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Three-Wave Resonant Interactions in Self-Defocusing Optical Media *

CUI Wei-Na(#4:8), HUANG Guo-Xiang(# [E#), SUN Chun-Liu(#MEHI)

Department of Physics and Key Laboratory for Optical and Magnetic Resonance Spectroscopy,
FEast China Normal University, Shanghai 200062

(Received 23 April 2003)

A three-wave resonant interaction for nonlinear excitations created from a continuous-wave background is shown
to be possible in an isotropic optical medium with a self-defocusing cubic nonlinearity. Under suitable phase-
matching conditions the nonlinear envelope equations for the resonant interaction are derived by using a method
of multiple-scales. Some explicit three-wave solitary wave and lump solutions are discussed.

PACS: 42.65.Ky, 42.65. Tg, 05.45. Yv

It is well known that bright solitons do not ex-
ist in a self-defocusing medium, while dark solitons
can be excited from a modulational stable cw back-
ground. Because of fundamental interest and poten-
tial applications, in recent years dark solitons in self-
defocusing optical media have attracted much atten-
tion theoretically and experimentally.[!! Recently, pos-
sible (2+41)-dimensional envelope solitons, called the
dromions, have been shown to be possible in a self-
defocusing optical medium.?! However, it seems that
up to now nobody has been aware of the possibility of
resonances between the excited waves created from a
cw background.

Wave resonant interaction is a classical chapter
in nonlinear Optics.[?l For a passive optical medium
there exists a common belief for the wave resonant
under suitable phase-matching con-
ditions a three-wave resonance (TWR) (including
second-harmonic generation as a special case) occurs
if the medium has a quadratic (x(®) nonlinearity,
while four-wave mixing processes (including spatial
and temporal solitons as special cases) appear if the
medium is of a cubic (i.e. x(*)) nonlinearity. It seems
that a TWR cannot be realized if a medium is centre-
symmetric (and hence x(?) = 0). We should note that
such a conclusion is only valid for the excitations cre-
ated from a vanishing electric field background.

In this Letter, we show that a TWR can occur
in a self-defocusing optical medium with only a cubic
nonlinearity. The excited waves considered here are
generated from a cw background and the interaction
between them is shown to have a quadratic character.
Under suitable phase-matching conditions, the enve-
lope equations for the TWR are derived by using a
method of multiple-scales. Some explicit three-wave
soliton solutions are provided and discussed.

interaction, i.e.,

We consider the propagation of a monochromatic
electric field £ in a centre-symmetric self-defocusing
optical medium (i.e. x® = 0 and x(® < 0). The
intensity-dependent refractive index reads n = ng +
n2|E|?, where ny(< 0) is the Kerr coefficient. When

looking for a solution of Maxwell’s equations in the
form of a slowly varying envelope of a carrier wave
with propagation constant [y, one can obtain the
(241)-dimensional nonlinear Schrédinger equation!*]
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where £(z,y, z,t) is a complex slowly varying enve-
lope of the electric field. The above equation can be
rewritten as
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where T denotes time t (if £ does not depends
on z), or z/v, (if £ does not depends on t), or
(z + vgt)/(2vy). Using the transformation T — [ot’
and € — [2no/(|n2|82)]*/? exp(—it'), we can reduce

Eq. (2) to the normalized form
oY 9% 9%
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where the prime has been dropped. Letting ¢ =
Qexp(iR) with @ and R being two real functions,

Eq. (2) is recast into the hydrodynamic form
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It is obvious that a cw solution, denoted by (@, R) =
(1,0) [or equivalently & = [2n9/(|na|B3)]"/? exp(—it)],
exists. It is well known that this cw solution is modu-
lationally stable.[*! Tt is noted that the dynamics of the
excitations generated from the cw background [rep-
resented by (@,R) == (Q — 1, R)] is controlled by
coupled nonlinear equations with both quadratic and

cubic nonlinearities. It is easy to obtain the linear
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dispersion relation of the excitations nal variables we obtain
1 0Q: P
w? = ZkQ(k2 +4) (6) B U VQ1 = MQ5Q3, (12)
0
with k2 = k2 + k'g, where k£ and w are the wavevector % + vz VQ2 = XaQ71Q3, (13)
and the frequency of the excitations, respectively. 20
We are interested in a possible TWR of exciting 3—: +v3-VQs3 = A3Q7Q53, (14)

waves. For an efficient TWR, the phase-matching con-
ditions

0551 + Wy = Ws, (7)
ki + ks = ks, (8)

should be required. From (6) it is easy to show that
these conditions can be fulfilled if we choose k; =
(k1cosp, kysing), ks = (k3,0) and ko = ks — k1 =
(ks — k1 cos ¢, —kq sin @), where k1 and k3 are positive,
and ¢ satisfies

cos p =

2k1k3{k2+k3+2_2[1+ {k‘3<1+ k3>1/2

s (1 + ikf)l/zﬂ 1/2}. 9)

It is easy to show that for any non-vanishing k; and
k3 we have 0 < cos¢ < 1 and hence —7/2 < ¢ < 7/2.
Consequently, in the self-defocusing optical medium a
TWR is possible for the excitations created from the
cw background.
We now derive the envelope equations controlling
the TWR. It is assumed that Q = 1+eQ® +e2Q? +
-y R =€eRMW + R® 4 ... where € is a small pa-
rameter denoting the amplitude of an excitation, Q)
and RY) (j =1,2,3,---) are the functions of the fast
variables z, y, and t and the slow variables x1 = ez,
y1 = ey and t; = et. Then Egs. (4) and (5) read

QU 1,9*°RU)  9?RU) ")
ot 5( ox? + 0y? ) e (10)
AR 1,82Q0)  92Qu) ) )
_ = (1) — gG)
ot 2 ( oz? 0y? ) +20Q e

(11)

The explicit expressions of a(?) and () are omitted
here.

In the leading order (j = 1), Egs.(10) and (11)
yield the solution Q") = Q1 exp(if)+c.c. and R =
Ro+[R11 exp(if)+c.c.] with 0 = k-r—wt, k = (k,, ky)
and r = (z,y), where Ry; = (k?+4)/(2iw)Q1; exp(if),
w = w(ky, k,) has been given by Eq. (6). Obviously,
any linear superposition of such modes is also a solu-
tion. Because we are interested in a TWR and hence
we take Q1) = Zf’:l[Qllexp(iﬁl) + c.c] and R =
Ry + le:l[Ru exp(if;) + c.c.] with 6, = k; - r — w;t
and Ry = (k? + 4)/(2iw;) Q1 exp(i6;).

In the next order (j = 2), using the TWR condi-
tions (7) and (8) we obtain the closed equations con-
trolling the evolution of the envelopes Qq; (I = 1,2, 3).
Then by taking @, = €Q; and returning to the origi-

where V = (9/0x,0/0y), vi=(dw;/dki,, dw;/dk,)
(I = 1,2,3) is the group velocity of the lth waves;
A1, A2, and A3 are the complex coupling coefficients,
which carry the signs of wave energy. Their explicit
expressions are omitted here. Equations (12)—(14)
are the envelope ones describing the TWR, as is well
known in wave resonance theory.!”!

Next we discuss the soliton solutions of Egs. (12)—
(14). Using the transformation ¢; = ()\i/\k/’yfyk)l/QQj

Egs. (12)—(14) can be cast into the form
9qi . x
ot +vi- Vg =7iq; ¢, (15)

where i, j, and k are cyclic and equal to 1, 2, 3; 7 in
Eq. (15) has been scaled to unity magnitude v2 = 1. It
is interesting that the above equations are completely
integrable and can be solved by the inverse scatter-
ing transform.!®! Three types of three-wave soliton so-
lutions can be obtained, which are presented in the
following.

Let £ = v —ut, n = y — vt (u and v are con-
stants), the (2+1)-dimensional Eq. (15) becomes the
(141)-dimensional ones:

8q1 8 VAP N
9 +Cig — = it ks (16)

where C; = (viy — U)/(Uiz —u) and ; = v/ (vie — u).
Then using the results from the inverse scattering
method we obtainl6]

1/2
_ M exp[—i(¢1 — 201 21)]

D(v2
- [exp(202Z2) + St exp(—20225)],
GG (17)
1/2
q2 = % exp[—i(¢2 — 2p22>)]
- [exp(—20121)) + GG exp(20121)],
SEale (18)
_ —16i0102812
B D6~ ) (BrabraiTa) 2
-expli(¢1 + ¢2 — 2p1Z1 — 2p225)], (19)
with

D =exp(201Z1 + 202Z5) + exp(—2017Z1 + 2027Z5)
+ exp(—201721 — 20275)

-G

-G

where Z1 = £ — C1n — &10, Z2 = § — Can — &20, (1 =

+

exp(20171 — 20275), (20)
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2(p1 +i01)/ P23, (2 = 2(p2 +1i02)/B1s, Bij = Cj — C;
(Cy > C3 > C1), pj, 04, ¢; and o (j = 1,2) are the
constants.

We can easily obtain the asymptotic form of the
solution. As ¢t — —oo one has

o~ 201 (B12f13)"/?
()R

% 1/2 )
g~ % sech(2022,) exp(ig2), g3 ~ 0.
(7173) (21)

sech(2017;) exp(igy),

As t — oo, one can obtain

. 201 (B12513)"/?
RNCTA

-exp(ig; + ¢'),

. 201 (B138s2)"/?

(7173) /2
rexp(igs —¢'), g3 =0, (22)

sech(201Z; — 9)

sech(20275 — §)

where § and §' are defined by (1 — (2)/((F — &) =

ool
e feid

Fig.1. Modula |¢| in the case of the three-wave soliton
interaction (without energy transfer) created from the cw
background. The parameters are chosen to be k1 = 2,
k3 =6, u=-1,v=580=18§0=2,¢1 =2, ¢2 =1,
p1=1,p2 =101 =0.3, and 03 = 3 at time t = 1.

From the above result we can see that the solution
(17)—(19) describe a process of collision between the
solitons ¢; and ¢s. In the colliding region, a new soli-
ton g3, called the Mach sterm, is produced. During
the collision, there is no energy exchange between g
and ¢o. Figure 1 shows the modula of ¢ (exact to the
leading-order),

Wl=Q~1+QW
=1+ (Qleig1 + Qe 4 Qe 71 4 c.c.) .
(23)

The phase shift due to the collision can be clearly seen
in the figure.

Fig. 2. Modula |1| in the case of three-wave soliton inter-
action (with energy transfer) created from the cw back-
ground. The parameters are chosen as k1 = 2, k3 = 1,
d13=1,lil:0,.‘{2:0,C:O,V:lo,mzo,n:—lf),
B; =1, and By =5 at time t = 1.

Another interesting case is a three-soliton reso-
nance, i.e., two solitons are resonant with the third.
To show this, in Egs. (15) we choose vy, > v3, >
vy and define b; = (viy — Vky)/(Vks — Vi) and
r = (bz - bl)(UZw - U3z) = (bz - bs)(vu - U1m),
where s, dy3, and ds3 are the constants related by
s = dy3(v3g — V2z) = das(vez —v1z). Then we have the

following solution!”]
Ao\ A
q1 = 2 3K1F2A_1, = AKZIEF;;A_I,
Y273 Y1Y2
A1
"= 71722 KA, (24)
where

K1 = —i[(v2s — v12) (32 — v1a)/A2A3]/ 20/ (V2 — V1),
Ko =1[(vay — V1) (Va0 — v32) /A1 As] 2 (by — bs)9/r,
Ky = —i[(var — v12) (V30 — V1a) /M A2] 20/ (025 — v3a),
A=14 1 +7rp)(|1)? + |T2]?),9 = 2vs(1 + rp),
Fl = Bl exp{i[(blnl + Cdl?) + mb1 - mb2)
“(z = vsat) + K1 (y — vsyt)]}
- exp{—(vdi3 — nbs)(x — vszt) + n(y — vsyt)},
FQ = Bz exp{i[(b2n2 + Cdzg + mb2 - mbg)
(@ = v1at) + K2(y — viyt)]}
-exp{—(vda3 — nbs)(z — v1st) + n(y — viyt)]},
(25)
with p = —n(vs) ™1, k1, K2, ¢, v, m, and n being the
real constants. We note that for this solution to hold,
the condition 1+ rp > 0 is required. Figure 2 shows
the modula |¢| in the case of the three-wave soliton
solution (24). We can see that during a collision, the
energies of ¢; and g solitons are transferred into the
g3 soliton which completes a resonant triad.
The three-wave interaction Eq.(15) also admits
the so-called three-wave lump solutions. To show this
we transform Eq. (15) from space—time coordinates to
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the characteristic coordinates reads(®9]
3%’ % 3
=74 q; 26 9i 9k
ax; e (26) 4="p, D=1+ Z%’Gi, (27)
where X, is the ith characteristic, defined by =t
8/0X;=—08/0t — v; - V. The relations between these  where G;(X;) = [y g;(u)g;(u)du, and g; is arbitrary
coordinate and x,y,t are given by X3 = [z(v1, — functions of the single variable X;. In Fig.3 we have
2
Vay) + Y(v2s — V1z) + t(V1aV2y — V2uV1y)]/[V12(V3y — plotted the modula |)| when choosing g; = c;e ~Pi%i,
Vay) + Vog(V1y — Usy) + Uz (vay — v1y)], X2 = (y —  We can see that the solution shows a collision among

viyt)/(v1y — vay) = [(viy — v3y)/(v1y — vay)]Xs, and
X1 = —t— Xy — X3. The one-lump solution of Eq. (26)
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three lumps, which are localized in all spatial direc-
tions.
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Fig. 3. Modula |¢| in the case of three-wave lump excitation created from the cw background. The parameters are chosen

as k1 =2, ks =4, c; = \/1/147 co = 1/1/27 c1 =

collision (a) and 2.5 after collision (b).

In conclusion, based on a self-defocusing nonlin-
ear Schrédinger equation we have investigated a wave
resonant interaction in an isotropic optical medium
with a cubic nonlinearity. We have shown that a
three-wave resonance is indeed possible for the excit-
ing waves created from a cw background. By ade-
quately choosing the wavevectors and frequencies of
the three exciting waves the phase-matching condi-
tions for the three-wave resonant interaction can be
fulfilled. We have also derived the three-wave resonant
interaction equations by using a method of multiple-
scales. Some explicit three-wave soliton solutions (in-
cluding those with and without energy transfer) and
localized three-wave lump solutions are presented. We
note that conventional three-wave resonant interac-
tions are realized only in optical materials with a
quadratic nonlinearity.®®/ Here we have shown for
the first time that the materials of a cubic nonlin-
earity with negative Kerr coefficient can also provide
with the possibility of three-wave resonant interac-
tions. The idea presented in this work can be applied
to investigate the three-wave resonance of the excita-
tions created in Bose-Einstein condensates. 1]
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