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We analyze the nonlinear optical response of a six-level atomic system under a configuration of electromag-
netically induced transparency. We show that the enhanced completely cross fifth-order nonlinearity generated
in such a system can be used to produce efficient three-way entanglement and to realize a three-qubit quantum
phase gate. We demonstrate that such phase gate can be transferred to an all-optical Toffoli gate, facilitating
practical applications in quantum information and computation.
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I. INTRODUCTION

Photons are considered as promising candidates for carry-
ing quantum information because of their high propagating
speed and negligible decoherence �1�. Many proposals have
come up for efficiently implementing all-optical quantum in-
formation processing and quantum computation, some of
which are based on linear optics, and others are considered
from nonlinear optical processes. As is well known, Kerr
nonlinearity is crucial for producing photon-photon entangle-
ment and for realizing two-qubit optical quantum gates.
Similarly, higher-order optical nonlinearities can be used to
produce an n-way �n�3� entanglement and to realize a mul-
tiqubit quantum gate. However, optical quantum gates cannot
be efficiently implemented based on conventional optical
media. The reason is that either the optical nonlinearity pro-
duced in such media is very weak, or there is a very large
optical absorption when working near resonant regime where
nonlinear effect is strong.

In recent years, much attention has been paid to the study
of electromagnetically induced transparency �EIT� in reso-
nant atomic systems �2,3�. By means of the effect of quan-
tum coherence and interference induced by a control field,
the absorption of a weak probe field tuned to a strong one-
photon resonance can be largely cancelled and hence an ini-
tially highly opaque optical medium can become transparent.
The wave propagation in resonant optical media with EIT
configuration possesses many striking features. One of them
is the significant reduction of the group velocity of probe
pulse. The other one is the giant enhancement of the Kerr
nonlinearity �4,5�. In recent years, the physical systems for
obtaining enhanced Kerr nonlinearity and a related large
cross-phase modulation �CPM� by using EIT effect have
been proposed, including “N” configuration �6,7�, chain-�
configuration �8�, tripod configuration �9�, and symmetric
six-level configuration �10�. Based on the enhanced Kerr
nonlinearity, two-qubit entanglement with photons and atoms
�11–16� has been investigated and an all-optical two-qubit
quantum phase gate �QPG� �17–20� has also been con-
structed recently by using different schemes. However, as far
as we know, up to now only a few works �21� have explored

higher-order �especially the fifth-order� optical nonlinearity
and its applications to multiphoton entanglement and optical
phase gates based on EIT effect.

In this work, we shall investigate a possible three-way
entanglement and three-qubit phase gates based on a coher-
ent six-level atomic system under an asymmetric EIT con-
figuration. We first show that, due to the quantum interfer-
ence induced by two strong control laser fields, the
completely cross fifth-order optical susceptibilities �22� of
the system can be greatly enhanced and at the same time the
linear and other nonlinear susceptibilities are largely sup-
pressed. This important property can be used to produce ef-
ficient three-way entanglement among three weak optical
�i.e., probe, signal, and trigger� fields. We then explore the
possibility of employing the enhanced CPM effect to devise
a mechanism of polarization three-qubit quantum phase gate
�QPG�. The three-qubit QPG proposed here is rather robust
and can be easily transferred to a universal three-qubit Tof-
foli gate. Notice that a Toffli gate can be constructed by some
more basic quantum gates, but its physical realization in a
compact way is needed to dramatically reduce the number of
qubit and manipulations that are required to perform a given
task. Although some studies of constructing Toffoli gates us-
ing different schemes exist �23–26�, to the best of our knowl-
edge the work presented here is a suggestion for a practical
realization of a Toffoli gate in an all-optical way.

II. MODEL

We start with considering a lifetime broadened atomic
system, where atoms with six levels �three lower �L� state
levels �1�, �3�, �5�, and three upper �U� state levels �2�, �4�,
�6�� interact with five laser fields �see Fig. 1�. Such configu-
ration can be realized in Zeeman-split alkali atoms by apply-
ing an external magnetic field B to split the degenerate levels
in the lower and upper states. The lower �upper� state levels
have the quantum number of total angular momentum F=1
�F=2� and different magnetic quantum numbers m
=−1,0 ,1 �m=0,1 ,2� �e.g., the D1 line of 87Rb�. The Zeeman
shift of the sublevels in the lower and upper state is given by
�L,U= ��B / � ��mgL,UB, where �B is the Bohr magneton and
gL �gU� is the gyromagnetic factor of the lower �upper� lev-
els. We assume that the transitions from �2�↔ �3� and
�4�↔ �5� are driven by two strong, continuous-wave �cw�
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control laser fields of � polarization and with Rabi frequen-
cies �C and �B, respectively. The transitions from �1�↔ �2�,
�3�↔ �4�, and �5�↔ �6� are driven by three weak, pulsed laser
fields of 	+ polarization, called probe �with Rabi frequency
�P�, signal �with Rabi frequency�S�, and trigger �with Rabi
frequency �T�, respectively. Here the Rabi frequencies asso-
ciated with the laser fields that drive the atomic transitions
are defined as �k=−DijEk /�, where Ek denotes the kth elec-
tric field envelope and Dij is the relevant electric-dipole ma-
trix element related to the transition �i�↔ �j�. The detunings

i �i=1 to 6� are defined as 
1= �E2−E1� / �−�P, 
2= �E2

−E3� / �−�C, 
3= �E4−E3� / �−�S, 
4= �E4−E5� / �−�B, and

5= �E6−E5� / �−�T, where Ei is the energy of the level �i�
and � j �j= P ,C ,S ,B, and T� is the frequency of the laser
field with the Rabi frequency � j. The evolution equations for
the atomic probability amplitudes aj�t� �j=1 to 6� read

ȧ1 = −
�1

2
a1 − i�P

* a2, �1a�

ȧ2 = − ��2

2
+ i
1�a2 − i�Pa1 − i�Ca3, �1b�

ȧ3 = − ��3

2
+ i
12�a3 − i�C

* a2 − i�S
*a4, �1c�

ȧ4 = − ��4

2
+ i
13�a4 − i�Sa3 − i�Ba5, �1d�

ȧ5 = − ��5

2
+ i
14�a5 − i�B

*a4 − i�T
*a6, �1e�

ȧ6 = − ��6

2
+ i
15�a6 − i�Ta5, �1f�

where 
12=
1−
2, 
13=
12+
3, 
14=
13−
4, and 
15=
14
+
5. � j denotes the decay rate of the state �j�, introduced in

a phenomenological manner for describing the effects of
both spontaneous emission and dephasing �27�.

III. ENHANCED COMPLETELY CROSS FIFTH-ORDER
NONLINEARITY AND GROUP-VELOCITY

MATCHING

We assume that the initial state of the system is in the
ground state �1�. Notice that if the intensity of the probe,
signal, and trigger fields is much weaker than the intensity of
the both control fields, due to the quantum coherence and
interference �i.e., EIT� effect the depletion of the ground
state �1� is not significant and hence one has a0	1. This
means that the pumping effect among different ground-state
levels can be neglected during the evolution of the system
because the population of atoms will remain nearly in the
state �1�. For solving Eq. �1� we assume that the typical
temporal duration of the probe, signal, and trigger is long
enough so that a steady state approximation can be em-
ployed. In order to get the expressions for nonlinear optical
susceptibilities of the system we consider higher order con-
tributions to a0, which can be obtained by using the normal-
ization condition 
i=1

6 �ai�2=1 �28�. We solve Eq. �1� under
this condition and obtain the following expressions for the
susceptibilities of three weak fields:

P = −
Na�D12�2

��0�P
a2a1

*

� P
�1� + PP

�3� �EP�2 + PS
�3��ES�2 + PT

�3��ET�2 + PPP
�5� �EP�4

+ PPS
�5� �EP�2�ES�2 + PPT

�5� �EP�2�ET�2 + PST
�5� �ES�2�ET�2,

�2a�

S = −
Na�D34�2

��0�S
a4a3

* � SP
�3��EP�2 + SPP

�5� �EP�4 + SPT
�5� �EP�2�ET�2,

�2b�

T = −
Na�D56�2

��0�T
a6a5

* � TPS
�5� �EP�2�ES�2, �2c�

where Na is atomic density of the system and �0 is the
vacuum dielectric constant. The explicit expressions of linear
��1��, third-order ��3�� and fifth-order susceptibilities ��5��
on the right-hand side of Eq. �2� have been given in the
Appendix.

Based on the above result we now show that the suscep-
tibilities associated with completely cross fifth-order nonlin-
earities can be greatly enhanced under EIT condition. This
can be easily seen from the explicit expressions of �j� �j
=1,3 ,5� provided in the Appendix. It is obvious that, if we
take 
12=
14=0, d3 and d5 depend only on �3 and �5, which
describe spontaneous emission and dephasing processes of
the states �3� and �5�. Notice that such processes can be
greatly suppressed if working with ultracold atoms. In this
case the values of �3 and �5 can be made small �usually only
few kHz or even smaller� �29�. Under such conditions the
completely cross fifth-order susceptibilities, i.e., PST

�5� , SPT
�5� ,

FIG. 1. The energy-level diagram and excitation scheme of a
lifetime broadened six-level atomic system interacting with two
strong, cw control fields of Rabi frequencies �C and �B, and three
weak, pulsed �probe, signal, and trigger� fields of Rabi frequencies
�P, �S, and �T.
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and TPS
�5� , given, respectively, by �A8�, �A11�, and �A12�,

have giant values while other susceptibilities �including the
linear, third- and fifth-order ones� are efficiently suppressed.
Thus the system produces only completely cross fifth-order
CPM effect among the probe, signal, and trigger fields. In
addition, the imaginary parts of the enhanced completely
cross susceptibilities are much smaller than their relevant
real parts if one chooses 
15��6 /2 and hence the absorption
of the probe, signal, and trigger fields can be largely can-
celled. The physical reason for the enhancement of the com-
pletely cross fifth-order susceptibilities, suppression of other
susceptibilities and the cancellation of the absorption is due
to the EIT condition �i.e., ��i�2 �i= P ,S ,T�� �� j�2 �j=B ,C�,

12=
14=0� that results in quantum coherence and interfer-
ence between the lower state levels.

Next we present the expressions of group velocities of the
probe, signal, and trigger fields. The group velocity of a light

pulse is given by vg=c / �1+ng�, where c is the light speed in
vacuum and

ng =
1

2
Re�� +

�

2

� Re��
��

�3�

is the group index. As we know, the group velocities of the
probe, signal, and trigger must be small and comparable in
order to achieve an effective CPM effect �30�. Unlike the
six-level scheme used in Ref. �10�, our present scheme is
asymmetric and hence the group velocities of the probe, sig-
nal, and trigger fields are generally not equal. We assume the
probe and signal fields work at the center of the EIT window,
i.e., 
12=
14=0, and neglect the dephasing rates �1, �3, and
�5, which are typically much smaller than all the other pa-
rameters. Under the EIT condition, we obtain the explicit
expressions of the group velocities from Eqs. �2� and �A1�–
�A12� for the probe, signal, and trigger fields,

vg
P �

2 � �0c��C�2��B�2

Na�D12�2�P���B�2 − ��P�2
��B�2

��C�2
+ ��S�2 + B + ��S�2��T�2�� , �4a�

vg
S �

2 � �0c��C�2��B�2

Na�D34�2�S��P�2�1 + ��T�2��
, �4b�

vg
T �

2 � �0c��C�2��B�2

Na�D56�2�T��P�2��S�2�
, �4c�

with

B = �1 − 3
��P�2

��C�2
−

��S�2

��B�2���T�2�̃ −
��S�2��T�2

��C�2

1
5 + �2/4


5
2 + �2/4

,

�̃ =

3
5 + �2/4


5
2 + �2/4

, � =

5

2 − �2/4


5
2 + �2/4

2. �5�

For simplicity when obtaining the above results we have set
�2=�4=�6=�. We note that three velocities vg

P, vg
S, and vg

T

can be made both small and equal by properly adjusting the
Rabi frequencies and detunings �see the example given be-
low�.

IV. THREE-WAY ENTANGLEMENT AND THREE-QUBIT
PHASE GATE

We know that a significant three-body interaction is a key
ingredient for the production of three-way entanglement and
the construction of three-qubit QPG. In this section we dem-
onstrate that such interaction can be realized in our system in
terms of the giant completely cross fifth-order phase modu-
lation induced by the EIT effect, by which an optical field

acquires a large phase shift conditional to the state of the
other two optical fields. A three-qubit QPG can be repre-
sented by the input-output relation ���P ���S ���T
→exp�i����� ���P ���S ���T, where � ,� ,�=0,1 denote three-
qubit basis.

We choose two orthogonal light polarizations �	−� and
�	+� to encode binary information for each qubit. We assume
that the six-level system shown in Fig. 1 is implemented only
when the probe, signal, and trigger have 	+ polarization,
which can be easily realized by choosing suitable atomic
levels. For a 	− polarized probe there is no sufficiently close
excited state to which level �1� couples and no population in
�3� and �5� to drive the signal and trigger transitions. So the
probe, signal, and trigger only acquire the trivial vacuum
phase shift �0

i =kiL �i= P,S,T; L denotes the length
of the medium�. When the probe and signal are 	+ and 	−

polarized, the probe, subject to the EIT produced by the
�1�- �2�- �3� levels � configuration, experiences a self-Kerr
effect and acquires a nontrivial phase shift ��

P, while the
signal and trigger acquire again the vacuum shifts �0

S and �0
T.

For a 	+, 	+, and 	− polarized probe, signal, and trigger, the
first two fields will experience a cross-Kerr effect and ac-
quire nontrivial phase shifts �M

P and �M
T , while the last ac-

quire still the vacuum shift �0
T. Only when all three fields
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have the “right” polarization, they all acquire nontrivial
phase shifts denoted by �all

P , �all
S , and �all

T .
Assuming that the input probe, signal, and trigger polar-

ized single photon wave packets can be expressed as a su-
perposition of the circularly polarized states �17–19�, i.e.,
��i�=1/�2 �	−�i+1/�2 �	+�i �i= P ,S ,T�, where �	±�i

=d��i���a±
†��� �0� with �i��� being a Gaussian frequency

distribution of incident wave packets centered at frequency
�i. The photon field operators undergo a transformation
while propagating through the atomic medium of length L,
i.e., a±���→a±���exp�i� /c0

Ldzn±�� ,z��. Assuming that
n±�� ,z� �the real part of the refractive index� varies slowly
over the bandwidth of the wave packet centered at �i, one
gets �	±�i→exp�−i�±

i � �	±�i, with �±
i =� /c0

Ldzn±��i ,z�.
Thus, the truth table for a polarization three-qubit QPG using
our configuration reads

�	−�P�	±�S�	±�T → exp�− i��0
P + �0

S + �0
T���	−�P�	±�S�	±�T,

�6a�

�	+�P�	−�S�	±�T → exp�− i���
P + �0

S + �0
T���	+�P�	−�S�	±�T,

�6b�

�	+�P�	+�S�	−�T → exp�− i��M
P + �M

S + �0
T���	+�P�	+�S�	−�T,

�6c�

�	+�P�	+�S�	+�T → exp�− i��all
P + �all

S + �all
T ���	+�P�	+�S�	+�T,

�6d�

with ��
P =kPL�1+2�P

�1��+�PP+�PPP, �M
P =��

P +�PS+�PPS,
�M

S =�0
S+�SP+�SPP, �all

P =�M
P +�PT+�PPT+�PST, �all

S =�M
S

+�SPT, and �all
T =�0

T+�TPS. The completely cross phase
shifts are given by

�PS = kPL
�3/2�2��S�2

4�D34�2
Re�PS

�3��
erf��PS�

�PS
, �7a�

�PT = kPL
�3/2�2��T�2

4�D56�2
Re�PT

�3��
erf��PT�

�PT
, �7b�

�SP = kSL
�3/2�2��P�2

4�D12�2
Re�SP

�3��
erf��SP�

�SP
, �7c�

�PST = kPL
�3/2�4��S�2��T�2

4�D34�2�D56�2
Re�PST

�5� �
erf��PST�

�PST
, �7d�

�SPT = kSL
�3/2�4��P�2��T�2

4�D12�2�D56�2
Re�SPT

�5� �
erf��SPT�

�SPT
, �7e�

�TPS = kTL
�3/2�4��P�2��S�2

4�D12�2�D34�2
Re�TPS

�5� �
erf��TPS�

�TPS
, �7f�

where �ij =�2L�1−vg
i /vg

j � / �� jvg
i � and �ijk=�2L��1

−vg
i /vg

j �2 /� j
2vg

i2+ �1−vg
i /vg

k�2 /�k
2vg

i2�1/2 �i , j ,k= P ,S ,T� with �i

being the time duration of the pulse. If group velocity match-

ing is satisfied, i.e., �→0, the erf��� /� reaches the maximum
value 2/��.

A three-way entanglement can be calculated by “residual
entanglement,” which indicates the amount of entanglement
among the probe, signal, and trigger that cannot be ac-
counted for by the entanglements of arbitrary two weak
fields. We stress that the residual entanglement will be
greatly suppressed if one of the fields is fully entangled with
another. Therefore, an excessive interaction only between
two weak fields, which is valued by ij

�3� ,iij
�5�, and ij j

�5�, is
very harmful to the residual entanglement. Fortunately, in
our scheme we can suppress such interaction which favors
the residual entanglement. As in Ref. �31�, the residual en-
tanglement for a three-qubit pure state can be written as fol-
lows:

�PST = CP�ST�
2 − CPS

2 − CPT
2 = 2��1

PS�2
PS + �1

PT�2
PT� , �8�

where �1
PS and �2

PS are, respectively, the square roots of two
eigenvalues of �PS�̃PS, while �1

PT and �2
PT are defined in a

similar way. The reduced density matrix �PS=TrT��PST� with
�PST being the density matrix of the output state, and �̃PS
=	y

P
� 	y

S�PS
* 	y

P
� 	y

S with 	y being the y component of the
Pauli matrix.

We now provide a practical system working with a ultra-
cold 87Rb atomic gas, in which Doppler effect can be made
small. Atoms are confined in a magneto-optical trap, with the
pertinent lower levels �5S1/2, F=1� and upper levels �5P1/2,
F=2� �see Fig. 1�. The Zeeman shift of the sublevels in the
lower and upper level can be adjusted by the intensity of an
applied magnetic field. After taking B	340 G �gL=− 1

2 and
gU=− 1

6 �, we obtain �L�2��3�108 s−1 and �U�2�
�108 s−1, which are smaller than the hyperfine splitting of
the lower levels �6.8�109 s−1� and upper levels �8.1
�108 s−1�. We take 
1=
2=2.5�108 s−1, 
3=
4=−6.0
�108 s−1 �a perfect EIT regime for the probe and signal for

12=
14=0�, 
5=2.5�107 s−1 �32�, �C=�B=5.0�107 s−1,
�P=1.6�107 s−1, �S=2.0�107 s−1, �T=1.3�107 s−1, �
=0.5�107 s−1, and Na=1012 cm−3. With these parameters,
the probe, signal, and trigger have a mean amplitude of about
one photon when these beams are tightly focused and has a
time duration about 1.0�10−7 s. The intensity of the probe,
signal and trigger are IP=8.4�10−4 W cm−2, IS=1.3
�10−3 W cm−2 and IT=5.5�10−4 W cm−2. We remark that
the intensity of a single 800 nm photon per nanosecond on
the area of 1 �m2 is Iph=2.5�10−2 W cm−2. This shows that
our scheme makes nonlinear phase shifts of the order of � be
possible with a single photon. Furthermore, the system re-
mains only the completely cross fifth-order susceptibilities
�i.e., only PST

�5� , SPT
�5� , and TPS

�5� are nonvanishing�, and the
imaginary parts of these susceptibilities are one order of
magnitude smaller than their real parts and hence play no
significant role. By using the CPM effect, the probe, signal,
and trigger fields can acquire nontrivial nonlinear phase
shifts when all of them have “right” polarization. In addition,
the group velocities of these three optical fields can also be
nearly matched, with the values given by vg

P�6.3
�103 m/s, vg

S�5.1�103 m/s, and vg
T�1.0�104 m/s, re-

spectively. Based on these results we may obtain a three-
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qubit phase gate, in which a total nonlinear phase shift up to
� radians can be obtained for L�0.22 mm. By a detail cal-
culation we find that the residual entanglement �PST of the
gate can be as large as 25% �the maximum of the residual
entanglement�.

Shown in Fig. 2�a� is the dimensionless group velocity
vg

i /v of the probe �i= P�, signal �i=S� and trigger �i=T�
fields versus the dimensionless trigger detuning 
5 /� for v
=104 m/s. The figure shows clearly that the group velocities
of the three laser fields can be matched approximately in our
asymmetric six-level system if one chooses 2.4�
5 /�
�2.5. Figure 2�b� shows the calculating result on the re-
sidual entanglement versus 
5 /� for �=107 s−1. Notice that
the maximum of the residual entanglement locates at about
2.4�
5 /��2.5, where the group velocity matching of the
three laser fields occurs.

The experimental demonstration of the quantum phase
gate requires the measurement of total nonlinear phase shift.
The fluctuations of light intensities and frequency detunings
of the probe, signal, and trigger fields will result in errors of
the nonlinear phase shift. Based on the parameters given
above, our calculation shows that the light intensity �fre-
quency� having fluctuations of 1% will yield an error less
than 4% �2% � in the phase measurement. It is crucial to
minimize the effect of relative detuning fluctuations, which
can be achieved by taking all lasers tightly phase locked to
each other. A similar result has also been reported in chain-
lambda and tripod configurations which are used to realize
two-qubit phase gates �17,18�.

With the above parameters, we can realize an operation

Û= I−2 �111��111� when the total nonlinear phase shift gives
�2N+1�� radians �N=0,1 , . . . �. By applying a single qubit

rotation Ri
ˆ to the trigger field with

R̂i��,�� =� cos
�

2
ie−i� sin

�

2

− iei� sin
�

2
− cos

�

2
� , �9�

we can easily obtain the Toffoli gate by ÛToffoli

= R̂T�� /2 ,� /2�ÛR̂T
−1�� /2 ,� /2�. The explicit operation is il-

lustrated in Fig. 3.

V. CONCLUSION

To sum up, we have investigated the three-way entangle-
ment and three-qubit phase gates based on a coherent six-
level atomic system. We have shown that the completely
cross fifth-order optical susceptibilities are greatly enhanced
and the linear, third-order and other fifth-order nonlinear sus-
ceptibilities of the system are simultaneously suppressed due
to the quantum interference effect induced by two strong cw
control laser fields. Based on such important feature we have
demonstrated that the system can produce efficient three-way
entanglement among the weak probe, signal, and trigger la-
ser fields. Different from the work in Ref. �21�, here we have
addressed a feasible method to fulfill the group velocity
matching among the three weak optical pulses without using
isotopes or solid quantum dots. In addition, we have ex-
plored the possibility of implementing a robust three-qubit
QPG, which can be further transferred to a Toffoli gate by
applying a single-qubit rotation. Our work is the first sugges-

FIG. 2. �a� Dimensionless group velocity vg
i /v of the probe,

signal, and trigger fields versus dimensionless trigger detuning 
5 /�
for v=104 m/s. Solid line denotes the probe, dashed line denotes
the signal, and dotted line denotes the trigger, respectively. �b�:
Residual entanglement versus 
5 /� for �=107 s−1. The maximum
occurs at 
5 /��2.5 where the group velocity matching is satisfied.
The parameters used in �a� and �b� are the same as in Sec. IV.

FIG. 3. The quantum circuit for realizing the Toffoli gate. U
denotes the QPG with RT being a single-qubit rotation.
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tion for constructing Toffoli gates in an all-optical way. The
results provided in this study may be useful for guiding ex-
perimental realization of three-way entanglement and three-
qubit phase gates and facilitating practical applications in
quantum information and computation.

ACKNOWLEDGMENTS

The work was supported by the Key Development Pro-
gram for Basic Research of China under Grants Nos.
2001CB309300 and 2005CB724508, and NSF-China under
Grants Nos. 10434060 and 90403008.

APPENDIX: EXPLICIT EXPRESSIONS OF THE
SUSCEPTIBILITIES IN EQ. (2)

The expressions of the susceptibilities in Eq. �2� are given
by

P
�1� =

Na�D12�2

��0

d3

d2d3 − ��C�2
, �A1�

PP
�3� = −

Na�D12�4

�3�0

d3��d3�2 + ��C�2�
�d2d3 − ��C�2��d2d3 − ��C�2�2

, �A2�

PS
�3� = −

Na�D12�2�D34�2

�3�0

d5

�d4d5 − ��B�2��d2d3 − ��C�2�
,

�A3�

PT
�3� = −

Na�D12�2�D56�2

�3�0

d3d4

d6�d4d5 − ��B�2��d2d3 − ��C�2�
,

�A4�

PPP
�5� =

Na�D12�6

�5�0

d3��d3�2 + ��C�2�2

�d2d3 − ��C�2��d2d3 − ��C�2�4
, �A5�

PPS
�5� =

Na�D12�4�D34�2

�5�0
� d5��d3�2 + ��C�2�

�d4d5 − ��B�2��d2d3 − ��C�2��d2d3 − ��C�2�2
+

d3

d2d3 − ��C�2
� d3d5

*

�d2d3 − ��C�2�2�d4d5 − ��B�2�* + c.c.

−
��d5�2 + ��B�2���C�2

��d2d3 − ��C�2��d4d5 − ��B�2��2
�� , �A6�

PPT
�5� =

Na�D12�4�D56�2

�5�0
� d3d4��d3�2 + ��C�2�

d6�d4d5 − ��B�2��d2d3 − ��C�2��d2d3 − ��C�2�2
+

d3

d2d3 − ��C�2� ��d3�2 + ��C�2�d4
*

d6
*�d2d3 − ��C�2�2�d4d5 − ��B�2�* + c.c.�� ,

�A7�

PST
�5� =

Na�D12�2�D34�2�D56�2

�5�0

1

d6�d4d5 − ��B�2��d2d3 − ��C�2�
, �A8�

SP
�3� =

Na�D12�2�D34�2

�3�0

d5��C�2

�d4d5 − ��B�2��d2d3 − ��C�2�2
, �A9�

SPP
�5� = −

Na�D12�4�D34�2

�5�0

d5��d3�2 + ��C�2���C�2

�d4d5 − ��B�2��d2d3 − ��C�2�4
, �A10�

SPT
�5� = −

Na�D12�2�D34�2�D56�2

�5�0
� ��C�2

d6�d4d5 − ��B�2��d2d3 − ��C�2�2
+

d4
*d5��C�2

d6
*�d4d5 − ��B�2�2�d2d3 − ��C�2�2

� , �A11�

TPS
�5� =

Na�D12�2�D34�2�D56�2

�5�0

��B�2��C�2

d6�d4d5 − ��B�2�2�d2d3 − ��C�2�2
, �A12�

where c.c. denotes corresponding complex conjugation term, Na=N /V is the density of the atomic gas. We have also made the
definitions d2=
1− i�2 /2, d3=
12− i�3 /2, d4=
13− i�4 /2, d5=
14− i�5 /2, and d6=
15− i�6 /2.
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