined by $\partial / \partial X_{i}=-\partial / \partial t-\boldsymbol{v}_{i} \cdot \nabla$. The relations between these coordinate and x, y, t are given by $X_{3}=\left[x\left(v_{1 y}-\right.\right.$ $\left.\left.v_{2 y}\right)+y\left(v_{2 x}-v_{1 x}\right)+t\left(v_{1 x} v_{2 y}-v_{2 x} v_{1 y}\right)\right] /\left[v_{1 x}\left(v_{3 y}-\right.\right.$ $\left.\left.v_{2 y}\right)+v_{2 x}\left(v_{1 y}-v_{3 y}\right)+v_{3 x}\left(v_{2 y}-v_{1 y}\right)\right], X_{2}=(y-$ $\left.v_{1 y} t\right) /\left(v_{1 y}-v_{2 y}\right)-\left[\left(v_{1 y}-v_{3 y}\right) /\left(v_{1 y}-v_{2 y}\right)\right] X_{3}$, and $X_{1}=-t-X_{2}-X_{3}$. The one-lump solution of Eq. (26)
reads ${ }^{[8,9]}$

$$
\begin{equation*}
q_{j}=\frac{g_{i}^{*} g_{k}}{D}, \quad D=1+\sum_{i=1}^{3} \gamma_{i} G_{i} \tag{27}
\end{equation*}
$$

where $G_{i}\left(X_{i}\right)=\int_{X_{i}}^{\infty} g_{i}^{*}(u) g_{i}(u) \mathrm{d} u$, and g_{i} is arbitrary functions of the single variable X_{i}. In Fig. 3 we have plotted the modula $|\psi|$ when choosing $g_{i}=c_{i} \mathrm{e}^{-p_{i} X_{i}^{2}}$. We can see that the solution shows a collision among three lumps, which are localized in all spatial directions.

Fig. 3. Modula $|\psi|$ in the case of three-wave lump excitation created from the cw background. The parameters are chosen as $k_{1}=2, k_{3}=4, c_{1}=\sqrt{1 / 14}, c_{2}=\sqrt{1 / 2}, c_{1}=\sqrt{7 / 12}, p_{1}=\pi / 2, p_{2}=\pi / 2$, and $p_{3}=\pi / 2$ at times $t=-2.5$ before collision (a) and 2.5 after collision (b).

In conclusion, based on a self-defocusing nonlinear Schrödinger equation we have investigated a wave resonant interaction in an isotropic optical medium with a cubic nonlinearity. We have shown that a three-wave resonance is indeed possible for the exciting waves created from a cw background. By adequately choosing the wavevectors and frequencies of the three exciting waves the phase-matching conditions for the three-wave resonant interaction can be fulfilled. We have also derived the three-wave resonant interaction equations by using a method of multiplescales. Some explicit three-wave soliton solutions (including those with and without energy transfer) and localized three-wave lump solutions are presented. We note that conventional three-wave resonant interactions are realized only in optical materials with a quadratic nonlinearity. ${ }^{[3,5]}$ Here we have shown for the first time that the materials of a cubic nonlinearity with negative Kerr coefficient can also provide with the possibility of three-wave resonant interactions. The idea presented in this work can be applied to investigate the three-wave resonance of the excitations created in Bose-Einstein condensates. ${ }^{[10]}$

Acknowledgments. One of authors (GXH) is indebted to Jacob Szeftel for warm hospitality received
at LPTMC, Université Paris-VII, where part of this work was initiated.

References

[1] Kivshar Y S and Luther-Davies B 1998 Phys. Rep. 29881 Hasegawa A and Kodama Y 1995 Solitons in Optical Communications (Oxford: Clarendon) Huang G X and Velarde M G 1996 Phys. Rev. E 543048 Huang G X and Velarde M G 1997 J. Opt. Soc. Am. B 14 2850
[2] Cui W N, Sun C L and Huang G X 2003 Chin. Phys. Lett. 20246
[3] Shen Y R 1984 The Principles of Nonlinear Optics (New York: Wiley)
[4] Kuznetsov E A and Rasmussen J J 1995 Phys. Rev. E 51 4479
Newell A C and Moloney J V 1992 Nonlinear Optics (Redwood City, MA: Addison-Wesley)
[5] Craik A D D 1985 Three Wave resonance (Cambridge: Cambridge University Press)
[6] Kaup D J, Reiman A and Bers A 1979 Rev. Mod. Phys. 51275
[7] Case K M and Chiu S C 1976 Phys. Fluids 20742
[8] Kaup D J 1981 J. Math. Phys. 221176
[9] Gilson C R and Ratter M C 1998 J. Phys. A: Math. Gen. 31349
[10] Sun C L, Huang G X and Cui W N 2003 J. Phys. B: At. Mol. Opt. Phys. submitted

[^0]: ＊Supported by the National Science Foundation of China under Grant No 10274021，and the Trans－Century Training Programme Foundation for the Talents from the Ministry of Education of China．
 © 2003 Chinese Physical Society and IOP Publishing Ltd

