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Three-Wave Resonant Interactions in Self-Defocusing Optical Media �
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East China Normal University, Shanghai 200062
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A three-wave resonant interaction for nonlinear excitations created from a continuous-wave background is shown

to be possible in an isotropic optical medium with a self-defocusing cubic nonlinearity. Under suitable phase-

matching conditions the nonlinear envelope equations for the resonant interaction are derived by using a method

of multiple-scales. Some explicit three-wave solitary wave and lump solutions are discussed.

PACS: 42. 65.Ky, 42. 65. Tg, 05. 45. Yv

It is well known that bright solitons do not ex-
ist in a self-defocusing medium, while dark solitons
can be excited from a modulational stable cw back-
ground. Because of fundamental interest and poten-
tial applications, in recent years dark solitons in self-
defocusing optical media have attracted much atten-
tion theoretically and experimentally.[1] Recently, pos-
sible (2+1)-dimensional envelope solitons, called the
dromions, have been shown to be possible in a self-
defocusing optical medium.[2] However, it seems that
up to now nobody has been aware of the possibility of
resonances between the excited waves created from a
cw background.

Wave resonant interaction is a classical chapter
in nonlinear Optics.[3] For a passive optical medium
there exists a common belief for the wave resonant
interaction, i.e., under suitable phase-matching con-
ditions a three-wave resonance (TWR) (including
second-harmonic generation as a special case) occurs
if the medium has a quadratic (�(2)) nonlinearity,
while four-wave mixing processes (including spatial
and temporal solitons as special cases) appear if the
medium is of a cubic (i.e. �(3)) nonlinearity. It seems
that a TWR cannot be realized if a medium is centre-
symmetric (and hence �(2) = 0). We should note that
such a conclusion is only valid for the excitations cre-
ated from a vanishing electric �eld background.

In this Letter, we show that a TWR can occur
in a self-defocusing optical medium with only a cubic
nonlinearity. The excited waves considered here are
generated from a cw background and the interaction
between them is shown to have a quadratic character.
Under suitable phase-matching conditions, the enve-
lope equations for the TWR are derived by using a
method of multiple-scales. Some explicit three-wave
soliton solutions are provided and discussed.

We consider the propagation of a monochromatic
electric �eld E in a centre-symmetric self-defocusing
optical medium (i.e. �(2) = 0 and �(3) < 0). The
intensity-dependent refractive index reads n = n0 +
n2jEj

2, where n2(< 0) is the Kerr coeÆcient. When

looking for a solution of Maxwell's equations in the
form of a slowly varying envelope of a carrier wave
with propagation constant �0, one can obtain the
(2+1)-dimensional nonlinear Schr�odinger equation[4]
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where E(x; y; z; t) is a complex slowly varying enve-
lope of the electric �eld. The above equation can be
rewritten as
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where T denotes time t (if E does not depends
on z), or z=vg (if E does not depends on t), or
(z + vgt)=(2vg). Using the transformation T ! �0t

0

and E ! [2n0=(jn2j�
2
0)]

1=2 exp(�it0), we can reduce
Eq. (2) to the normalized form

2i
@ 

@t
+
@2 

@x2
+
@2 

@y2
� 2(j j2 � 1) = 0; (3)

where the prime has been dropped. Letting  =
Q exp(iR) with Q and R being two real functions,
Eq. (2) is recast into the hydrodynamic form
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It is obvious that a cw solution, denoted by (Q;R) =
(1; 0) [or equivalently E = [2n0=(jn2j�

2
0)]

1=2 exp(�it)],
exists. It is well known that this cw solution is modu-
lationally stable.[4] It is noted that the dynamics of the
excitations generated from the cw background [rep-
resented by ( ~Q; ~R) == (Q � 1; R)] is controlled by
coupled nonlinear equations with both quadratic and
cubic nonlinearities. It is easy to obtain the linear
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dispersion relation of the excitations

!2 =
1

4
k2(k2 + 4) (6)

with k2 = k2x + k2y, where k and ! are the wavevector
and the frequency of the excitations, respectively.

We are interested in a possible TWR of exciting
waves. For an eÆcient TWR, the phase-matching con-
ditions

!1 + !2 = !3; (7)

k1 + k2 = k3; (8)

should be required. From (6) it is easy to show that
these conditions can be ful�lled if we choose k1 =
(k1 cos'; k1 sin'), k3 = (k3; 0) and k2 = k3 � k1 =
(k3�k1 cos';�k1 sin'), where k1 and k3 are positive,
and ' satis�es
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It is easy to show that for any non-vanishing k1 and
k3 we have 0 < cos' < 1 and hence ��=2 < ' < �=2.
Consequently, in the self-defocusing optical medium a
TWR is possible for the excitations created from the
cw background.

We now derive the envelope equations controlling
the TWR. It is assumed that Q = 1+�Q(1)+�2Q(2)+
� � �, R = �R(1) + �2R(2) + � � �, where � is a small pa-
rameter denoting the amplitude of an excitation, Q(j)

and R(j) (j = 1; 2; 3; � � �) are the functions of the fast
variables x, y, and t and the slow variables x1 = �x,
y1 = �y and t1 = �t. Then Eqs. (4) and (5) read
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The explicit expressions of �(j) and �(j) are omitted
here.

In the leading order (j = 1), Eqs. (10) and (11)
yield the solution Q(1) = Q11 exp(i�)+c.c. and R

(1) =
R0+[R11 exp(i�)+c.c.] with � = k�r�!t, k = (kx; ky)
and r = (x; y), where R11 = (k2+4)=(2i!)Q11 exp(i�),
! = !(kx; ky) has been given by Eq. (6). Obviously,
any linear superposition of such modes is also a solu-
tion. Because we are interested in a TWR and hence
we take Q(1) =

P3
l=1[Q1l exp(i�l) + c.c:] and R(1) =

R0 +
P3

l=1[R1l exp(i�l) + c.c.] with �l = kl � r � !lt
and R1l = (k2l + 4)=(2i!l)Q1l exp(i�l).

In the next order (j = 2), using the TWR condi-
tions (7) and (8) we obtain the closed equations con-
trolling the evolution of the envelopes Q1l (l = 1; 2; 3).
Then by taking Ql = �Q1l and returning to the origi-

nal variables we obtain
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where r = (@=@x; @=@y), vl=(d!l=dklx, d!l=dkly)
(l = 1; 2; 3) is the group velocity of the lth waves;
�1; �2, and �3 are the complex coupling coeÆcients,
which carry the signs of wave energy. Their explicit
expressions are omitted here. Equations (12){(14)
are the envelope ones describing the TWR, as is well
known in wave resonance theory.[5]

Next we discuss the soliton solutions of Eqs. (12){
(14). Using the transformation qj = (�i�k=ik)

1=2Qj

Eqs. (12){(14) can be cast into the form
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where i; j; and k are cyclic and equal to 1, 2, 3;  in
Eq. (15) has been scaled to unity magnitude 2i = 1. It
is interesting that the above equations are completely
integrable and can be solved by the inverse scatter-
ing transform.[6] Three types of three-wave soliton so-
lutions can be obtained, which are presented in the
following.

Let � = x � ut, � = y � vt (u and v are con-
stants), the (2+1)-dimensional Eq. (15) becomes the
(1+1)-dimensional ones:
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where Ci = (viy � v)=(vix � u) and ~i = i=(vix � u).
Then using the results from the inverse scattering
method we obtain[6]
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with
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where Z1 = � � C1� � �10, Z2 = � � C2� � �20, �1 =
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2(�1 + i�1)=�23, �2 = 2(�2 + i�2)=�13, �ij = Cj � Ci

(C2 > C3 > C1), �j , �j , �j and �j0 (j = 1; 2) are the
constants.

We can easily obtain the asymptotic form of the
solution. As t! �1 one has
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As t!1, one can obtain
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where Æ and Æ0 are de�ned by (�1 � �2)=(�
�

1 � �2) =
e�Æe iÆ0

.

Fig. 1. Modula j j in the case of the three-wave soliton
interaction (without energy transfer) created from the cw
background. The parameters are chosen to be k1 = 2,
k3 = 6, u = �1, v = 5, �10 = 1, �20 = 2, �1 = 2, �2 = 1,
�1 = 1, �2 = 1, �1 = 0:3, and �3 = 3 at time t = 1.

From the above result we can see that the solution
(17){(19) describe a process of collision between the
solitons q1 and q2. In the colliding region, a new soli-
ton q3, called the Mach sterm, is produced. During
the collision, there is no energy exchange between q1
and q2. Figure 1 shows the modula of  (exact to the
leading-order),

j j =Q � 1 +Q(1)

=1 +
�
Q1e

i�1 +Q2e
i�2 +Q3e

�i�3 + c.c.
�
:
(23)

The phase shift due to the collision can be clearly seen
in the �gure.

Fig. 2. Modula j j in the case of three-wave soliton inter-
action (with energy transfer) created from the cw back-
ground. The parameters are chosen as k1 = 2, k3 = 1,
d13 = 1, �1 = 0, �2 = 0, � = 0, � = 10, m = 0, n = �1:5,
B1 = 1, and B2 = 5 at time t = 1.

Another interesting case is a three-soliton reso-
nance, i.e., two solitons are resonant with the third.
To show this, in Eqs. (15) we choose v2x > v3x >
v1x and de�ne bj = (viy � vky)=(vkx � vix) and
r = (b2 � b1)(v2x � v3x) = (b2 � b3)(v2x � v1x),
where s, d13, and d23 are the constants related by
s = d13(v3x�v2x) = d23(v2x�v1x). Then we have the
following solution[7]
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23
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where

K1 = � i[(v2x � v1x)(v3x � v1x)=�2�3]
1=2#=(v2x � v1x);

K2 = i[(v2x � v1x)(v2x � v3x)=�1�3]
1=2(b1 � b3)#=r;

K3 = � i[(v2x � v1x)(v3x � v1x)=�1�2]
1=2#=(v2x � v3x);

� =1 + (1 + rp)(j�1j
2 + j�2j

2); # = 2�s(1 + rp);

�1 =B1 expfi[(b1�1 + �d13 +mb1 �mb2)

� (x� v3xt) + �1(y � v3yt)]g

� expf�(�d13 � nb3)(x� v3xt) + n(y � v3yt)g;

�2 =B2 expfi[(b2�2 + �d23 +mb2 �mb3)

� (x� v1xt) + �2(y � v1yt)]g

� expf�(�d23 � nb3)(x� v1xt) + n(y � v1yt)]g;
(25)

with p = �n(�s)�1, �1, �2, �, �, m, and n being the
real constants. We note that for this solution to hold,
the condition 1 + rp > 0 is required. Figure 2 shows
the modula j j in the case of the three-wave soliton
solution (24). We can see that during a collision, the
energies of q1 and q2 solitons are transferred into the
q3 soliton which completes a resonant triad.

The three-wave interaction Eq. (15) also admits
the so-called three-wave lump solutions. To show this
we transform Eq. (15) from space{time coordinates to
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the characteristic coordinates

@qi
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= iq
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where Xi is the ith characteristic, de�ned by
@=@Xi=�@=@t � vi � r. The relations between these
coordinate and x; y; t are given by X3 = [x(v1y �
v2y) + y(v2x � v1x) + t(v1xv2y � v2xv1y)]=[v1x(v3y �
v2y) + v2x(v1y � v3y) + v3x(v2y � v1y)], X2 = (y �
v1yt)=(v1y � v2y) � [(v1y � v3y)=(v1y � v2y)]X3, and
X1 = �t�X2�X3. The one-lump solution of Eq. (26)

reads[8;9]
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D

; D = 1 +

3X
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where Gi(Xi) =
R
1

Xi

g�i (u)gi(u)du, and gi is arbitrary
functions of the single variable Xi. In Fig. 3 we have
plotted the modula j j when choosing gi = cie

�piX
2

i .
We can see that the solution shows a collision among
three lumps, which are localized in all spatial direc-
tions.

Fig. 3. Modula j j in the case of three-wave lump excitation created from the cw background. The parameters are chosen

as k1 = 2, k3 = 4, c1 =
p
1=14, c2 =

p
1=2, c1 =

p
7=12, p1 = �=2, p2 = �=2, and p3 = �=2 at times t = �2:5 before

collision (a) and 2.5 after collision (b).

In conclusion, based on a self-defocusing nonlin-
ear Schr�odinger equation we have investigated a wave
resonant interaction in an isotropic optical medium
with a cubic nonlinearity. We have shown that a
three-wave resonance is indeed possible for the excit-
ing waves created from a cw background. By ade-
quately choosing the wavevectors and frequencies of
the three exciting waves the phase-matching condi-
tions for the three-wave resonant interaction can be
ful�lled. We have also derived the three-wave resonant
interaction equations by using a method of multiple-
scales. Some explicit three-wave soliton solutions (in-
cluding those with and without energy transfer) and
localized three-wave lump solutions are presented. We
note that conventional three-wave resonant interac-
tions are realized only in optical materials with a
quadratic nonlinearity.[3;5] Here we have shown for
the �rst time that the materials of a cubic nonlin-
earity with negative Kerr coeÆcient can also provide
with the possibility of three-wave resonant interac-
tions. The idea presented in this work can be applied
to investigate the three-wave resonance of the excita-
tions created in Bose{Einstein condensates.[10]
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