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Abstract: We present a scheme to generate nonlocal optical Kerr nonlinearity and polaritonic
solitons via matter-wave superradiance in a Rydberg-dressed Bose-Einstein condensate (BEC).
We show that the polariton spectrum of the scattered field generated by the superradiance is
changed significantly due to the existence of the long-range Rydberg-Rydberg interaction between
atoms, i.e. it has a roton-maxon form; moreover, the BEC structure factor displays a strong
dependence on the Rydberg-dressing, which can be tuned in a controllable way. We also show
that such a Rydberg-dressed BEC system can support a giant nonlocal optical Kerr nonlinearity,
and hence allow the formation and stable propagation of polaritonic solitons, which have ultraslow
propagation velocity and ultralow generation power. The results reported here are useful to
understand the unique properties of Rydberg-dressing in BECs and have potential applications in
optical information processing and transmission.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Realization of strong nonlinear interactions between dilute atomic ensembles and weak optical
fields have attracted growing attentions in recent years due to diverse applications in quantum
computation and quantum information, high-precision sensing, simulation of many-body physics,
and so on [1,2]. Particularly, light propagation through near-resonance atomic gases with the
use of coherent multi-photon process (such as Raman process and electromagnetically induced
transparency) has been proved to be a very promising approach for realizing the strong nonlinear
interactions between photons [3–11]. In addition, under the excitation of a laser field, collective
atomic recoil motion, also known as matter-wave superradiance, may occur [12–14]. The
collective center-of-mass recoil motion of ultracold atoms is an intriguing process, where a group
of atoms in the same electronic state can recoil coherently; the recoiled atoms can mediate the
conversion of atomic kinetic energy into radiation, resulting in the generation of scattered laser
fields.

In early experiments on the matter-wave superradiance [15–17], an elongated Bose-Einstein
condensate (BEC) was used, and a long-duration pump laser field was sent along the short
transverse direction of the BEC. In such a scheme, the scattered laser field is dominated by the
axial or end-fire modes, while the recoiled atoms from the BEC form special fan-like or X-shaped
scattering patterns in the momentum space (alias as the side-mode distribution) depending
on the duration and strength of the incident laser pulse. Since then, comprehensive studies
for understanding the underlying physics of these experimental observations were carried out,
providing further insights into the features of the atomic momentum distribution [18–24] and the
coupled dynamics of matter waves and laser fields [25,26]. Meanwhile, superradiant scattering
and polariton formation from an elongated BEC with the incident laser along the long axis was
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also investigated, where the asymmetric backward scattering pattern and multi-matter-optical
wave-mixing process were found [27–31]. Recent experimental and theoretical works also
revealed that matter-wave superradiance can be achieved in degenerate fermion gases [30]. In
addition to its fundamental role for atom optics [32] and related research fields, the study of
matter-wave superradiance opens possibilities for many practical applications such as matter-wave
amplifiers, highly sensitive matter-wave interferometers, quantum information processors based
on ultracold atoms, and so on. Up to now, however, the collective atomic recoil motion has been
demonstrated for ultracold atoms with only short-range contact interactions.

On the other hand, much attention has been paid to the study of ultracold Rydberg atomic
gases [33,34] in recent years, which exhibit strong and long-range interactions. Due to the
large electric-dipole moment of Rydberg states, the interaction between two Rydberg atoms
can reach several megahertz at their separation of several micrometers [35,36], which may
generate giant nonlocal optical Kerr nonlinearity when such atoms are coupled with laser fields
[37–44]. However, lifetimes of Rydberg states are typically 10-100 µs, which are much shorter
than BEC lifetimes and are not long enough to explore a wave propagation phenomenon. In
order to overcome this drawback, Rydberg dressing, in which a far-detuned laser field couples
electronic ground states to Rydberg states, is proposed [45–49]. The Rydberg dressing renders a
long-range, soft-core type interaction between Rydberg-dressed atoms, whose coherence time
and interaction strength can be controlled by the coupling laser. Particularly, the coherence
time of Rydberg-dressed atoms can be prolonged to 10-100 ms, which is comparable with
BEC lifetimes. Recent experiments have successfully demonstrated Rydberg-dressing in optical
tweezers [50], optical lattices [51–53], and traps [54–56]; many interesting physics associated
with Rydberg-dressing such as magnets [52], transport [57], wave mixing [58], supersolids
[46,59–61], and experimental observation [62] have also been studied. Different from BECs
with dipolar interactions, the Rydberg-dressing in the BECs without dipolar interaction gives rise
to isotropic interaction potentials, which is crucial for the stabilization of BECs [45,46].

In this article, we present a scheme to create giant nonlocal optical Kerr nonlinearity and
ultraslow polaritonic solitons via matter-wave superradiance in a Rydberg-dressed BEC. The
system under consideration is a cigar-shaped BEC, which interacts with a pump and a control
laser fields, propagating along the long-axis direction of the BEC. The pump field couples the
ground state and an excited state, while the control field couples the excited state and a high-lying
Rydberg state. Due to such a coupling configuration, the BEC acquires a collective atomic recoil
motion from the pump and control lasers and a scattered laser field is spontaneously generated
and propagates along the same direction with the pump field (i.e. along the long-axis direction of
the BEC).

We show that, due to the existence of the long-range Rydberg-Rydberg interaction between the
atoms, the polariton spectrum (linear dispersion relation) of the scattered laser field generated by
the superradiance is changed significantly comparing with the case without the Rydberg-Rydberg
interaction. Particularly, when the strength of the Rydberg-Rydberg interaction increases, the
spectrum can develop a maxon maximum followed by a roton minimum, which ultimately results
in a roton instability. Furthermore, we find that the BEC structure factor has a strong dependence
on the property of the Rydberg-dressing, which is much easier to be manipulated than that in
conventional BECs with only short-range interactions.

We demonstrate that by using such a system a giant nonlocal optical Kerr nonlinearity can be
achieved, which is also contributed by the strong and long-range Rydberg-Rydberg interaction.
Based on such result, the formation and robust propagation of polaritonic solitons (i.e. collective
nonlinear excitations of the Rydberg-dressed BEC coupled with the scattered laser field) through a
backward scattering process can be realized. Moreover, such solitons have ultraslow propagation
velocity and can be generated with ultralow light power. The results reported here are useful for
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the understanding of the unique properties of Rydberg-dressing in ultracold atomic gases (BECs)
and have potential applications in optical information processing and transmission.

The remainder of the paper is organized as follows. In Sec. 2, we describe the physical model
under study. In Sec. 3, we make the asymptotic expansion on the model equations and calculate
the polariton spectrum and the structure factor of Rydberg-dressed BEC. In Sec. 4, we derive the
nonlinear envelope equation controlling the evolution of nonlinear polaritons and investigate the
nonlocal Kerr nonlinearity and polaritonic solitons. The last section contains the summary of the
main results of the present work.

2. Physical model

We consider a ultracold three-state atomic gas with a ladder-shaped level configuration where the
atoms are initially populated in the ground state |1⟩. We assume that the atoms are trapped in a
highly anisotropic trapping potential V(r), and they form a cigar-shaped BEC, with its long axis
along z direction; see Fig. 1(a). We also assume that a pump laser field EP (with the angular
frequency ωP and the wavevector kP) and a control laser field EC (with the angular frequency
ωC and the wavevector kC) are applied to the BEC and they are all linearly polarized along the x
axis and propagate along the z direction. The pump laser field couples the transition from the
ground state to an excited state |2⟩, while the control laser field couples the transition from the
excited state to a high-lying Rydberg state |3⟩; see Fig. 1(c).

To make the system work in a Rydberg-dressed regime, we further assume that the control
field is sufficiently detuned from the related one-photon resonance, so that the excitation of the
atoms in the Rydberg state |3⟩ can be significantly suppressed. In such a regime, the excited state
is dressed by the Rydberg state through the far-off-resonant coupling of the control field; the
atomic gas can be described by a reduced two-state system (see the Supplement 1).

Due to the gain provided by the pump laser field, a weak scattered laser field (with the center
angular frequency ωS and the center wavenumber kS) will emerge, which radiates from the
excited state |2⟩ to the ground state |1⟩. Thereby, the total electric-field vector in the system can be
written as E =

∑︁
α=P,C,S Eα =

∑︁
α=P,C,S eαEαei(kα ·r−ωα t) + c.c., where eP, eC and eS (EP, EC and

ES) are respectively polarization unit vectors and amplitudes of the pump, control and scattered
fields; c.c. denotes the corresponding complex conjugate terms. Because of the cigar-shaped
geometry of the BEC, the scattered field has nearly the same polarization direction with the pump
and control fields, i.e. eS = eP = eC = ex, and propagates along the long-axis of the BEC, i.e.
kS · r ≈ kSz. Generally, the spontaneously generated scattered field propagates co-linearly and
anti-co-linearly with the pump field, as illustrated in Fig. 1(a) and Fig. 1(b), respectively. The
wavevector of the recoiled atoms is then determined by ∆k = kP − kS for the forward scattering
and ∆k = kP + kS for the backward scattering.

The dynamics of the BEC and the laser fields can be described by the Hamiltonian Ĥ =
Ĥatom + Ĥlaser + Ĥint, where

Ĥatom =

3∑︂
α=1

∫
d3r

{︁
ℏωαΨ̂

†
α(r, t)Ψ̂α(r, t) + Ψ̂†

α(r, t)H0Ψ̂α(r, t)
}︁

+

3∑︂
α,β=1

1
2

∫ ∫
d3rd3r′Ψ̂†

α(r, t)Ψ̂†

β(r
′, t)Uαβ(r − r′)Ψ̂β(r′, t)Ψ̂α(r, t),

(1a)

Ĥlaser =
1
2

∫
d3rϵ0E(r, t)2, (1b)

Ĥint = −

3∑︂
α,β=1

∫
d3rΨ̂†

α(r, t)[pαβ · E(r, t)]Ψ̂β(r, t), (1c)

https://doi.org/10.6084/m9.figshare.23816694
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Fig. 1. Excitation scheme, level diagram, and nonlocal response function of the cigar-shaped
Rydberg-dressed BEC, which interacts with a pump laser field EP (wavevector kP) and a
control laser field EC (wavevector kC), propagating along the long-axis (z) direction of the
BEC. A scattered laser field ES (wavevector kS) can spontaneously emerge in the system,
propagating co-linearly or anti-co-linearly with the pump field. (a) Excitation scheme for the
forward scattering. Inset: relation between kP and kS, with ∆k = kP − kS. (b) The same as
(a) but for the excitation scheme of backward scattering, with ∆k = kP + kS. (c) Ladder-type
energy-level diagram of the atoms, in which the pump field EP couples the ground state |1⟩
to the excited state |2⟩ (with detuning ∆1) and the control field EC far-off-resonantly couples
|2⟩ to the Rydberg state |3⟩ (with detuning ∆R). A weak scattered field ES radiates from
the excited state |2⟩ to the ground state |1⟩ (with detuning ∆2). The interaction between
Rydberg atoms is described by the van der Waals potential UVdW = ℏC6/|r − r′ |6 (C6 is
the dispersion parameter). (d) Long-range soft-core interaction potential U1(r), scaled by
C̃6/R6

c (C̃6 is the modified dispersion parameter; Rc is the Rydberg blockade radius), as
a function of the separation r = |r − r′ | between two Rydberg atoms (locate at r and r′,
respectively) for the principle quantum number n = 60.

with H0 = −[ℏ2/(2M)]∇2 + V(r), d3r = dxdydz, and d3r′ = dx′dy′dz′. Here Ψ̂α is the
atomic field operator related to the state |α⟩ (α = 1, 2, 3), obeying the commutation relations
[Ψ̂α(r, t), Ψ̂β(r′, t)] = [Ψ̂

†
α(r, t), Ψ̂†

β(r
′, t)] = 0 and [Ψ̂α(r, t), Ψ̂†

β(r
′, t)] = δαβδ(r − r′), M is the

atomic mass, V(r) is a harmonic trapping potential which is assumed to be the same for the three
atomic internal states, and pαβ is the electric dipole matrix element for the transition between the
states |α⟩ and |β⟩, with pαα = 0 and pαβ = p∗

βα.
From the Hamiltonian, one can obtain the Heisenberg equations for Ψ̂α, i.e. iℏ∂Ψ̂α/∂t =

[Ψ̂α, Ĥ] (α = 1, 2, 3). We emphasize that the present system is studied under the following
conditions: (i) The BEC is initially prepared in the ground state |1⟩; (ii) The two-photon
detuning ∆R is enough large (order of GHz) so that the atomic excitation of the Rydberg state
|3⟩ is not significant and the system works in a Rydberg-dressed regime; (iii) The one-photon
detuning ∆1 is also large (order of tens of MHz), and hence the spontaneous emission from the
excited state |2⟩ can be largely suppressed and the system works in a dispersive nonlinearity
regime; (iv) The interatomic interactions are described by the two-body potential with the form
Uαβ(r − r′) = δα 1δβ 1U0δ(r − r′) + δα 3δβ 3UvdW(r − r′). Here, the first (second) term on the
right hand side describes the contact [van der Waals (vdW)] interaction between the atoms in
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the ground state |1⟩ (Rydberg state |3⟩) located at r and r′, respectively [45,46]. The parameter
U0 = 4πℏ2as/M, with as the s-wave scattering length; the vdW interaction potential has the form
of UvdW(r, r′) = ℏC6/|r − r′ |6, with C6 the dispersion parameter (C6 ∝ n11; n is the principle
quantum number of the Rydberg state) [34–36].

Under the above assumptions, we adiabatically eliminate the equations for the motion of Ψ̂2
and Ψ̂3. Then, by employing mean-field approximation to Ψ̂1, i.e. Ψ̂1 → ⟨Ψ̂1⟩ ≡ Ψ, we can
obtain the Gross-Pitaevskii (GP) equation for the condensate wave function Ψ, reading

iℏ
∂

∂t
Ψ = −

ℏ2

2M
∇2
Ψ + V(r)Ψ +

∫
d3r′U(r − r′)|Ψ(r′)|2Ψ(r)

−
|p12 · E(+)(r, t)|2

ℏ∆1
Ψ − iℏΓ(r, t)Ψ,

(2)

where ∇ = (∂x, ∂y, ∂z), E(+) = ex[EPei(kPz−ωPt) + ES(x, y, z, t)ei(kSz−ωSt)], U(r − r′) = U0δ(r) +
U1(r − r′) (with U1(r − r′) ≡ ℏC̃6/(|r − r′ |6 + R6

c) an effective soft-core-shaped two-body
interaction potential), and Γ(r, t) = |p12 · E(+)(r, t)|2Γ12/(ℏ2∆2

1) is effective decay rate (with Γ12
the spontaneous decay rate from |2⟩ to |1⟩). Here C̃6 is the modified dispersion parameter and Rc
is the Rydberg blockade radius [45,46], both of which are proportional to C6. Figure 1(d) shows
the soft-core-shaped interaction potential U1 as a function of r = |r − r′ | for n = 60 (scaled by
C̃6/R6

c).
The equation of motion for the electric field can be obtained from the Maxwell equation

∂2E(+)/∂t2 = c2▽2E(+)−(1/ϵ0)∂2P(+)/∂t2, where P(+) = p12(p21 ·E(+))|Ψ|2/(ℏ∆1) is the electric
polarization vector related to E(+) [25–27]. Under the slowly varying envelope approximation,
the Maxwell equation is reduced to

i
(︃
∂

∂z
+

1
c
∂

∂t

)︃
ES +

c
2ωS

∇2
⊥ES +

c
2ωS

(︄
k2

P −
ω2

P
c2

)︄
EPei[∆kz−∆2t]

=
ωS

2ϵ0c
|p12 · ex |

2

ℏ∆1
|Ψ|2(ES + EPei[∆kz−∆2t]),

(3)

where ∇⊥ = (∂x, ∂y), ∆k = kP − kS (∆k = kP + kS) corresponds to the forward (backward)
scattering and ∆2 = ωP − ωS. If there is no atoms, |Ψ|2 = 0, the scattered field will vanish
(ΩS = 0) and one can get kP = ωP/c, which is the dispersion relation for the pump field in the
absence of atoms.

The GP Eq. (2) and Maxwell Eq. (3) are both (3+1)D. To simplify the problem, we assume
that the Rydberg-dressed BEC is trapped in a highly anisotropic potential of the form V(r) =
(M/2)[ω2

⊥(x2 + y2) + ω2
z z2], with ω⊥ ≫ ωz. Thus, the BEC is elongated along the z axis but

remains symmetric in the transverse (x and y) directions. By introducing the dimensionless
variables (ξ, η) = a−1

⊥ (x, y) (with a⊥ =
√︁
ℏ/(Mω⊥) the harmonic oscillator length in the transverse

directions), ζ = a−1
z z (with az =

√︁
ℏ/(Mωz) the harmonic oscillator length in the longitudinal

direction), τ = ω⊥t, ψ = Ψ/
√

N0 (with N0 = N/a3
⊥ the atomic density), and εS = ES/EP, Eq. (2)

can be written into a dimensionless form

i
∂ψ

∂τ
= −

1
2
∇̃2ψ +

1
2
(ξ2 + η2)ψ +

1
2
ω2

z

ω2
⊥

ζ2ψ +
4πNas

a⊥
|ψ |2ψ

+
N

ℏω⊥

∭
dξ ′dη′dζ ′U1(ξ

′ − ξ, η′ − η, ζ ′ − ζ)|ψ(ξ ′, η′, ζ ′)|2ψ(ξ, η, ζ)

−
|ΩP |

2

ω⊥∆1
(1 + εSe−iΦ + ε∗SeiΦ + |εS |

2)ψ − i
Γ

ω⊥

ψ.

(4)



Research Article Vol. 31, No. 20 / 25 Sep 2023 / Optics Express 33523

Here ∇̃ = (∂ξ , ∂η , ∂ζ ), ΩP = |p12 · ex |EP/ℏ is the half Rabi frequency of the pump field, and
Φ = ∆k̃ζ − ∆ω̃τ is the phase, with ∆k̃ = (kP ∓ kS)a⊥ (“−” for the forward scattering; “+” for the
backward scattering) and ∆ω̃ = ∆2/ω⊥. Note that since ω⊥ ≫ ωz, one has a⊥ ≪ az.

Due to the strong transverse confinement provided by the trapping potential, it is possible to
factor the solution of Eq. (4) as ψ = φ(ξ, η)F(ζ , τ)e−iµτ [63], with µ the chemical potential and
φ(ξ, η) the transverse mode, governed by the equation

−
1
2

(︃
∂2

∂ξ2 +
∂2

∂η2

)︃
φ +

1
2
(ξ2 + η2)φ = νφ. (5)

Note that Eq. (5) has the same form with the eigenvalue equation of a two-dimensional
harmonic oscillator in quantum mechanics. When the trapping potential is deep enough, no
collective excitations of the Rydberg-dressed BEC can occur in the x and y (transverse) directions,
but the occurrence of low-energy excitations induced by the atomic interactions is allowed in the
z direction. Furthermore, one can set φ(ξ, η) = φ0(ξ, η) = e−(ξ2+η2)/2, which is the ground-state
solution of Eq. (5) with the eigenvalue ν = 1. In addition, we assume that the scattered field has
the same Gaussian transverse distribution with that of φ, with the form ES = g(ζ , τ)EPe−(ξ2+η2)/2,
where g(ζ , τ) is a dimensionless function characterizing the amplitude of the scattered field.
Since the scattered field is much weaker than the pump one, the magnitude of g(ζ , τ) should be
much smaller than one.

With the above analysis, Eq. (4) can be simplified into the following (1+1)D form

i
∂F
∂τ
+

1
2
∂2F
∂ζ2 + (µ − 1)F −

1
2
ν2ζ2F − c0 |F |2F

− c1

∫
dζ ′U1(ζ − ζ

′)|F(ζ ′, τ)|2F(ζ , τ)

+ c2

(︃
1 +

2
3

ge−iΦ +
2
3

g∗eiΦ +
1
2
|g|2

)︃
F + iγF = 0,

(6)

where ν = ωz/ω⊥, c0 = 2πNas/a⊥, c1 = N/(2ℏω⊥), c2 = |ΩP |
2/(ω⊥∆1) and γ = Γ/ω⊥. For

obtaining Eq. (6), we have multiplied Eq. (4) by φ0(ξ, η) and integrated it once with respect to ξ
and η.

By using the same approach, Eq. (3) can be converted into the following (1+1)D form

i
(︃
∂

∂ζ
+

1
v
∂

∂τ

)︃
g + d0eiΦ − d1g + d2

(︃
2
3

eiΦ +
1
2

g
)︃
|F |2 = 0, (7)

with v = c/(a⊥ω⊥), d0 = (ca⊥/ωS)(k2
P − ω2

P/c
2), d1 = c/(2ωSa⊥) and d2 = ωS |p12 ·

ex |
2N0a⊥/(2ϵ0cℏ∆1). Equations (6) and (7) are reduced GP-Maxwell equations, both of which

are now (1+1)D ones and hence are convenient for an analytical approach.
The model we considered above is rather general. It can be realized by using a Bose-condensed

Strontium atomic gas [64] (e.g. 88Sr), with the atomic internal states assigned to be |1⟩ = |5s2 1S0⟩,
|2⟩ = |5s5p 1P1⟩ and |3⟩ = |5sns 1S0⟩. The s-wave scattering length of the BEC is as = 94.8a0,
with the Bohr radius a0 ≈ 53 pm. The spontaneous emission rates of atoms are given by
Γ12 ≈ 2π × 16 MHz, and Γ23 ≈ 2π × 16.7 kHz. The dispersion parameter of the Rydberg state
for n = 60 is C6 ≈ 2π × 10.9 GHz µm6. Since C6 is positive, the vdW interaction between atoms
in the Rydberg state is attractive, useful to realize a self-focusing Kerr nonlinearity and realize
polaritonic solitons. In the following calculations, we assume ω⊥/(2π) = 100 Hz, which results
the harmonic oscillator length in the transverse directions a⊥ ≈ 1.1 µm, ωz/(2π) = 0.1 Hz, which
corresponds to the harmonic oscillator length in the longitudinal direction az ≈ 32a⊥ ≈ 35 µm,
the atomic density n0 ≈ 2.4 × 1013 cm−3, the one-photon (two-photon) detuning ∆1 ≈ 50 MHz
(∆R ≈ 18 GHz), and ΩP ≈ ΩC ≈ 10 MHz, which gives the Rydberg blockade radius Rc ≈ 4.5
µm. All calculations given below will be based on these parameters.
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3. Linear excitation spectrum and structure factor of the Rydberg-dressed BEC

Now we turn to solve the reduced GP-Maxwell Eqs. (6) and (7). To understand the physical
property of the excitations in the system, it is necessary to know the stationary background of
the condensate when the scattered laser is absent, which constitutes the base state of the system.
Such a based state can be obtained from Eqs. (6) and (7) by neglecting the derivative terms and
setting F = f0, g = 0, yielding the equations

µ − 1 + c2 = (c0 + c1u0)f 2
0 , d0 + 2d2f 2

0 /3 = 0, (8)

where u0 =
∫

dζ ′U1(ζ − ζ ′) and we have set ν ≈ γ ≈ 0 as they are small and plays no
significant role in the background of the condensate. From the first relation of Eq. (8), one can
obtain that f0 =

√︁
(µ − 1 + c2)/(c0 + c1u0). Thus, if the dimensionless length of the BEC is ℓ,

corresponding to the length l = 2azℓ, by using the normalization condition
∫ ℓ

0 dζ f 2
0 = 1 (derived

from
∫

d3r |Ψ|2 = N; N is the total number of atoms, which is taken to be 103 in the numerical
example), the expression of the chemical potential µ = 1 − c2 + (c0 + c1u0)/ℓ. From the second
relation of Eq. (8), we obtain the dispersion relation of the pump laser in the presence of the
Rydberg-dressed BEC, i.e. ω2

P/c
2 − k2

P = 2ωSd2f 2
0 /(3ca⊥), which can be further reduced to

ωP/c = kP when the BEC is absent (f0 = 0).
Now we apply the method of multiple scales [31] to investigate the linear and nonlinear

excitations and the propagation behavior of the scattered field in the system. To this end, we make
the asymptotic expansions F = f0 +

∑︁∞
j=1 ϵ

jf (j) and g =
∑︁∞

j=1 ϵ
jg(j). Here ϵ is a small parameter

characterizing the typical amplitude of the scattered field relative to the pump field; all quantities
on the right hand side of the expansions are functions of the multi-scale variables τα = ϵατ
(α = 0, 1) and ζβ = ϵβζ (β = 0, 1, 2). The damping parameter γ can be assumed to be the order
of ϵ (i.e. γ ∼ O(ϵ)), which is reasonable because the spontaneous emission is greatly suppressed
by the use of the large one-photon detuning ∆1. With such expansions, Eqs. (6) and (7) are
transferred into the form

i
(︃
∂

∂τ0
+ γ

)︃
f (j) +

1
2
∂2f (j)

∂ζ2
0

− c0f 2
0 (f

(j) + f (j)∗) − c1f 2
0 F [f (j)]

+ c̄2f0(g(j)e−iφ + g(j) ∗eiφ) = M(j),
(9a)

i
(︃
∂

∂ζ0
+

1
v
∂

∂τ0

)︃
g(j) + d̄2eiφf0(f (j) + f (j)∗) = N(j), (9b)

where F [f (j)] =
∫

dζ ′0U(ζ0 − ζ
′
0)[f

(j)(ζ ′0, ζ1, ζ2, τα) + f (j)∗(ζ ′0, ζ1, ζ2, τα)] (α = 0, 1), ϕ = ∆k̃ζ0 −
∆ω̃τ0, c̄2 = 2c2/3, and d̄2 = 2d2/3. The explicit expressions for M(j) and N(j) (j = 1, 2, 3) at
each order are presented in the Supplement 1.

For seeking the density fluctuations of the Rydberg-dressed BEC and the scattered field induced
by the pump field, we further assume f (j) = f (j)+ eiϕ + f (j)∗− e−iϕ , with φ = qζ0 − ωqτ0. Here q and
ωq are respectively the dimensionless atomic momentum and the corresponding atomic energy
of density fluctuations induced by the light scattering process. Then, Eqs. (9a) and (9b) can be
recast into the following equations for f (j)+ , f (j)− and g(j):

i
(︃
∂

∂τ0
+ q

∂

∂ζ0
+ γ

)︃
f (j)+ +

(︃
ωq −

q2

2
− c0f 2

0

)︃
f (j)+

+
1
2
∂2f (j)+
∂ζ2

0
− c0f 2

0 f (j)− − c1f 2
0 Ũ(q)f (j)+ + c̄2f0g(j) ∗ei(φ−ϕ) = M(j)e−iϕ ,

(10a)

https://doi.org/10.6084/m9.figshare.23816694
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i
(︃
∂

∂τ0
− q

∂

∂ζ0
+ γ

)︃
f (j)− +

(︃
ωq +

q2

2
+ c0f 2

0

)︃
f (j)−

−
1
2
∂2f (j)−

∂ζ2
0
+ c0f 2

0 f (j)+ + c1f 2
0 Ũ(q)f (j)− − c̄2f0g(j) ∗ei(φ−ϕ) = −M(j) ∗e−iϕ ,

(10b)

i
(︃
∂

∂ζ0
+

1
v
∂

∂τ0

)︃
g(j) + d̄2f0(f (j) ∗+ + f (j) ∗− )ei(φ−ϕ) = N(j), (10c)

with the phase difference ϕ−φ = (∆k̃−q)ζ0−(∆ω̃−ωq)τ0 and Ũ(q) the Fourier transformation of
the nonlocal response function U(ζ). The phase-matching condition is achieved when ϕ ≈ φ, i.e.
it is achieved when q ≈ ∆k̃ and ωq ≈ ∆ω̃, simultaneously. Recalling that ∆k̃ = (kP ∓ kS)a⊥ (“−”
for the forward scattering; “+” for the backward scattering) and ∆ω̃ = ∆2/ω⊥, an efficient light
scattering will occur only when a linear excitation of the Rydberg-dressed BEC compensates the
laser-field phase mismatch. Equations (10a)–(10c) can be solved order by order in a systematic
way.

At the first-order (j = 1) approximation, under the phase-matching condition (ϕ ≈ φ) and
assuming that f (1)+ , f (1)− and g(1)∗ are all proportional to ei(kζ0−ωτ0), we obtain the linear dispersion
relation

(ω + ωq + iγ)2 − (k + q)2
[︄
(k + q)2

4
+ c0f 2

0 + c1f 2
0 Ũ(q) +

c̄2d̄2f 2
0

k − ω/v

]︄
= 0, (11)

where Ũ(q) can be found to be Ũ(q) = Z0f (q), with Z0 = 2πC̃6/(3R5
c) and

f (q) =
1
2

e−|q |Rc/2

[︄
e−|q |Rc/2 + cos

(︄√
3

2
|q|Rc

)︄
+
√

3 sin

(︄√
3

2
|q|Rc

)︄]︄
. (12)

Particularly, when |q|Rc ≪ 1, one has f (q) ≈ 1 − q2R2
c/4. Since k is a small deviation from q,

we can approximate k + q ≈ q. As a result, Eq. (11) can be simplified as

k(ω) =
ω

v
+ c̄2d̄2f 2

0 S(q)
(︃

1
ω + ωq + iγ − ωB

−
1

ω + ωq + iγ + ωB

)︃
≈
ω

v
+ c̄2d̄2f 2

0 S(q)
1

ω + ωq + iγ − ωB
,

(13)

as 1/(ω +ωq + iγ +ωB) ≪ 1/(ω +ωq + iγ −ωB). Here, S(q) = q2/(2ωB), is the structure factor
of the Rydberg-dressed BEC, and

ωB(q) = q
√︂

q2/4 + c0f 2
0 + c1f 2

0 Ũ(q) = q
√︂

q2/4 + c0f 2
0 + c1f 2

0 Z0f (q), (14)

is the frequency of the linear (Bogoliubov) excitation in the Rydberg-dressed BEC. Obviously,
when the Rydberg dressing is absent (c1 = 0), Eq. (14) is reduced to the standard Bogoliubov
spectrum of a normal BEC with only the short-range interaction. Equation (13) presents the
linear dispersion relation of a polariton, a quasi-particle superposed by the BEC matter-wave and
scattered laser field in the system. From Eq. (13), it is obvious that the imaginary part of k is
negative around ω = 0, i.e. Im(k)<0 at ω ≈ 0. This indicates that the scattered field can acquire
an optical gain during the scattering process, which is crucial for the spontaneous generation of
the scattered field in the system.

Shown in Fig. 2(a) is the Bogoliubov excitation spectrum of the Rydberg-dressed BEC by
taking the oscillating frequency ωB as a function of qRc (q is the atomic recoil momentum and
Rc is the Rydberg blockade radius). The dashed black line, solid red line, and dotted blue line
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in the figure are for the interaction parameter α ≡ 2n0c1f 2
0 Z0 = 10, 80, and 180, respectively.

Particularly, we have f0 = 0.32, Z0 = 1.18 × 10−8 GHz µm, with the parameters given in the
last paragraph of Section 2. Different form conventional BECs with contact interactions, in
the Rydberg-dressed BEC the presence of long-range Rydberg-Rydberg interaction can result a
significant effect on the the polariton spectrum. Particularly, a maxon maximum followed by a
roton minimum can be observed for a moderate value of α, which ultimately results in a roton
instability when further increasing α.
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Fig. 2. Linear excitations of the Rydberg-dressed BEC. (a) Linear (Bogoliubov) excitation
spectrum ωB as a function of qRc (q is the atomic recoil momentum and Rc is the Rydberg
blockade radius). The dashed black line, solid red line, and dotted blue line are for the
interaction parameter α = 10, 80, and 180, respectively; δ denotes the frequency gap for the
occurrence of polaritonic roton. (b) Roton gap δ as a function of α. The vertical dashed
lines correspond to αmin ≈ 10, αmax ≈ 38 and αinst ≈ 118, respectively.

The parameter δ in Fig. 2(a) indicates a frequency gap for the local roton minumim, for which
ωB displays the roton minimum at a non-zero value of q. Figure 2(b) shows δ as a function of α.
The vertical dashed lines are for αmin ≈ 10, αmax ≈ 38 and αinst ≈ 118, respectively. We find
that δ firstly increases with growth of α until arriving at a critical value α = αmax ≈ 38; then it
decreases as α increases further, and ultimately vanishes at α = αinst ≈ 118 which marks the
onset of a roton instability.

The structure factor S(q) can significantly affect the dispersive property of the system.
Specifically, the system is weakly dispersive when S(q) is small, while it is strongly dispersive
when S(q) is large. From the definition of S(q), we have S(q) ≈ q/(2

√
c0 + c1Z0f0) ≪ 1 when

q2/4 ≪ c0f 2
0 + c1f 2

0 Ũ(q) and S(q) ≈ 1 when q2/4 ≫ c0f 2
0 + c1f 2

0 Ũ(q). Consequently, if the
scattered field propagates co-linearly with the pump field (i.e. the forward scattering), one has
q ≈ ∆k̃ ≈ (kP − kS)a⊥, resulting in a small q and hence S(q) ≪ 1. In such a case, the system
is weakly dispersive and has the linear dispersion relation k ≈ ω/v. However, if the scattered
field propagates anti-co-linearly with the pump field (i.e. the backward scattering), one has
q ≈ ∆k̃ ≈ (kP + kS)a⊥, resulting in a large q and hence S(q) ≈ 1. In such a scenario, the system is
strongly dispersive and has the linear dispersion relation k ≈ c̄2d̄2f 2

0 /(ω + ωq + iγ − ωB). Since
the structure factor of the Rydberg-dressed BEC depends on more system parameters (such as
the control-field intensity |Ωc |

2 and the principal quantum number of Rydberg states n) than that
of conventional BECs, the dispersive property of the Rydberg-dressed BEC is more controllable
than that of conventional BECs.

Shown in Fig. 3(a) is the structure factor S(q) as a function of the atomic recoil momentum
q, for the principle quantum number n = 30, 60, 90, and 120, respectively. Note that with the
parameters given in the last paragraph of Section 2, we get µ ≈ −3.64, f0 ≈ 0.32, and γ ≈ 0.06.
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We see that S(q) ≈ 0 when q → 0 and S(q) increases rapidly when q has a small value. However,
S(q) ≈ 1 when q → ∞ and S(q) increases very slowly when q has a large value. Thereby, in the
case of forward scattering q ≈ 0 one has S(q) ≈ 0 whereas in the case of backward scattering
q ≈ 17 one has S(q) ≈ 1. Figure 3(b) is an illustration of S(q) as a function of n for different
values of q. It is seen that although S(q) always decreases as n increases, it decreases fast (slowly)
when q has a small (large) value.
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Fig. 3. Structure factor S(q) of the Rydberg-dressed BEC when the roton instability does
not occur. (a) S(q) as a function of the atomic recoil momentum q, for the principle quantum
number n = 30, 60, 90, and 120, respectively. The regions of the forward and backward
scattering are indicated. (b) S(q) as a function of n, for q = 1 (solid line), 1.5 (dash-dotted
line), 2 (dotted line) and 2.5 (dashed line), respectively.

At the first-order approximation, we get solutions f (1)+ = Aei(kζ0−ωτ0), f (1)− = aAei(kζ0−ωτ0), and
g(1)∗ = bAei(kζ0−ωτ0), with

a =
X

c0f 2
0 + c1f 2

0 Ũ(q) + c̄2d̄2f 2
0 /(k − ω/v)

, b = −
d̄2f0

k − ω/v
.

Here, X = ω + ωq + iγ − q2/2 − c0f 2
0 − c1f 2

0 Ũ(q) − c̄2d̄2f 2
0 /(k − ω/v) and A is a yet to be

determined envelope function. The propagation property of the polariton in the linear regime is
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Fig. 4. The linear dispersion relation k(ω) without occurrence of roton instability as a
function of ω. Solid and dashed lines denote the real [Re(k)] and imaginary [Im(k)] parts of
k(ω), respectively.
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determined by the linear dispersion relation k(ω). Particularly, the polariton is stable during the
propagation if the imaginary part of k(ω) [Im(k)] is zero; otherwise, it undergoes an attenuation
(amplification) if Im(k) is positive (negative).

Shown in Fig. 4 are real and imaginary parts of k(ω) [Re(k) and Im(k)] as functions of ω
for ωq ≈ ωB. It is seen that Re(k) ≈ 0 and Im(k) arrives at a negative maximum at ω ≈ 0,
corresponding to a negligible phase shift and a large gain. Thus, the scattered field and hence the
polariton can be spontaneously generated and amplified at this point. However, when |ω | ≳ 1,
one has Re(k) ≫Im(k) ≈ 0, corresponding to a large phase shift and a negligible gain. In these
regions, the stable propagation of the scattered field and hence the polariton can be achieved,
which will be crucial for the robust propagation of polaritonic solitons.

4. Giant nonlocal Kerr nonlinearity and ultraslow polaritonic solitons

The study of Kerr effect in ultracold atoms is of great interest in nonlinear optics because the
Kerr effect is essential for the realization of most nonlinear optical processes and related to
many applications [65]. By means of the matter-wave superradiance, it is possible to achieve
a significant enhancement of the optical Kerr nonlinearity with controllable nonlocality in the
Rydberg-dressed BEC. In order to demonstrate this, we need to go to the high-order solutions of
Eq. (10).

At the second order (j = 2) approximation, the solvability condition of Eq. (10) requires the
condition

i
(︃
∂A
∂ζ1
+

1
Vg

∂A
∂τ1

)︃
= 0, (15)

where Vg is the group velocity of the envelope function A, defined by Vg = [∂k(ω)/∂ω]−1. From
Eq. (13), we have

V−1
g ≈

1
v
− c̄2d̄2f 2

0 S(q)
1

(ωq + iγ − ωB)2

(︃
1 +

2ω
ωq + iγ − ωB

)︃
. (16)

Note that the imaginary part of Vg is much smaller than the corresponding real part under the
condition γ ≪ ωq − ωB and hence it plays a negligible role.

The evolution of the envelope function A in the nonlinear regime can be obtained by the
solvability condition of Eq. (10) at the third-order (j = 3) approximation, which yields the
nonlinear envelope equation

i
∂A
∂ζ2
+

D
2
∂2A
∂τ2

1
+

{︃
W1A

∫
dζ ′1U(ζ1 − ζ

′
1)|A(ζ

′
1, ζ2, τ1)|

2

+W2A∗

∫
dζ ′1U(ζ1 − ζ

′
1)A(ζ

′
1, ζ2, τ1)

2 +W3 |A|2A
}︃

e−2α̃ζ2 = 0,
(17)

with D = ∂2k(ω)/∂ω2, and

W1 =
1
Z

c1α1(|α1 |
2 + 1), W2 =

1
Z

c1α1,

W3 =
1
Z

(︄
2c0α1 − c̄2f 2

0 α1 |β1 |
2 −

c̄2d̄2f 2
0

k − ω/v
(1 + |α1 |

2)β1

)︄
.

Here, α1 = [c0 + c1 + c̄2d̄2/(k −ω/v)]f 2
0 /[Y − c̄2d̄2f 2

0 /(k −ω/v)], β1 = −d̄2(α1 + 1)/(k −ω/v),
Y = ω+ωq + iγ + q2/2+ c1f 2

0 , Z = kα1 − c̄2f0/(k−ω/v), and α̃ = ϵ−2α = ϵ−2Im(k). The second
term on the left hand side of Eq. (17) related to the coefficient D describes the group-velocity
dispersion; the first two terms in the parenthesis (related to coefficients W1 and W2) characterize
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the nonlocal Kerr nonlinearity, originated from the long-range Rydberg-Rydberg interaction; the
last term in the parenthesis (related to the coefficient W3) characterizes the local Kerr nonlinearity,
originated from the short-range contact interaction between the atoms. The coefficients W1 ≈ 0.7,
W2 ≈ 0.3, and W3 ≈ −0.005, with the given parameters.

The nonlinear optical effect of the system can be described by the refractive index n, defined by

n = n1 +

∫
dζ ′n2(ζ − ζ

′)|ES(ζ
′)|2 + n3 |ES |

2, (18)

where n1 denotes the linear refractive index and n2 (n3) denotes the nonlocal (local) non-
linear refractive index. They are related to W1, W2 and W3 by the expressions n2 =
−[c/(ωSE2

0b2a⊥)](W1 + W2) and n3 = −[c/(ωSE2
0b2a⊥)]W3, respectively. With the given

parameters of Strontium atoms and the atomic density N0 ≈ 2.4 × 1013 cm−3, we obtain

n2 ≈ 3.63 × 10−7 m2 V−2, n3 ≈ −1.77 × 10−9 m2 V−2. (19)

From the above result, it is obvious that n2 is two orders of magnitude larger than n3, i.e. the
nonlocal Kerr nonlinearity contributed by the Rydberg-Rydberg interaction is much stronger than
that of the local one contributed by short-range contact interaction. Moreover, n2 is about 15
orders of magnitude larger than that obtained in usual nonlinear optical materials, such as optical
fibers [66], characterizing a giant nonlocal Kerr nonlinearity.

Now we turn to seek polaritonic soliton solutions based on the nonlinear envelope Eq. (17). To
avoid a large gain, one can make ωq and ωB slightly different so that the gain peak can be moved
away from ω = 0 (see Fig. 4). Compared with the forward scattering, the backward scattering
can provide a significant dispersion, which is necessary for balancing the Kerr nonlinearity and
hence is crucial for the formation and stable propagation of polaritonic solitons. Combining the
Eqs. (15) and (17), we have

i
∂S
∂ζ
+

D
2
∂2S
∂T2 +W1S

∫
dζ ′U(ζ − ζ ′)|S(ζ ′, τ)|2

+W2S∗
∫

dζ ′U(ζ − ζ ′)S(ζ ′, τ)2 +W3 |S|2S = −iαS,
(20)

where S = ϵAe−αζ and T = τ − ζ/Vg.
Since Eq. (20) is not integrable, we employ a variational method to search possible polaritonic

soliton solutions. The Lagrangian of Eq. (20) of the system described by Eq. (20) for α ≈ 0
is given by L =

∫ ∞

−∞
Ldζ , where L is the Lagrangian density, given by L = (SS∗ζ − S∗Sζ ) +

(D/2)|ST |
2−[(W1+W2)/2]|S|2

∫
U(ζ−ζ ′)|S(ζ ′, T)|2dζ ′−(W3/2)|S|4. Then, the soliton solutions

are sought by the ansatz with a Gaussian wavepacket

S = as(ζ) e−T2/[2ws(ζ )
2]+ics(ζ )T2+iφs(ζ ), (21)

where as denotes the amplitude, ws is the half peak width, cs is the wavefront curvature, and ϕs is
the phase. Substituting the ansatz (21) into the Lagrangian and integrating it over T , one obtains
the effective Lagrangian leading further to the equation of as by using the Euler-Lagrangian
equation. The stationary solution can be acquired by setting das/dζ = 0, which yields the
equation

D
2

a4
s

Q2 −

√
2(W1 +W2)

4
as

∫
dζ ′U(ζ − ζ ′)as(ζ

′) −

√
2W3
4

a2
s = 0, (22)

where Q = a2
s ws is a propagation constant. By solving Eq. (22) numerically, we get as ≈ 0.16

and ws ≈ 1.1, and hence Q ≈ 0.03. In addition, cs = ϕs = 0.
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We are interested in the stable propagation of the polaritonioc solitons in the system. Returning
to the original (i.e., dimensional) variables, the soliton solution for the condensate wave function
and the scattered field are respectively given by

Ψ =
N1/2

a3/2
⊥

(︂
f0 + Sei(q+k)z/a⊥−i(ωq+ω)ω⊥t + a∗S∗e−i(q+k)z/a⊥+i(ωq+ω)ω⊥t

)︂
× e−iµω⊥te−(x

2+y2)/(2a2
⊥),

(23)

Es =exE0b∗S∗e−ikz/a⊥+iωω⊥te−(x
2+y2)/(2a2

⊥). (24)

From the solution (23) we see that the collective wave of recoiled atoms consists of two parts,
i.e. the left- and right-moving waves along the z axis. With the given system parameters, we
have Re(a) ≈ −1.69 × 10−4 and Re(b) ≈ 0.98, with their imaginary parts being two orders of
magnitude smaller than their corresponding real parts. Since |a| ≪ 1 and |b| ∼ 1, almost all
recoiled atoms are moving to the right due to the presence of the pump field, while the scattered
field is backward propagating. The propagation velocity of the soliton is approximately given by
the linear group velocity, estimated to be

Vg = 1.27 × 10−4 c, (25)

which indicates that the propagation of the polaritonic soliton is ultraslow compared with the
light speed in vacuum [67].

The input light power of the pump laser for generating the polaritonic soliton can be estimated
by computing the Poynting’s vector integrated over the cross-sectional area of the condensate,
which is given by

Pgen = 2ε0cnpS0

(︃
2ℏ
p13

)︃2
|ΩP |

2 ≈ 1.1 pW, (26)

where S0 is the cross-sectional area (S0 ∼ 1 µm2). From the value of Pgen, we find that in the
present system a very low input power of the pump field is sufficient for generating the polaritonic
soliton, which is due to the presence of the giant nonlocal Kerr nonlinearity contributed by the
strong Rydberg-Rydberg interaction in the system.

Shown in Fig. 5 is the numerical result of polaritonic soliton, where the soliton amplitude
|Es/E0 | as a function of T = [ω⊥t − z/(a⊥Vg)] and ζ = z/a⊥ is illustrated. The initial condition
used in the simulation is the ansatz (21), with as being obtained through solving Eq. (22)
numerically. Figure 5(a) shows the case of (|Es(ζ = 0)/E0 |, q) = (1, 4). We see that the soliton
is robust during propagation. This is because of the exact balance between the dispersion and
nonlinearity in the system. Figure 5(b) is for the case (|Es(ζ = 0)/E0 |, q) = (1, 22). One sees that
the soliton displays significant dispersion, and hence its amplitude (width) decreases (broadens)
rapidly during propagation. The reason is that the dispersion (originated by the large atomic
recoil momentum q) is much larger than the nonlinearity. The panel (c) of the figure is for
(|Es(ζ = 0)/E0 |, q) = (8.5, 1). In this situation, the soliton undergoes a collapse due to the fact
that the nonlinearity is much larger than the dispersion.

The domains of stable (or unstable) propagation of polaritonic solitons can be obtained by
calculating the propagation fidelity, defined by

J =
|
∫ ∞

−∞
dTS(ζ = ℓ)S(ζ = 0)|2∫ ∞

−∞
dT |S(ζ = ℓ)|2

∫ ∞

−∞
dT |S(ζ = 0)|2

. (27)

It is obvious that J = 1 at ζ = 0 and J ∈ (0, 1) for 0<ζ<ℓ. If J is very close to one in the
distance of ℓ, the shape of the soliton can keep nearly invariant during the propagation in this
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Fig. 5. The formation and propagation of a polaritonic soliton, by taking soliton amplitude
|Es/E0 | as a function of T = ω⊥t− z/(a⊥Vg) and ζ = z/a⊥. (a) The stable polaritonic soliton
solution for the parameters (|Es(ζ = 0)/E0 |, q) = (1, 4). Insert: top view of the soliton. (b)
The same as (a) but for (|Es(ζ = 0)/E0 |, q) = (1, 22). The soliton undergoes significant
dispersion during propagation. (c) Also the same as (a) but for (|Es(ζ = 0)/E0 |, q) = (8.5, 1).
The soliton collapses during propagation. (d) Stability diagram of polaritonic solitons by
measuring the propagation fidelity in the parameter plane of the input soliton amplitude
|Es(ζ = 0)/E0 | and the atomic recoil momentum q. Dots A, B and C represent the cases of
panels (a), (b) and (c), respectively. The fidelity shown by the white dashed line is J = 0.9.

distance. However, if J is close to zero, the shape of the soliton suffers a large distortion during
the propagation, i.e. no stable polaritonic solitons are achievable in the system. In Fig. 5(d), we
show the stability diagram of polaritonic solitons by measuring the fidelity as a function of the
input soliton amplitude |Es/E0 | and the atomic recoil momentum q. When plotting this figure,
polaritonic solitons are assumed to be stable if J ≳ 0.9 at ζ = ℓ = 10 (corresponding to the
length of the BEC ≈ 700 µm), whereas they are unstable if J<0.9. Dots A, B and C in the
figure represent the cases of stable soliton [J ≈ 1; corresponding to Fig. 5(a)], dispersive wave
[J ≈ 0; corresponding to Fig. 5(b)], and collapsed wave [J ≈ 0; corresponding to Fig. 5(c)],
respectively. We see that polaritonic solitons are stable (unstable) when both |Es/E0 | and q are
small (either |Es/E0 | or q is large). The boundary between the stable and unstable regions is
highlighted by the white dashed line in the figure.

5. Discussion and summary

In this work the Rydberg-dressed BEC is assumed to be described by a single wave function,
which is valid only if the recoil energy of the atoms in the BEC is much smaller than that of
the atom-photon interaction and that of the atom-atom interaction. In this small recoil-energy
regime, excitations of the atoms to high excited states are highly suppressed so that the recoiled
atoms mainly remain in the same internal state and the condensate. If the recoil energy is large,
the atoms can be scattered from the condensate and generate new side modes. In this case, the
description by a single wave function is not applicable. Moreover, the theoretical approach above
is built upon a semiclassical description, which is valid only if the numbers of the scattered
photons and recoiled atoms are large enough. In addition, to investigate the initial stage of the
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superradiance process where scattered photons and recoiled atoms are not large, a fully quantum
approach should be used [25–30], which is a topic deserving to be explored in future.

In conclusion, we have presented a scheme for generating nonlocal optical Kerr nonlinearity
and polaritonic solitons via matter-wave superradiance in a Rydberg-dressed BEC. We have
shown that, due to the strong and long-range interactions between Rydberg atoms, the polariton
spectrum of the scattered field is qualitatively different; moreover, the BEC structure factor
depends significantly on the Rydberg-dressing and hence is more controllable than that in
conventional BECs. We have also shown that such a Rydberg-dressed BEC system supports
a giant nonlocal Kerr nonlinearity, and hence allows the formation and stable propagation of
polaritonic solitons having ultraslow propagation velocity and ultralow generation power. The
results reported here are useful for understanding the unique properties of Rydberg-dressed BECs
and have potential applications in optical information processing and transmission.
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