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field-induced quantum interference effect. We derive a nonlinear Schrödinger equation for the evolution of
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1. INTRODUCTION
Laser-induced interference plays an important role in inter-
actions of light and matter, and has found numerous applica-
tions in atomic, molecular, and optical physics. One such
example is electromagnetically induced transparency (EIT)
[1]. By means of the quantum interference effect induced
by a control field, the absorption of a probe field can be largely
suppressed, and hence an initially highly opaque optical
medium can become transparent. EIT is a very typical quan-
tum interference phenomenon, which can be used to manipu-
late physical properties for both light and matter, including
large reduction of group velocity [2,3] and giant enhancement
of Kerr nonlinearity [4,5]. Based on these important features,
EIT has been used to realize slow light, quantum memory
[6,7], highly efficient four-wave mixing [8], high-precision
measurement [9], quantum phase gates [10,11], weak-light ul-
traslow solitons [12–15], spatial solitons [16–20], and so on.

Although most studies on EIT are focused on atomic sys-
tems, in recent years there has been much investigation of
EIT in molecular systems both theoretically and experimen-
tally [21–31]. However, up to now less attention has been paid
to the EIT in molecules with permanent dipole moments
(PDMs). A dipolar molecule with PDM is the one with states
having no parity symmetry and having a nonvanishing differ-
ence between diagonal dipole matrix elements. In recent
years, it has been shown that PDMs can significantly modify
the resonant couplings between laser field and molecules and
allow some new optical transitions to occur [32,33].

In a recent work, Zhou et al. [34] investigated the EIT in a
three-level Λ-type molecular system with PDMs. For a (1� 1)-
transition processes, it was found that there are not significant
differences for EIT between systems with and without PDMs.
Later, Ma et al. [35] considered the EIT in a three-level

ladder-type molecular system with PDMs. Some additional
PDM-induced coherent optical effects (e.g., gain without in-
version and fast light) are also predicted in Refs. [34,35].

In this article, we investigate the linear and nonlinear light
pulse propagations in a three-level Λ-type molecular system
with PDMs via EIT. We find that the EIT character for
(1� 1)-transition processes depends strongly on the phase
of control field, based on which a phase-controlled optical
switch can be devised. We show that the Kerr nonlinearity
of the system can be largely enhanced due to the control-
field-induced quantum interference effect. We derive a nonlin-
ear Schrödinger (NLS) equation for the evolution of the
probe-field envelope and demonstrate that it is possible to
create stable slow- and weak-light solitons in the system.

The rest of the article is arranged as follows. In Section 2,
the physical model of the three-level Λ-type molecular system
with PDMs is described, and the solution in the linear regime
is presented. In Section 3, the phase-dependent EIT property
is discussed and the phase-controlled optical switching is con-
structed. In Section 4, the NLS equation is derived using a
method of multiple scales, and stable slow- and weak-light
solitons are demonstrated based on the Kerr nonlinearity en-
hancement of the system. The last section contains a summary
of our main results.

2. MODEL AND SOLUTION IN LINEAR
REGIME
We consider a system consisting of Nm noninteracting polar
molecules with a Λ-type level configuration. The molecules
interact with a strong, continuous-wave control field of angu-
lar frequency ωc driving the transition j2i↔j3i, and a weak,
pulsed probe field (with pulse length τ0 and beam radius
R⊥ at the entrance of the medium) of center angular frequency
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ωp driving the transition j1i↔j3i, respectively (Fig. 1). In the
(1� 1)-transition process, the transition j1i↔j3i (j2i↔j3i) is
driven by one probe (control) photon, satisfying the resonant
condition E3 − E1 ≈ ℏωp (E3 − E2 ≈ ℏωc), with Ej being the
eigenenergy of the state jji [Fig. 1(a)]. Generally, the system
also allows the (m� n)-transition process (m;n � 1; 2; 3;…)
[34], where the transition j1i↔j3i (j2i↔j3i) is driven by m

probe (n control) photons [Fig. 1(b)], satisfying the resonant
condition E3 − E1 ≈mℏωp (E3 − E2 ≈ nℏωc). In this work, for
simplicity we consider only the (1� 1)-transition process. The
case of the (m� n)-transition process will be considered else-
where. In addition, each laser field contains a large amount of
photons, and hence they can both be considered as classical
fields.

The Hamiltonian of the system is given by Ĥ � Ĥ0 � Ĥ
0,

where Ĥ0 and Ĥ 0 describe a free molecule and the interaction
between the molecule and a laser field, respectively. In the
Schrödinger picture, the state vector of the system is
jΨ�r; t�i � P

3
j�1 Cj�r; t�jji, where jji is the eigenvector of

Ĥ0 with the eigenenergy Ej , i.e., Ĥ0jji � Ejjji, and Cj is the
probability amplitude of the state jji. Under electric-dipole
approximation, the Hamiltonian of the system reads

H �
X3
j�1

�Ej − pjj ·E�j jih jj− �p31 ·Ej3ih1j � p32 ·Ej3ih2j �H:c:�;

(1)

where pij is the electric-dipole matrix element associated with
the transition from jji to jii; E�r; t� � P

α�c;peαEαe
i�kα ·r−ωαt��

c:c: is the expression of the laser field, with kp, ep, Ep

(kc, ec, Ec) being the wavevector, unit polarization vector,
and envelope of the probe (control) field, respectively; and
H.c. denotes the corresponding Hermitian conjugate term.
Notice that due to the existence of PDMs, pjj (j � 1; 2; 3)
are nonzero in the present system.

In order to investigate the time evolution of the system, it is
more convenient to employ an interaction picture, which is
obtained by making the transformation Cj�r; t� � Aj�r; t�
exp�i�kj · r − ωjt − Δjt� � �i∕ℏ�pjj ·

R
dt0E�r; t0��, with k1 � 0,

k2 � kp − kc, k3 � kp, Δ1 � 0, Δ3 � ωp − �ω3 − ω1� (one-
photon detuning), and Δ2 � ωp − ωc − �ω2 − ω1� (two-photon
detuning). Substituting the laser field, which can be further

expressed as E�r; t� � 2
P

α�c;peα�Re�εα� cos θα − Im�εα�
sin θα� with θα � kα · r − ωαt, into the transformation, the
exponential function including the integral can be
expressed as

e
i
ℏ�pll−pjj�·

R
t dt0E�r;t0� � e

iP
p

jl
sin θp�iQ

p

jl
cos θp�iPc

jl
sin θc�iQc

jl
cos θc

�
X∞

m�−∞
Jm�Pp

jl�eimθp
X∞
n�−∞

Jn�Qp

jl�ein�
π
2−θp�

×
X∞
μ�−∞

Jμ�Pc
jl�eiμθc

X∞
ν�−∞

Jν�Qc
jl�eiν�

π
2−θc�;

where m;n; μ; ν � 0; 1; 2;…, Pα
jl � −2�eα · �pjj − pll�∕ℏωα�

Re�εα�, and Qα
jl � −2�eα · �pjj − pll�∕ℏωα� Im�εα�. Jm is the

m-order Bessel function, and we have used the rela-
tion eiz sin x � P∞

m�−∞ Jm�z�eimx.
We focus on the (1� 1)-transition process. To this end, we

takem � n � μ � ν � 0. Under the rotating-wave approxima-
tion, it is easy to obtain the Hamiltonian in the interaction
picture

H int � ℏ�Δ2j2ih2j � Δ3j3ih3j � ρ1Ωpj3ih1j � ρ2Ωcj3ih2j
� H:c:�; (2)

where Ωp � ep · p31Ep∕ℏ and Ωc � ec · p32Ec∕ℏ are, respec-
tively, the Rabi frequencies of the probe and control fields,
and ρ1 and ρ2 are given by

ρ1 � J0�Pc
31�J0�Qc

31�J0�Pp

31�J0�Qp

31�; (3a)

ρ2 � J0�Pc
32�J0�Qc

32�J0�Pp

32�J0�Qp

32�; (3b)

with

Pα
3l � −2

eα · �p33 − pll�
eα · p3jωα

Re�Ωα�; (4a)

Qα
3l � −2

eα · �p33 − pll�
eα · p3jωα

Im�Ωα�; (4b)

(l � 1; 2; α � p, j � 1; α � c, j � 2). From the above expres-
sion, we expect that the PDM effect in the present problem
takes a role if there is a nonzero difference between two
diagonal dipole matrix elements p33 − pjj . In addition, the am-
plitude and phase of the control field will both be important to
the EIT property of the system because both ρ1 and ρ2 are
dependent on Re�Ωc� and Im�Ωc�.

The equation of motion of the density matrix reads

i
∂
∂t
σ11 − iΓ13σ33 � ρ1�Ω�

pσ31 − Ωpσ
�
31� � 0; (5a)

i
∂
∂t
σ22 − iΓ23σ33 � ρ2�Ω�

c σ32 −Ωcσ
�
32� � 0; (5b)

i
∂
∂t
σ33 � iΓ3σ33 � ρ1�Ωpσ

�
31 − Ω�

pσ31� � ρ2�Ωcσ
�
32 − Ω�

c σ32� � 0;

(5c)
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Fig. 1. Energy-level diagram and excitation scheme of the three-level
Λ-type polar molecular system. A weak (strong) probe (control) field
of central angular frequency ωp (ωc) and Rabi frequency Ωp (Ωc) cou-
ples to the atomic states j1i (j2i) and j3i. (a) (1� 1)-transition proc-
ess. (b) (m� n) transition process (m;n � 2; 3; 4;…).
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�
i
∂
∂t

� d21

�
σ21 − ρ1Ωpσ

�
32 � ρ2Ω�

c σ31 � 0; (5d)

�
i
∂
∂t

� d31

�
σ31 − ρ1Ωp�σ33 − σ11� � ρ2Ωcσ21 � 0; (5e)

�
i
∂
∂t

� d32

�
σ32 � ρ1Ωpσ

�
21 − ρ2Ωc�σ33 − σ22� � 0; (5f)

with σjl � AjA
�
l , d21 � Δ2 � iγ21, d31 � Δ3 � iγ31, and

d32 � �Δ3 − Δ2� � iγ32. Here γjl � �Γj � Γl�∕2� γcoljl (j; l �
1; 2; 3; j ≠ l) and Γj �

P
j<lΓjl, with Γjl being the spontaneous

emission decay rate from jli to jji and γcoljl being the dephasing
rate reflecting the loss of phase coherence between jji and jli
without changing of population.

The equation of motion for the probe field can be
obtained by the Maxwell equation ∇2E − �1∕c2�∂2E∕∂t2 �
�1∕�ε0c2��∂2P∕∂t2, with the polarization P given by

P � Nm

�X3
j�1

pjjσjj � p13σ31eiωp�z∕c−t� � p23σ32eiωc�z∕c−t� � c:c:
�
:

(6)

Under slowly varying envelope approximation, we obtain the
equation of motion for Ωp:

i

�
∂
∂z

� 1
c

∂
∂t

�
Ωp �

ωp

2c

�
∂2

∂x2
� ∂2

∂y2

�
Ωp � κ13ρ1σ31 � 0; (7)

where κ13 � Nmωpjep · p13j2∕�2ε0cℏ�.
We assume that the molecules are initially populated in the

ground state j1i. In the linear regime, the probe field is weak
enough so that the ground state is not depleted during time
evolution, i.e., σ11 ≈ 1 and σ22 ≈ σ33 ≈ 0. In addition, we
approximate that J0�Pp

31� ≈ J0�Qp

31� ≈ J0�Pp

32� ≈ J0�Qp

32� ≈ 1.
Third, for large beam radius the diffraction can be neglected.
Taking into account the above approximations, Maxwell–
Bloch (MB) equations (5) and (7) can be linearized. The
solutions of σj1 (j � 2; 3) and Ωp are obtained as

Ωp �
Z

∞

−∞
dωF�ω�ei�K�ω�z−ωt�; (8a)

σj1 �
Z

∞

−∞
dω

α��ω� d21�δj3 − βΩ�
c δj2�

D�ω� F�ω�ei�K�ω�z−ωt� (8b)

(j � 2; 3), where F�ω� � �1∕2π� R∞
−∞ dtΩp�0; t�eiωt with Ωp�0; t�

being the probe field at the entrance of the medium,
D�ω� � β2jΩcj2 − �ω� d21��ω� d31�, and

K�ω� � ω

c
� κ13α

2�ω� d21�
D�ω� (9)

is the linear dispersion relation of the system [36]. Factors α
and β are defined by

α � J0�Pc
31�J0�Qc

31�; (10a)

β � J0�Pc
32�J0�Qc

32�: (10b)

We stress that this is because the occurrence of the factors α
and β make the EIT characters in the present system very
different from those without PDMs, as shown below.

Shown in Fig. 2 is the linear dispersion relation K�ω� as a
function of ω for Ωc � 1.0 × 1012 s−1. When plotting the figure,
we have set Δ2 � Δ3 � 0 for simplicity. The other system
parameters used are based on HCN → HNC isomerization,
which has often been used in theoretical studies of molecular
dynamics [33]. In addition, the molecules are assumed to be
prepared at very low temperature so that the inhomogeneous
broadening of the molecular spectrum line due to the Doppler
effect can be neglected. Specifically, we take γ21≈
1.0 × 106 s−1, γ31 ≈ 1.0 × 1012 s−1, κ13 � 1.0 × 1012 cm−1 s−1,
ωp � 1.943 × 1015 s−1, ωc � 9.92 × 1014 s−1, p11 � 1.17p0,
p22 � −1.17p0, p33 � 1.18p0, and p31 ≈ p32 � 0.01p0, with
jp0j � 8.478 × 10−28 Ccm. These data will also be used in
the following calculations.

From Fig. 2(a), we see that in the presence of the control
field an EIT transparency window is opened. In addition, the
dispersion property is also changed drastically in this EIT
transparency window. In particular, the steep slope of
Re�K� results in a slow group velocity at the center frequency
of the probe field. The large suppression of the absorption and
reduction of the group velocity of the probe field are due to
the quantum interference effect induced by the control field.
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Fig. 2. Linear dispersion relationK�ω� as a function of ω forΩc � 1.0 × 1012 s−1. (a) Imaginary part ImK�ω�. (b) Real part ReK�ω�. ΓW andDW are
the width and depth of the EIT transparency window.
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3. PHASE-DEPENDENT QUANTUM
INTERFERENCE AND PHASE-CONTROLLED
OPTICAL SWITCHING
The characters of the probe-field absorption spectrum can be
described by two typical parameters. The first is the width of
the EIT transparency window Γw, defined by the distance be-
tween two absorption peaks at half maxima [see Fig. 2(a)]. By
the linear dispersion relation (9), one can obtain the expres-
sion of Im�K�. Then it is easy to get

Γw �
�������������������������������
γ231 � 4β2jΩcj2

q
− γ31: (11)

The second is the depth of the EIT transparency window Dw,
defined by the distance between the maximum of the absorp-
tion peak and the minimum of the EIT transparency window
[see Fig. 2(a)]. We obtain

Dw � κ13α
2

γ31
: (12)

Because both α and β are functions of Ωc through the zero-
order Bessel function [see Eq. (10)], two pronounced charac-
ters of the EIT spectrum will appear: both Γw and Dw are
oscillatory functions of the amplitude and the phase of the
control field. To demonstrate this, we express Ωc by its am-
plitude and phase, i.e.,Ωc � jΩcj exp�iθc�. Here θc is the phase
difference between the phase of the control field passing
through the atomic medium and its phase passing through
the vacuum. Then, Eqs. (4a) and (4b) can be written as

Pc
3j � −2

ec · �p33 − pjj�
ec · p32ωc

jΩcj cos θc; (13a)

Qc
3j � −2

ec · �p33 − pjj�
ec · p32ωc

jΩcj sin θc: (13b)

We immediately obtain the following conclusions. First, α and
β, and hence Γw and Dw, are nonperiodically oscillatory func-
tions of jΩcj if θc is fixed. Figures 3(a) and 3(b) show Γw and
Dw∕γ31 as functions of jΩcj∕γ31 for θc � 0, respectively. One
sees that ΓW (DW ) varies periodically with jΩcj and its ampli-
tude increases (decreases) as jΩcj grows. Such character has
been indicated implicitly in Ref. [34]. Second, α and β, and
hence Γw and Dw, are periodically oscillatory functions of
θc if jΩcj is fixed. Shown in Figs. 3(c) and 3(d) are Γw∕γ31
and Dw as functions of θc for jΩcj∕γ31 � 5.05 and 1.19 × 103,
respectively.

The above EIT characters inherent in the system are very
different from those without PDMs, where both Γw and Dw do
not depend on θc. This means that a phase-dependent quan-
tum interference effect can occur in the molecular system
with PDMs.

In most operation conditions,K�ω� can be Taylor expanded
around the center frequency ωp of the probe field, that is, ω �
0 [36]. We thus have K�ω� � K0 � K1ω� 1

2K2ω
2 � � � �, where

Kj � �∂jK�ω�∕∂ωj �jω�0 (j � 0; 1; 2;…). These dispersion coef-
ficients can be obtained analytically by using Eq. (9). Here,
K0 � Re�K0� � i Im�K0� gives the phase shift Re�K0� per unit
length and absorption coefficient 2 Im�K0� of the probe-field
intensity, Vg � 1∕Re�K1� determines the group velocity, and
K2 describes the group-velocity dispersion (i.e., the pulse
spreading and attenuation). For the probe pulse with a
Gaussian input form, i.e., Ωp�0; t� � Ωp�0; 0� exp�−t2∕τ20�, we
have the solution

Ωp�z; t� �
Ωp�0; 0������������������������������

c1�z� − ic2�z�
p exp

�
iK0z −

�K1z − t�2
�c1�z� − ic2�z��τ20

�
;

(14)

by keeping terms up to ω2 in the Taylor expansion, where
c1�z� � 1� 2z Im�K2�∕τ20 and c2�z� � 2zRe�K2�∕τ20. It is clear
that for the probe pulse with a long pulse length τ0, c1�z� ≈ 1
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and c2�z� ≈ 0, and hence a shape-preserving propagation can
be realized.

An optical switch is a device by which a pulse of light at one
frequency will cause the absorption of light at another fre-
quency [37]. In recent years, the optical switch at low light
level based on the quantum interference effect has been of
great interest due to its important applications in optical
and quantum information science [37–43]. However, in most
studies up to date switching of one laser field is realized by
changing the amplitude of another laser field.

Here, we suggest to design a new type of optical switch for
the probe field caused by the phase change of the control field
by using the phase-controlled quantum interference character
of the present molecular system with PDMs. Shown in
Fig. 4(a) is the probe is the probe absorption spectrum
ImK�ω� as a function of ω∕γ31 for Ωc∕γ31 � 5.05eiπ∕4 (solid
line) and Ωc∕γ31 � 5.05 (dashed line). We see that the EIT
transparency window closes completely when the phase of
the control field θc decreases from π∕4 to 0. Shown in
Fig. 4(b) is the output of the probe pulse with τ0 �
1.0 × 10−8 s after passing through the molecular medium of
length 4 cm. The solid line (corresponding to switching on)
and dashed line (corresponding to switching off) in the figure
are the output wave shapes of jΩp�z; t�∕Ωp�0; 0�j for θc � π∕4
and θc � 0, respectively. One sees that a phase-controlled
optical switch is indeed easily realized in our system.

The efficiency of the optical switch can be defined as
η � �Iclose − Iopen�∕I in. Here I in is the incident light intensity,
Iclose is the transmitted intensity when the switch is closed,
and Iopen is the transmitted intensity when the switch is open.
In the present system, η can reach nearly to 100% for the
medium length around 4 cm. In comparison with the phase-
controlled optical switch realized in an atomic system pro-
posed in Ref. [44], where a four-level atomic gas and four laser
fields are required, the optical switch suggested in the present
scheme is much simpler because fewer resources are needed.

4. ENHANCED KERR NONLINEARITY AND
SOLITONS
A. Enhanced Kerr Nonlinearity
From the solution (14), it is easy to see that large group-
velocity dispersion will contribute to both spreading and at-
tenuation of the probe pulse if the pulse length τ0 is short,
which is undesirable in practical applications. In the following,
we show that it is possible to realize a shape-conserved propa-
gation of the probe field in the molecular system by using
the nonlinear effect to balance the group-velocity dispersion.

We first calculate the susceptibility of the probe field,
which is defined as

χp � Nmρ1jp31 · epj2
ε0ℏ

σ31
Ωp

� χ�1�p � χ�3�p jEpj2; (15)

where χ�1�p is the first-order susceptibility describing the linear
property and χ�3�p is the third-order one characterizing the Kerr
nonlinearity of the system.

By solving Eqs. (5) under steady-state approximation, we
obtain

χ�1�p � Nmjep · p13j2
ε0ℏ

T1; (16a)

χ�3�p � Nmjep · p13j4
ε0ℏ3

iJ1�T1 − c:c:� � iJ2�d32T2 − c:c:� � α2T2

d�32�β2jΩcj2 − d21d31�
;

(16b)

with

T1 � α
Δ2

β2jΩcj2 − d21d31
;

T2 � α
β2jΩcj2 − id31γ21
β2jΩcj2 − d21d31

;

J1 � α2
�
�β2jΩcj2 � d21d

�
32�

4β2jΩcj2 � γ231
2γ31β2jΩcj2

−
2β2jΩcj2 − d21d

�
32

γ31

�
;

J2 � α2
β2jΩcj2 � d21d

�
32

2γ31β2jΩcj2
: (17)

We note that the third-order susceptibility χ�3�p can be greatly
enhanced by selecting suitable system parameters (making
β2jΩcj2 − d21d31 small). Shown in Figs. 5(a) and 5(b) are the
real and imaginary parts of the third-order susceptibility,
i.e., Re�χ�3�p � and Im�χ�3�p �, as functions of the two-photon detun-
ing Δ2∕γ31. The system parameters are taken as
κ13 � 1014 cm−1 s−1, Ωc∕γ31 � 0.1, and Δ3∕γ31 � 1.0 with the
other parameters being the same as those used in Fig. 2.
We note that at Δ2 � 0, where the system is under an exact
EIT, no nonlinearity exists. Therefore, to have a nonzero non-
linear effect a deviation from the exact EIT is necessary. We
also note that in the figure the real part of χ�3�p is smaller than
the corresponding imaginary part in a large domain; however,
the real part of χ�3�p can be much larger than the corresponding
imaginary part when Δ2∕γ31 is very close to zero, i.e., the
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condition that Re�χ�3�p � ≫ Im�χ�3�p � can be satisfied when
Δ2∕γ31 ≪ 1. For example, when taking Δ2∕γ31 � 0.002, we ob-
tain χ�3�p � −�0.15� i0.04� × 10−14 cm2 V−2. The physical rea-
son for the enhanced Kerr nonlinearity comes from the fact
that the system is highly resonant and works nearly under
the EIT condition. The enhanced Kerr effect is useful to form
optical solitons, as shown below.

B. Nonlinear Envelope Equation
To study the nonlinear evolution of the probe pulse, we apply
the method of multiple scales to solve the MB Eqs. (5)
and (7). We take the following asymptotic expansions σjk �
δj1δk1 �

P∞
l�1 ϵ

lσ�l�jk (j; k � 1; 2; 3; both δj1 and δk1 are
Kronecker delta symbols) and Ωp � P∞

l�1 ϵ
lΩ�l�

p , where ϵ is
a dimensionless small parameter characterizing the amplitude
of the probe field. All quantities on the right-hand side of the
expansions are considered as functions of the multiscale var-
iables zl � ϵlz (l � 0; 1; 2), t1 � ϵt, x1 � ϵx, and y1 � ϵy.

Substituting the expansions into Eqs. (5) and (7), and com-
paring the coefficients of ϵl (l � 1; 2; 3…), we obtain a set of
linear but inhomogeneous equations that can be solved order
by order. At leading order (l � 1), we have the solution in the
linear regime, which is the same as that given in Eq. (8), but
now F is taken to be a function of the slow variables t2, x1, y1,
z1, and z2.

At the next order (l � 2), a divergence-free condition re-
quires ∂F∕∂z1 � �1∕Vg��∂F∕∂t1� � 0. The second-order solu-
tion reads σ�2�31 � σ�2�21 � 0, σ�2�jj � a

�2�
jj jF j2e−ᾱz2 (j � 1; 2), and

σ�2�32 � a
�2�
32 jF j2e−ᾱz2 , where

a
�2�
11 � α2

�iΓ23 − 2β2jΩcj2�1∕d32 − 1∕d�32��X − iΓ13β
2jΩcj2�1∕�Dd�32� − 1∕�D�d32��

iΓ13β
2jΩcj2�1∕d32 − 1∕d�32�

;

a
�2�
22 � α2X − iΓ13a

�2�
11

iΓ13
; a

�2�
32 � βΩc

d32

�
α2

D� − �a�2�11 � 2a�2�22 �
�
; (18)

and ᾱ � ϵ−2α � ϵ−2 Im�K�ω��, with X � �ω� d�21�∕D� − �ω�
d21�∕D.

With the above results we proceed to the third order
(l � 3). The divergence-free condition in this order yields
the nonlinear equation for the envelope function F :

i
∂F
∂z2

−
K2

2
∂2F
∂t21

� c

2ωp

�
∂2

∂x21
� ∂2

∂y21

�
F −W jF j2Fe−2ᾱz2 � 0;

(19)

where

W � −κ13α
βΩca

�2��
32 � �ω� d21��2a�2�11 � a

�2�
22 �

D�ω� ;

characterizes the self-phase modulation (SPM) effect of the
system. For obtaining a nonzero real part of W around
ω � 0, it is necessary to require that Δ2 ≠ 0, which is also re-
quired for a nonzero real part of χ�3�p .

Combining equations in all orders and taking τ � t − z∕Vg,
Ωp ≈ εFeiK0z � UeiK0z, we arrive at the equation

i

�
∂
∂z

� α

2

�
U −

K2

2
∂2U
∂τ2

� c

2ωp

�
∂2

∂x2
� ∂2

∂y2

�
U −W jUj2U � 0:

(20)

C. Slow-Light Solitons
The formation and propagation of an optical soliton in the sys-
tem requires the following conditions: (i) there is a balance
between the dispersion and nonlinearity, and (ii) the absorp-
tion of the probe field is negligibly small. In general, coeffi-
cients of the envelope Eq. (20) are complex, which means
that a soliton solution, even if it exists and is produced,

may be highly unstable during propagation. However, if a real-
istic set of system parameters under some condition can be
found so that the imaginary part of these coefficients can
be much smaller than their corresponding real part, it is
possible to get a shape-preserving, localized solution that
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Re�χ�3�p � ≫ Im�χ�3�p � can be satisfied when Δ2∕γ31 ≪ 1.
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can propagate a rather long distance without a significant dis-
tortion. In the present system, the condition of relatively small
imaginary parts of the coefficients can be achieved by the EIT
condition.

Under this condition, Eq. (20) with neglect of the small
imaginary part of the coefficients can be written in the dimen-
sionless form

i
∂u
∂ζ

� s1
∂2u
∂σ2

� 2s2juj2u � −id0u − d1

�
∂2

∂ξ2
� ∂2

∂η2

�
u; (21)

where U � U0u, z � −2LDζ, τ � τ0σ, �x; y� � R⊥�ξ; η�, s1 �
sign�K2r� (here and in the following the subscript “r” means
real part), s2 � sign�Wr�, d0 � LD∕L0, and d1 � LD∕L1.
Here L0 � 2∕α is the characteristic absorption length,
LD � τ20∕jK2r j is the characteristic dispersion length, L1 �
ωpR

2
⊥∕c is the characteristic diffraction length, and LNL �

1∕�jWr jU2
0� is the characteristic nonlinearity length with U0

being the typical Rabi frequency of the probe field. In order
to obtain Eq. (21), we have imposed the condition
LD � LNL; i.e., a balance between the dispersion and nonli-
nearity is achieved.

If d0 ≪ 1 (LD ≪ L0) and d1 ≪ 1 (LD ≪ L1), the terms on the
right-hand side of Eq. (21) can be regarded as small perturba-
tions and can be neglected in the first order. Thus, Eq. (21)
reduces to the standard NLS equation reading
i∂u∕∂ζ � s1∂2u∕∂σ2 � 2s2ςjuj2u � 0, which permits the bright
soliton solution u � sech σeiζ for s1s2 � 1 and the dark soliton
solution u � tanh σeiζ for s1s2 � −1. Returning to the original
variables, the bright and dark soliton solutions have the form

Ωbright
p � 1

τ0

��������
K2r

Wr

s
sech

�
1
τ0

�
t −

z

Vg

��
exp

�
iK0z − i

z

2LD

�
;

(22a)

Ωdark
p � 1

τ0

��������
K2r

Wr

s
tanh

�
1
τ0

�
t −

z

Vg

��
exp

�
iK0z − i

z

2LD

�
;

(22b)

respectively.
Now we present a numerical example for the solitons given

above. We take κ13 � 1014 cm−1 s−1, Δ2∕γ31 � 0.1, Δ3∕γ31 �
6.0, Ωc∕γ31 � 2.0, τ0 � 2.24 × 10−9 s, U0 � 5.26 × 108 s−1,
and R⊥ � 1.2 × 10−2 cm; the other parameters are the same
as those used in Fig. 2. With the above parameters, we obtain
that K0 ≈ 1.10� i0.19 cm−1, K1≈�1.19�i0.27�×10−8 cm−1s,
K2 ≈ �1.67� i0.34� × 10−18 cm−1 s2, and W ≈ −�1.20� i0.15�×
10−18 cm−1 s2. The characteristic lengths are L0 ≈ 10.8 cm,
LD � LNL ≈ 3.0 cm, and LDiff ≈ 12.9 cm, and hence d0 ≈ 0.28
and d1 ≈ 0.32. Using these parameters, we obtain the group
velocity of the probe-field envelope

Vg ≈ 2.8 × 10−3 c; (23)

which is much smaller than the light speed in the vacuum
(i.e., c). Because s1s2 � −1, the soliton obtained under the
above parameters is an ultraslow dark soliton.

In Figs. 6(a) and 6(b) we show the evolution of the probe
intensity jΩp∕U0j2 by directly integrating Eq. (21). The initial
condition is given by the slow-light dark soliton solution (22b)
embedded in a wide Gaussian background. The stability of the
soliton is checked by adding a small random noise (5%) to the
initial condition and evolving them. We see that the slow-light
dark soliton is rather robust during propagation to
z � 2LD ≈ 6 cm. A slight deformation of the slow-light soliton
due to the absorption and diffraction can also be observed
when z > LD.

(a)

(c)

(b)

(d)

Fig. 6. Evolution of the intensity jΩp∕U0j2 by directly integrating Eq. (21). (a), (b) (intensity pattern in t–z plane) Evolution of the slow-light dark
soliton. The initial condition is given by the solution (22b) embedded in a wide Gaussian background. (c), (d) (intensity pattern in x–z plane)
Evolution of the weak-light bright soliton. The initial condition is given by the solution (25a). In all panels, the stability of solitons is checked
by adding a small random noise to the initial condition and evolving them. The system parameters are given in the text.
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D. Weak-Light Spatial Solitons
If the probe pulse duration τ0 is much longer than
2.24 × 10−9 s, the dispersion of the system will not be able
to balance the nonlinearity, and hence we cannot find stable
ultraslow optical solitons. In this regime, however, we can
consider the possibility of the formation of spatial optical
solitons in the system. The physical mechanism of realizing
spatial solitons is the interplay and balance between diffrac-
tion and nonlinearity.

For a weak probe field with transverse radii Rx ≪ Ry (Rx

and Ry are, respectively, the probe beam radii in the x and y

directions), only the diffraction in the x direction is signifi-
cant. In this case Eq. (20) can be reduced to the form

i
∂u
∂ζ

� ∂2u
∂ξ2

� 2s2juj2u � id0u�
�
d1

∂2

∂η2
� d2

∂2

∂σ2

�
u; (24)

where z � 2Lxζ, �x; y� � �Rxξ; Ryη�, d0 � Lx∕L0, d1 � Lx∕Ly,
and d2 � Lx∕LD. Here Lx � ωpR

2
x∕c is the characteristic dif-

fraction length in the x direction and Ly � ωpR
2
y∕c is the char-

acteristic diffraction length in the y direction. When obtaining
Eq. (24), we have imposed the condition Lx � LNL; i.e., a bal-
ance between the diffraction in the x direction and nonlinear-
ity is achieved.

If d0 ≪ 1 (Lx ≪ L0), d1 ≪ 1 (Lx ≪ Ly), and d2 ≪ 1
(Lx ≪ LD), the terms on the right-hand side of Eq. (24) can
be regarded as small perturbations and can be neglected in
the first order. Thus, Eq. (24) reduces to the standard NLS
equation reading i∂u∕∂ζ � ∂2u∕∂ξ2 � 2s2juj2u � 0, which per-
mits the bright soliton solution u � sech ξeiζ for s2 � 1 and
the dark soliton solution u � tanh ξeiζ for s2 � −1. Returning
to the original variables, the single bright and dark soliton
solutions read

Ωbright
p � 1

Rx

�������������
c

ωpWr

r
sech

�
x

Rx

�
exp

�
iK0z − i

z

2Lx

�
; (25a)

Ωdark
p � 1

Rx

�������������
c

ωpWr

r
tanh

�
x

Rx

�
exp

�
iK0z − i

z

2Lx

�
; (25b)

respectively.
For a practical example, we take τ0 � 4.48 × 10−9 s,

Rx � 6.8 × 10−3 cm, and Ry � R⊥ � 1.2 × 10−2 cm; the other
parameters are the same as those used in Figs. 6(a) and
6(b). With the above parameters, we obtain that LD ≈ 12.0 cm,
Lx ≈ 3.0 cm, and Ly ≈ 9.3 cm, which leads to d0 ≈ 0.28,
d1 ≈ 0.32, and d2 ≈ 0.25. Because in this situation s2 � 1,
the soliton obtained is a bright one [i.e., Eq. (25a)].

In Figs. 6(c) and 6(d) we show the evolution of the probe
intensity jΩp∕U0j2 by directly integrating Eq. (24). The initial
condition is provided by the bright soliton solution (25a). The
stability of the soliton is checked by adding a small random
noise to the initial condition and evolving them. We see that
the bright soliton is rather robust during the propagation
distance of z � 2LD ≈ 6 cm.

Using Poynting’s vector, it is easy to estimate the peak
power for generating the optical soliton described above,
which reads

Pmax ≈ 18.53 W; (26)

with the cross-sectional area of the probe beam being taken as
S0 ≈ RxRy. We note that the peak power for generating the
soliton in the present molecular system is higher than that
in the atomic systems [16–18,45]. This is because the
electric-dipole matrix element p31 of the present molecular
system is about three orders smaller than that of the atomic
systems. However, this is still a drastic contrast to conven-
tional media such as glass-based optical fibers, where picosec-
ond or femtosecond laser pulses are usually needed to reach a
very high peak power from kilowatts to megawatts to bring
out the enough nonlinear effect required for the formation
of spatial optical solitons [46,47].

5. SUMMARY
In conclusion, we have investigated the linear and nonlinear
light pulse propagations in a three-level Λ-type molecular sys-
temwith PDMs via EIT. We have found that the EIT characters
in such a system depend strongly on the phase of control field,
based on which a phase-controlled optical switching can be
designed. We have shown that the Kerr nonlinearity of the sys-
tem can be largely enhanced due to the control-field-induced
quantum interference effect. We have derived the NLS equa-
tion for the evolution of the probe-field envelope and demon-
strated that it is possible to realize stable slow- and weak-light
solitons in the system. The results obtained in this work may
guide a relevant experiment and have potential applications
in the field of optical information communication and
processing.
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