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We develop an analytical approach for calculating the Landau damping of collective modes in the Bose-
Einstein condensate trapped by an anisotropic harmonic potential. Based on a variational ground-state wave
function obtained by solving the time-independent Gross-Pitaevskii equation beyond Thomas-Fermi approxi-
mation, we solve the Bogoliubov–de Gennes equations describing thermal excited quasiparticles and provide
divergence-free analytical solutions for the Bogoliubov amplitudes and coupling matrix elements that charac-
terize the interaction between the collective modes and the quasiparticles. With these analytical results we
evaluate the Landau damping rates of several collective modes for various anisotropic parameters of the
trapping potential in terms of the formulas derived from a time-dependent mean-field theory. In addition, we
discuss the dependence of the damping rates on temperature, particle number, trapping frequency, and aniso-
tropic parameter of the system, and compare our theoretical results with experimental and numerical data
reported in literature.
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I. INTRODUCTION

The theory of elementary excitations, pioneered by Lan-
dau, Bogoliubov, and Feynman, is of primary importance in
quantum many-body physics. The successful experimental
realization of Bose-Einstein condensation �BEC� �1� in dilute
atomic gases provides an excellent opportunity for the study
of collective modes in trapped, weakly interacting many-
body systems �2–17�. One of the challenging problems in
this direction is damping of a collective mode and its tem-
perature dependence, which have attracted much attention in
recent years in both experiment �18–24� and theory �25–39�.

The damping mechanism of collective modes depends on
the temperature and density of the system under study. At
high temperature and high density, the system is in a colli-
sional regime and thus in a local thermodynamic equilib-
rium. The damping mechanism in this regime is of a dissi-
pative type and the dynamics of collective modes may be
described by the theory of two-fluid hydrodynamics �29�. In
contrast, if the system is very dilute and at very low tempera-
ture, collisions between excitations play a minor role. The
damping mechanism of a collective mode in this collision-
less regime is not related to thermalization processes but to
the coupling between the collective mode and thermally ex-
cited quasiparticles. Up to now, most experiments with
trapped Bose-condensed gases have been performed in this
regime �18–24�. There are two damping mechanisms in the
collisionless regime, i.e., Landau damping and Beliaev
damping. The former occurs by the process of a collective
mode being absorbed by a quasiparticle, and then turned into
another quasiparticle. The latter arises from the process of a
collective mode being absorbed and then two quasiparticles

being created. The Beliaev damping can be ignored for low-
energy collective modes in a trapped Bose gas because of the
discretization of energy levels �25–39�.

Many theoretical approaches have been proposed to ob-
tain the Landau damping and its temperature dependence in
trapped BECs �25–39� in the collisionless regime. Among
them time-dependent mean-field theory is widely employed
since it gives an accurate description of the coupled dynam-
ics of condensate and noncondensate components. For calcu-
lating Landau damping, various coupling matrix elements
describing the interaction between the collective mode and
quasiparticles must be calculated, which, however, requires
solving the Gross-Pitaevskii �GP� and Bogoliubov–de
Gennes �BdG� equations in order to get the ground-state
wave function of the condensate and the eigenvalues and
eigenfunctions of the quasiparticles, respectively. Because of
the inhomogeneous character �i.e., the existence of a trapping
potential� of the system, it is very difficult to obtain an ana-
lytical solution of these eigenfunctions. Up to now nearly all
works on Landau damping were based on numerical simula-
tions �25–38�. Analytical work can be done for repulsive
atomic interactions with very large particle number by em-
ploying the Thomas-Fermi approximation �TFA�. However,
the result obtained under the TFA for the Bogoliubov ampli-
tudes of quasiparticles and the coupling matrix elements
have uncontrollable divergence �14–17,39�.

In recent work, we proposed an analytical approach for
calculating the Landau damping of a collective mode in har-
monically trapped BECs �39�. However, the method in that
work is valid only for an isotropic �i.e., spherically symmet-
ric� harmonic trap. In the present work we generalize the
result in Ref. �39� to anisotropic traps. We shall make a de-
tailed calculation of the Landau damping of collective modes
in a condensate trapped in a cylindrically symmetric trap and
discuss its dependence on the parameters of the system. We
stress that such generalization is necessary and also non-
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trivial for the following reasons. �i� Up to now all experi-
mental observations on the Landau damping of collective
modes in BECs have been made for anisotropic traps
�18–24�. �ii� The linear eigenvalue problem for the collective
modes and quasiparticles in an anisotropic BEC is harder to
solve and the quasiparticle spectrum is much denser and
hence displays a richer structure than in the case of an iso-
tropic BEC. �iii� The Landau damping and its dependence on
the physical parameters of the system have much richer char-
acters than those for the isotropic trap. �iv� A general analyti-
cal theory is of interest from the theoretical point of view and
this theory is useful for the investigation of frequency-shift
and mode-coupling problems in BECs and for evaluating the
Landau damping in superfluid Fermi gases in a BCS-BEC
crossover �40�.

The paper is organized as follows. In the next section, for
completeness we describe briefly the time-dependent Hatree-
Fock-Bogoliubov mean-field theory for Landau damping. In
Sec. III we give a variational ground-state wave function of
the GP equation beyond the TFA and provide divergence-free
analytical solutions for the BdG equations. In Sec. IV we
evaluate the Landau damping of several collective modes
and discuss its dependence on the temperature, particle num-
ber, and anisotropic parameter of the system. A comparison
with the experimental and numerical data reported in the
literature is also made. Finally, in the last section we give a
discussion and summary of our main results.

II. TIME-DEPENDENT MEAN-FIELD THEORY FOR
LANDAU DAMPING

We consider a dilute Bose-condensed atomic gas trapped
in an anisotropic external potential Vext�r�. The grand-
canonical Hamiltonian of the system in terms of the boson
field operator ��r , t� reads

H =� dr �†�r,t�H0��r,t�

+ �g/2� � dr �†�r,t��†�r,t���r,t���r,t� , �1�

where H0=−�2�2 / �2M�+Vext�r�−� with � the chemical po-
tential and M the atomic mass. The parameter g
=4��2asc /M describes a contact interaction, with asc being
the s-wave scattering length. ��r , t� satisfies the Heisenburg
equation of motion

i����r,t�/�t = H0��r,t� + g�†�r,t���r,t���r,t� . �2�

To study the dynamics of the Bose-condensed gas at low
temperature, one can make the Bogoliubov decomposition

��r , t�=��r , t�+ �̃�r , t�, where � ������ and �̃ represent,
respectively, condensate and noncondensate components,

satisfying ��̃�=0. Here the symbol �¯� ��¯�0� denotes the
nonequilibrium �equilibrium� average. Then by applying a
self-consistent time-dependent Hartree-Fock-Bogoliubov
mean-field approximation, one obtains the equation of mo-
tion for the condensate wave function �,

i���/�t = H0� + g	�	2� + 2g�ñ�r,t� + g�*m̃�r,t� , �3�

where ñ�r , t����̃†�̃� and m̃�r , t����̃�̃� denote the normal
and anomalous �thermal� particle densities, respectively.

By taking the Bogoliubov transformation �̃�r , t�
=
 j�uj�r�� j�t�+v j

*�r�� j
†�t�� and �̃†�r , t�=
 j�uj

*�r�� j
†�t�

+v j�r�� j�t��, where the quasiparticle operators � j ,� j
† satisfy

Bose commutation relations and the Bogoliubov amplitudes
uj and v j satisfy the normalization condition �dr�ui

*�r�uj�r�
−vi

*�r�v j�r��=�ij, we obtain the equations of motion describ-
ing the time evolution of the normal and anomalous densi-
ties:

i��f ij�t�/�t = ���i
†�t�� j�t�,H�� , �4a�

i��gij�t�/�t = ���i�t�� j�t�,H�� , �4b�

where f ij�t�= ��i
†�t�� j�t��− f i

0�ij and gij�t�= ��i�t�� j�t�� and f i
0

is the equilibrium density of quasiparticles, whose explicit
expression will be given below.

To study the Landau damping of a collective mode, we
must consider the coupling between the collective mode and
the thermal excited quasiparticles. With this aim we assume
�=�0�r�+���r , t�, where ���r , t� is a small fluctuation de-
noting the collective mode. We make the decomposition
ñ�r , t�= ñ0�r�+�ñ�r , t� and m̃�r , t�= m̃0�r�+�m̃�r , t�, where

ñ0�r�= ��̃†�̃�0 and m̃0�r�= ��̃�̃�0 denote the static distribu-
tions of the normal and anomalous thermal particle densities,
respectively. Then Eq. �3� yields

�H0 + gn0�r���0�r� = 0, �5�

i����/�t = �H0 + 2g�n0�r� + ñ0�r��
�� + g�n0�r�

+ m̃0�r����* + g�0

ij

�2�ui
*uj + vi

*v j + vi
*uj�f ij�t�

+ �2viuj + uiuj�gij�t� + �2ui
*v j

* + vi
*v j

*�gij
* �t�
 , �6�

where n0�r�= 	�0�r�	2. Equation �5� is a time-independent GP
equation determining the ground-state wave function �0�r�
of the condensate. Because at very low temperature the time-
independent normal and anomalous thermal particle densities
ñ0�r� and m̃0�r� are small in comparison with the condensate
density n0�r� and hence negligible in Eq. �6�, we take them
as zero in the following calculation for simplicity. Notice that
it is the time-dependent normal thermal particle density
�ñ�r , t� and the anomalous thermal particle density �m̃�r , t�
that contribute the Landau damping of the collective mode.

If uj and v j are chosen to satisfy the BdG equations

Luj�r� + gn0�r�v j�r� = � juj�r� , �7a�

Lv j�r� + gn0�r�uj�r� = − � jv j�r� , �7b�

with L=−�2�2 / �2m�+Vext�r�−�+2gn0�r�, the Hamiltonian
of the system can be expressed as H=const+
 j� j� j

†� j +H�,
where � j is the eigenenergy of the quasiparticle and H� is an
interacting term. Then the commutators on the right-hand
side of Eqs. �4a� and �4b� can be obtained immediately; they
are omitted here for saving space.
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When �0, i.e., the ground-state wave function of the con-
densate, is obtained by solving the time-independent GP Eq.
�5�, we can obtain the solutions of Eqs. �6�, �4a�, and �4b�.
This can be done by using a perturbation theory combined
with a Fourier transform. We suppose that a collective mode
of the condensate with oscillating frequency 	0 is excited,
i.e.,

���r,t� = uosc�r�exp�− i	0t� ,

��*�r,t� = vosc�r�exp�− i	0t� . �8�

It is easy to show that �uosc ,vosc� obeys also the BdG Eq. �7�.
Then we obtain the frequency correction of the collective
mode, i.e., 	=	0+
− i�. The Landau damping rate of the
collective mode is given by �26,39�

�L = 

ij

�ij��	0 + 	i − 	 j� , �9�

with 	 j =� j /�, and

�ij = �4�g2/�2�	Aij	2�f i
0 − f j

0� �10�

with f j
0= �� j

+� j�0= �exp�� j / �kBT��−1
−1. �ij is called the
damping strength of the transition from state 	i� to state 	j�
�32�. Aij is the coupling matrix element describing the energy
transfer between the collective mode and quasiparticles,
whose expression is given by

Aij =� dr �0�uosc�uiuj
* + viv j

* + viuj
*�

+ vosc�uiuj
* + viv j

* + uiv j
*�� . �11�

We see that only three-mode resonant interactions satisfying
the resonance conditions 	0+	i−	 j =0 contribute to the
Landau damping.

III. DIVERGENCE-FREE ANALYTICAL SOLUTIONS OF
THE BdG EQUATIONS AND COUPLING MATRIX

ELEMENTS

A. Divergence-free analytical solutions of the BdG equations

In order to evaluate the Landau damping rate �L one must
calculate the coupling matrix elements Aij, which, however,
requires one to solve the GP equation �5� and the BdG equa-
tions �7a� and �7b� to determine the ground-state wave func-
tion �0 and the eigenvalues � j and eigenfunctions �uj ,v j� of
the quasiparticles, respectively. Exact analytical solutions for
them are not easy to get because of the existence of the
trapping potential. Up to now most analytical results ob-
tained in literature are based on the TFA, i.e., neglecting the
kinetic energy terms in the equations for both the ground
state and the excitations. This approximation, however, is not
satisfactory for the following reasons. �i� The TFA is valid
only for very large �infinite large, theoretically� particle num-
ber. �ii� Under such approximation the Bogoliubov ampli-
tudes �i.e., uj and v j� vary sharply at the boundary of the
condensate. The kinetic energy of both the condensate and
the excitations at the boundary is significant and hence can-
not be simply neglected. �iii� There appears a singular point

in the solutions of the Bogoliubov amplitudes at the bound-
ary �14,15�, which makes the theory uncontrollable. �iv� The
existence of the singular point in the Bogoliubov amplitudes
results in a divergence in the coupling matrix elements,
which prevents us from getting the Landau damping rate of
the collective mode in the system. Recently, this problem has
been investigated in Refs. �16,17� and divergence-free solu-
tions have been obtained beyond the TFA. In the following
we give a simple description of some results related to the
ground-state wave function and the eigenvalues and eigen-
functions of the BdG equations.

We consider a trapping potential of an axial symmetry
with the form Vext�r�=m	ho

2 r2 /2, with r2=x2+y2+�2z2. Here
	ho is the trapping frequency in the radial �i.e., x-y� direc-
tion, and � is an anisotropic parameter �i.e., the ratio of the
trap frequency in the radial direction to the one in the axial

�i.e., z� direction�. By rescaling the variables r̄=r /R0, �̄
=R0�, and introducing 
=�	ho /2� �here R0=�2� /M	ho

2 is
the characteristic radius of the condensate�, the GP equation
�5� is transformed into the dimensionless form


2��r�� + r̄2 − 1 + 	�0�r��/�0�0�	2 = 0, �12�

where ��r̄�=−��̄2�0�r̄�� /�0 is a quantity proportional to the
kinetic energy �i.e., zero-point pressure� in the ground state
of the condensate.

We solve Eq. �12� beyond the TFA by using a Fetter-like
variational ground-state wave function �16,17�

�0�r�� = C0
���1 − r̄2��q+1�/2��1 − r̄� , �13�

where r̄2= s̄2+�2z̄2 with s̄=s /R0 and z̄=z /R0, C0
= ��N0 / �2�R0

3B�3/2 ,2+q��
1/2 is a normalized constant with
B�3/2 ,2+q� being the Beta function and N0

=R0
3�dr̄	�0�r̄�	2 being the particle number in the condensate.

q is a variational parameter, determined by minimizing the
ground-state energy. Once q is determined, the ground-state
energy is given by �=�	ho�4�P /B�3/2 ,2+q��2/5 /2, where
P=N0asc /aho is the dimensionless interatomic interaction
strength.

By defining � j
±=uj ±v j and 	̄ j =	 j /	ho, the BdG equation

�7� gains the dimensionless form

− �̄2�1 − r̄2�� j
+ − �1 − r̄2��� j

+ + �
2/2�

���̄4 + 3�̄2� + ��̄2 + 3�2�� j
+ = 2	̄ j

2� j
+, �14a�

− �̄2�1 − r̄2�� j
− − �1 − r̄2��� j

− + �
2/2�

���̄4 + �̄2� + 3��̄2 + 3�2�� j
− = 2	̄ j

2� j
−. �14b�

Using the ground-state wave function given by Eq. �13� we
can get the expression for ��r̄�. Notice that at low tempera-
ture only low-energy collective excitations are relevant and
hence we have �	ho��	 j ��. Solving Eqs. �14a� and �14b�
by taking 
2 as a small quantity, we obtain the leading-order
solution of the eigenfunctions of Eq. �14�,
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�nznsm
± �r�� =

�
	̄nznsm
�0� �±1/2

�2�R0
3Inznsm

�1 − s̄2 − �2z̄2��q�1�/2s̄mPnp

�2ns�

��s̄, z̄�eim�, �15�

with 	̄nznsm
�0� being the leading-order eigenvalue and Inznsm

be-
ing a normalized coefficient. Here np �=0,1 ,2 , . . . � is the
principal quantum number, ns �=0,1 ,2 , . . . , int�np /2�� is the
radial quantum number, nz=np−2ns is the axial quantum
number, and m �=0, ±1, ±2, . . . � is the azimuthal quantum
number. The coupled axial and radial functions Pnp

�2ns� satisfy
a two-dimensional differential equation, which has a solution
with the form Pnp

�2ns��s̄ , z̄�=
k=0
np 
ns=0

int�k/2�bk,ns
z̄k−2nss̄2ns. The co-

efficient bk,n satisfies the iterate equation

4�n + 1��n + 	m	 + 1�bk+2,n+1 + �k − 2n + 2��k − 2n + 1�bk+2,n

= 4�2�n + 1��n + 	m	 + 1�bk,n+1 − �X − 4n�n + 	m	 + 1 + q�

− �2�k − 2n��k − 2n + 1 + 2q��bk,n + �k − 2n + 2��k − 2n

+ 1�bk,n−1, �16�

with X=2�	̄nznsm
�0� �2−2	m	�1+q�. For the detailed expressions

of 	̄nznsm
�0� , Inznsm

, and bk,n, see Refs. �16,17�.

B. Dimensionless Landau damping formula and coupling
matrix elements

For the convenience of later calculation, we write the
Landau damping rate and coupling matrix elements in di-

mensionless forms, which can be obtained by taking Āij
=Aij /aho

3 , �̄ij =�ij /	ho
2 , and �̄=� /	ho. Then we have

�̄L � �L/	ho = 

ij

�̄ij��	̄0 + 	̄i − 	̄ j� , �17�

where

�̄ij = 4��4�asc/aho�2	Āij	2�f i
0 − f j

0� , �18�

with

Āij =
�4P/B�3/2,2 + q��1/10

8��9/10�I0IiIj	̄0	̄ie	 j�1/2�N0

P
�1/2

��
0

1

dx�
0

1

dy W0WiWj
*Fij�x,y� . �19�

In the above formulas we have defined x= s̄2, y=�z̄ /�1−x,
Wj = s̄mPnp

�2ns��s̄ , z̄�eim� �j��nz ,ns ,m��, and Fij�x ,y�
=3
2	̄0	̄iāj�1−x�2q−1/2�1−y2�2q−1+ �	̄0+ 	̄i− 	̄ j��1
−x�2q+3/2�1−y2�2q+1. f j

0 is expressed as f j
0= �exp�2
	̄ j / T̄�

−1�−1, with T̄=kBT /� being the dimensionless temperature.
For a practical calculation one must have a way to express

the Dirac � function appearing in Eq. �17�. By the formula

�1/��lim�̄→0��̄ /2� / ��	̄0+ 	̄i− 	̄ j�2+ ��̄ /2�2�=��	̄0+ 	̄i− 	̄ j�,
we have �̄L=lim�̄→0�̄L��̄�, with

�̄L��̄� =
1

�


ij

�̄ij
�̄/2

��	̄0 + 	̄i − 	̄ j�2 + ��̄/2�2�
. �20�

Note that there exist some selection rules for the coupling

matrix elements Āij resulting from the integration for the
azimuthal angle �. From Eq. �19� with the expression of Wj,

one has Āij ��0
2�ei�m0+mi−mj��d�. Thus Āij is nonvanishing

only when

m0 = mj − mi. �21�

IV. RESULTS FOR LANDAU DAMPING RATE

We now make a detailed calculation of the Landau damp-
ing rate of collective modes for the BEC with an anisotropic
trap in terms of the formulas presented in the last section.
Note that all our results are obtained beyond the TFA, the
divergence problem in the Bogoliubov amplitudes and the
coupling matrix elements encountered in previous studies
�14,15� disappear. In addition, unlike in the numerical ap-
proaches given in Refs. �25,27,32,35�, in our present theory

Āij can be evaluated analytically based on the variational
ground-state wave function and the explicit expressions for
the eigenfunctions of the quasiparticles.

A. Damping strength for various transitions

We consider a gas of alkali-metal atoms �such as 87Rb or
23Na� trapped in a cylindrical symmetric harmonic potential.
The particle number in the condensate at temperature T is
given by N0�T�=N�1− �T /Tc

0�3�, where N is the total particle
number of the system and Tc

0 is the critical temperature of
BEC transition. The collective mode we are interested in is
the breathing mode with the oscillating frequency 	0=	±
=	ho�2+3�2 /2± �16−16�2+9�4�1/2�1/2. The 	+ mode, which
corresponds to the �nz ,ns ,m�= �2,0 ,0� mode for ��1 or the
�nz ,ns ,m�= �0,1 ,0� mode for ��1, is called the high-lying
m=0 mode; The 	− mode, which corresponds to �nz ,ns ,m�
= �0,1 ,0� mode for ��1 or �nz ,ns ,m�= �2,0 ,0� mode for
��1, is called the low-lying m=0 mode �7,14,15�. Since in
practice the frequency of a collective mode has a finite line-
width, the phase-matching conditions for three-mode reso-
nant interactions, 	0+	i−	 j =0, cannot be exactly satisfied.
Thus a small mismatch for the three-mode resonant condi-
tions should be introduced. Under this consideration, one can
assume that resonances contributing to the Landau damping
occur in the interval 0.82	0�	ij �1.18	0 �32�, where 	ij
=	 j −	i. Noting that the eigenfunctions of the quasiparticles
for the levels with large quantum numbers �nz ,ns ,m� have
fast oscillations and their maxima are far away from the cen-
ter of the condensate, the coupling matrix elements for tran-
sitions between the levels with larger �nz ,ns ,m� are thus
small. In addition, the levels with larger �nz ,ns ,m� have
smaller Bose occupation factors f j

0. Therefore, the contribu-
tion to the damping strength by the energy levels of large
quantum numbers �nz ,ns ,m� is not significant. Through a
suitable estimation, the levels corresponding to �0,0 ,m�,
�1,0 ,m�, �0,1 ,m�, �2,0 ,m�, �1,1 ,m�, �3,0 ,m�, �0,2 ,m�,
�2,1 ,m�, �4,0 ,m�, �1,2 ,m�, �3,1 ,m�, �5,0 ,m�, �0,3 ,m�,
�2,2 ,m�, �4,1 ,m�, �6,0 ,m�, �1,3 ,m�, �3,2 ,m�, �5,1 ,m�,
and �7,0 ,m� with m�15 are chosen in our calculation.
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In Fig. 1 we have shown the histogram of the dimension-
less damping strength �̄ij for the 	+ mode of 87Rb atomic gas
�asc=5.82�10−9 m� as a function of the transition frequency
difference 	̄ij at kBT /�=0.45, which corresponds to T
=100 nK. In the calculation we have taken N0=2�104,
	ho=1000 Hz, and �=3 �i.e., a disk-shaped trap with aho
=8.52�10−7 m�. The variational parameter is given by q
=0.490. The positions of the bars correspond to the allowed
transition frequencies 	̄ij, whereas their heights define the
values of �̄ij. The arrow in the figure points to the frequency
of the collective mode, 	̄+=5.27. The relatively large values
of �̄ij correspond to the transitions between the levels
�2,0 ,1�→ �0,0 ,1�, �4,1 ,0�→ �2,0 ,1�, �5,1 ,0�→ �3,0 ,0�,
and �5,1 ,1�→ �3,0 ,1�.

Figure 2 shows the damping strength for the 	+ mode for
different anisotropic parameters �, with the other parameters
being the same as in Fig. 1. The results plotted in Figs.

2�a�–2�c� are for cigar-shaped ��=0.5�, sphere-shaped ��
=1�, and disk-shaped ��=3� traps, respectively. From the
figure we see that the density of the vertical bars increases as
� increases. The reason is that as � increases the spectrum
density of the quasiparticles also increases, resulting in a
growth of the number of the transitions allowed by the reso-
nance conditions and selection rules.

Shown in Fig. 3 is the result for the damping strength for
the 	− mode with different �. The parameters are the same as
in Fig. 1. Figures 3�a�–3�c� are for cigar-shaped ��=0.5�,
sphere-shaped ��=1�, and disk-shaped ��=3� traps, respec-
tively. We see that for the 	− mode the density of the vertical
bars in the figure is lower than that for the 	+ mode �see Fig.
2�. This is because the number of transitions allowed by the
resonance conditions and selection rules for the 	− mode is
much less than for the 	+ mode.

B. �̄L vs �̄ for different dimensionless temperatures T̄

To obtain the Landau damping rate �̄L one needs to evalu-

ate the value of �̄��̄� in Eq. �20�. If the variation of �̄L��̄�
with respect to �̄ is weak, an extrapolation back to �̄→0 can
be made and hence the value of �̄L can thus be obtained �32�.
Shown in Fig. 4 is the result of �̄L��̄� vs �̄ for the 	+ mode
of the 87Rb atomic gas. The parameters are the same as in

Fig. 1 but for T̄=0.225 �solid diamonds�, 0.45 �solid
squares�, 0.675 �solid circles�, and 0.9 �solid triangles�,
which correspond to T=50, 100, 150, and 200 nK, respec-

tively. We see that the variation of �̄L��̄� is weak when �̄ lies

between 0.04 and 0.20. In fact, �̄L��̄� has only a weak de-

pendence on �̄ if the condition �	̄��̄�1 is satisfied,
where �	̄ is the average distance of the transitions, a small
quantity because of the finite lifetime of the quasiparticles.

By fitting the data of �̄L��̄� to an approximated straight line

and extrapolating it back to �̄=0, we can obtain the Landau

damping rate of the collective mode for a given T̄. For ex-

FIG. 1. Histogram of the dimensionless damping strength
�ij /	ho

2 of the 	+ mode for 87Rb atomic gas as a function of dimen-
sionless frequency difference 	ij /	ho, allowed by the resonance
conditions and selection rules. The parameters of the system are
asc=5.82�10−9 m, 	ho=1000 Hz, aho=8.52�10−7 m, �=3, N0

=2�104, and T̄=kBT /�=0.45. The arrow points to the value of the
collective mode 	+ /	ho=5.27. The inset shows the detail of the
damping strength in the interval 4.6�	ij /	ho�5.0.

FIG. 2. Same as Fig. 1 but for different anisotropic parameters.
�= �a� 1/2; �b� 1; �c� 3.

FIG. 3. Same as Fig. 2 but for the 	− mode.
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ample, when T̄=0.45 �i.e., T=100 nK�, we get �̄L=0.05,
which corresponds to the dimensional Landau damping rate
�L=50 s−1.

C. �̄L vs T̄ for different N0 and �ho

With the above results it is easy to discuss the temperature
dependence of the Landau damping rates for different N0 and
	ho when the anisotropic parameter � is given. In Fig. 5, we
have shown the result of the damping rate for the 	+ mode as

a function of T̄=kBT /� with �=3 for different N0 and 	ho.
Three different cases are plotted. The curves connected by
solid triangles, circles, and squares are for N0=2�104 and
	ho=1000 Hz, N0=4�104 and 	ho=1000 Hz, N0=2�104

and 	ho=2000 Hz, respectively. From the figure we can ob-
tain the following conclusions. �i� For given N0 and 	ho, the
Landau damping rate grows with temperature. This is ex-
pected because the number of quasiparticles available in the
system becomes larger when T increases. �ii� The damping
rates for different atomic numbers at the same temperature
display no significant difference. This can be seen, for ex-
ample, by looking at the points a and b in Fig. 5, which
represent the case of different N0 but with the same tempera-
ture. �iii� The damping rates increase as the trapping fre-

quency increases. The reason is that the atomic density in-
creases as the trapping frequency becomes larger. This
situation has been shown by the points b and c in the figure,
which have the same temperature T �41� and the same par-
ticle number but different trapping frequency.

D. Relation between Landau damping rate �̄L and anisotropic
parameter �

With the theoretical approach developed above we can
also obtain the relation between the Landau damping rate
and the anisotropic parameter of the trapping potential, i.e.,
�̄L= �̄L���. Shown in Fig. 6 are the Landau damping rates of
the 	− mode �Fig. 6�a�� and the 	+ mode �Fig. 6�b�� as
functions of �. The parameters are chosen as 	ho=1000 Hz,
N0=2�104, and T=200 nK. The open circles are the calcu-
lated results based on the analytical formulas given in the
last section. From the figure we see that for very small �, the
Landau damping is very small. As � increases, the damping
rates also increase. At �=�m, the damping reaches a maxi-
mum �̄Lm. Note that �m and �̄Lm are different for different
collective modes. As � increases further, the damping rates
decrease to smaller values.

The interesting behavior of the Landau damping for dif-
ferent values of the anisotropic parameter shown in Fig. 6
can be understood through a detailed analysis on the Landau
damping formula, given by Eq. �17�, together with the ex-
pressions of the damping strength �18� and the coupling ma-
trix element �19�. By inspection of these formulas we see
that the eigenfrequencies �or eigenenergies� of quasiparticles,
the Bose occupation factor, and the number of transitions

FIG. 4. Dimensionless Landau damping rate �L /	ho of the 	+

mode as a function of the Lorentz width � /	ho with N0=2�104,
�=3, and 	ho=1000 Hz for the different dimensionless tempera-

tures: solid diamonds, T̄=kBT /�=0.225; solid squares, T̄=0.45;

solid circles, T̄=0.675; solid triangles, T̄=0.9.

FIG. 5. Dimensionless Landau damping rate �L /	ho of the 	+

mode as a function of dimensionless temperature kBT /� with �
=3 for different atom numbers and trapping frequencies.

FIG. 6. Theoretical result �open circles� of the dimensionless
Landau damping rates �L /	ho for the 	− mode �a� and the 	+

modes �b� as functions of the anisotropic parameter �. The param-
eters are given by N0=2�104, 	ho=1000 Hz, and T=200 nK. The
solid square, solid triangle, and solid diamond are the experimental
results reported in Refs. �20,21,24�, respectively. The solid star is
the numerical date of Ref. �32�.
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allowed by the resonant conditions and selection rules are
functions of � and have contributions to the Landau damping
rates. As � increases, the quasiparticle eigenfrequencies, the
coupling matrix elements, and the number of allowed transi-
tions also increase, with relatively small increasing rates. In
Contrast, the Bose occupation factor decreases as � in-
creases. The decreasing rate of the Bose occupation factor is
small for small �, but grows fast for large �. The competition
among these factors result in the appearance of a maximum
in the Landau damping rates. For given parameters the maxi-
mum occurs at ��3 ���1.2� for the 	− �	+� mode.

For comparison, in Fig. 6 we have also shown some ex-
perimental and numerical data reported in the literature. The
solid square, solid triangle, and solid diamond in the figure
are the experimental results of Refs. �20,21,24�, respectively.
The solid star is the numerical datum of Ref. �32�. We see
that our theoretical results agree fairly well with the experi-
mental and numerical ones �42�. Notice that, when ��0, the
	+ mode �	+=2	ho� corresponds to the transverse breathing
investigated experimentally in Ref. �24�. One can see that
there is little deviation between our theory and the experi-
ment presented in Ref. �24�, shown by the solid diamond in
the lower panel of Fig. 6. The reason is that for a good
variational ground-state wave function the variational param-
eter q should be small. However, in our present theoretical
scheme q is large for very small �, resulting in the deviation.
For very small �, one should extend the present theory, e.g.,
to take the Thomas-Fermi radius R0 as a new variational
parameter.

V. SUMMARY

In this work, we have developed an analytical method for
calculating the Landau damping of low-energy collective

modes in anisotropic Bose-Einstein condensates in the frame
of a time-dependent Hatree-Fock-Bogoliubov mean-field
theory. Based on a variational ground-state wave function
obtained by solving the time-independent Gross-Pitaevskii
equation beyond the Thomas-Fermi approximation, we have
solved the Bogoliubov–de Gennes equations that determine
the eigenvalues and eigenfunctions of thermal excited quasi-
particles. The divergence-free explicit solutions of Bogoliu-
bov amplitudes and coupling matrix elements that character-
ize the interaction between the collective modes and the
quasiparticles have been provided. With these analytical re-
sults we have evaluated the Landau damping rates of several
collective modes for various anisotropic parameters of the
trapping potential. In addition, we have discussed the depen-
dence of the damping rates on temperature, particle number,
trapping frequency, and anisotropic parameter of the system.
We have also made comparison between our theoretical re-
sult and the experimental and numerical data reported in the
literature and found good agreement. It must be emphasized
that the analytical formulas presented in this work allow one
to discuss clearly the important role played by various damp-
ing processes. The general analytical theory developed here
is instructive and useful for the investigation of frequency-
shift and mode-coupling problems in BECs and for evaluat-
ing the Landau damping in superfluid Fermi gases in a BCS-
BEC crossover.
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