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Electromagnetically induced transparency (EIT), a typical quantum interference effect, has been extensively
investigated in coherent atomic gases. In recent years, it has been recognized that the plasmonic analog of atomic
EIT, called plasmon-induced transparency (PIT), is a fruitful platform for the study of EIT-like propagation and
interaction of plasmonic polaritons. Many proposals have been presented for realizing PIT in various metama-
terials, which possess many unique characters, including the suppression of absorption of electromagnetic radi-
ation, the reduction of propagation velocity, etc. Especially, nonlinear PIT metamaterials, obtained usually by
embedding nonlinear elements into meta-atoms, can be used to acquire an enhanced Kerr effect resulted from the
resonant coupling between radiation and the meta-atoms and to actively manipulate structural and dynamical
properties of plasmonic metamaterials. In this article, we review recent research progress in nonlinear PIT meta-
materials, and elucidate their interesting properties and promising applications. In particular, we give a detailed
description on the propagation and interaction of nonlinear plasmonic polaritons in metamaterials via PIT,
which are promising for chip-scale applications in information processing and transmission.

OCIS codes: 250.5403, 160.3918, 020.1670, 190.5530.
doi: 10.3788/COL201917.012501.

In the past three decades, much attention has been paid to
the study of electromagnetically induced transparency
(EIT) and related phenomena in various atomic sys-
tems[1,2]. Usually, EIT is observed in a three-state atomic
gas with Λ-type level configuration exposed to two (i.e.
control and probe) laser fields, where two atomic ground
states are linked to a common excited state. Due to the
quantum interference effect induced by the control field,
the absorption of the probe field is largely suppressed,
even if it is tuned to a strong one-photon resonance. Fur-
thermore, the dispersive property of the atomic medium is
modified considerably, leading to significant reduction of
the group velocity of the probe field. In addition, the Kerr
nonlinearity of the atomic medium can also be greatly en-
hanced[3]. Based on these striking features, many applica-
tions of EIT have been realized, including lasing without
inversion[4], slow light[5], precision measurement[6], quan-
tum phase gates[7,8], quantummemory[9–13], etc. In addition,
nonlinear extension of atomic EIT and their applications
were also explored, including slow-light solitons and their
storage and retrieval[14–18]. However, EIT in atomic gases
often requires special and often cumbersome experimental
conditions, such as large device size and ultracold temper-
ature, which hampers compact chip-integrated applica-
tions working at room temperature.
In recent years, many efforts have been made on

the classical analogue of EIT in various physical systems,
such as coupled resonators[19,20], electric circuits[19–21],
optomechanical devices[22,23], whispering-gallery-mode
microresonators[24], and various metamaterials (see, e.g.,

Refs. [25–48]). Especially, the plasmonic analogue of
EIT in metamaterials, called plasmon-induced transpar-
ency (PIT)[25–28], has attracted growing interest[29–48]. PIT
is a typical destructive interference effect, resulted from
the resonant coupling between the wideband bright mode
and the narrowband dark mode in meta-atoms of plas-
monic metamaterials[25], which is similar to that happening
in three-level atomic gases working under the EIT condi-
tion. The most distinctive characteristics of PIT are the
appearance of a large transparency window within the
broadband absorption spectrum of the bright mode, along
with extraordinarily steep dispersion and dramatic reduc-
tion of the group velocity of the relevant plasmonic polar-
iton. PIT metamaterials can work in different regions of
electromagnetic (EM) radiation frequency (including
microwave[26], terahertz[27,31,34], infrared, and visible
radiations[25,29,33]) and may be exploited to design chip-scale
plasmonic devices, in which undesirable radiation damp-
ing can be largely suppressed. Such capabilities of the plas-
monic metamaterials are very enticing, as they would
enable a range of novel devices, such as low-loss metama-
terials[25,27], highly sensitive sensors[30,31,35], optical buff-
ers[32,34], PT-symmetric metasurfaces[38], ultrafast optical
switches[34], and memorizers for the storage and retrieval
of EM pulses[36,40,47].

However, most studies on plasmonic polaritons (i.e.,
EM waves coupled with charge density waves propagating
along metal–dielectric interfaces) in PIT metamaterials
were focused on the linear propagation regime. Because
of highly resonant (and hence, dispersive) characters
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inherent in PIT metamaterials, linear plasmon polaritons
inevitably undergo a significant deformation during
propagation. Furthermore, due to the diffraction effect,
which is significant for radiations with small transverse
size or long propagation distance, a large distortion of
linear plasmon polaritons is unavoidable. Therefore, it
is necessary to seek the possibility to obtain a robust
propagation of plasmonic polaritons. One way to solve this
problem is to make PIT systems work in the nonlinear
propagation regime. The nonlinear extension of metama-
terials provides the possibility to find a wide variety of new
nonlinear phenomena that are absent in conventional sys-
tems. The reason is that metamaterials can be designed
and actively manipulated at will, and so, enhanced non-
linear response can be easily realized[49–63].
Note that, among various nonlinear metamaterials, PIT

metamaterials possess many interesting features. First,
the radiation damping of the bright mode in PIT meta-
atoms can be greatly suppressed by the destruction inter-
ference effect induced by the dark mode. Second, the
dispersion property of the system can be changed signifi-
cantly, and hence, the propagating velocity of radiation
can be largely reduced. Third, enhanced Kerr nonlinearity
can be acquired through the resonant coupling between
the bright and dark modes; especially, when nonlinear el-
ements embedded into PIT meta-atoms have quadratic
and cubic nonlinearities, the Kerr nonlinearity can be
enhanced further via longwave–shortwave resonance.
By exploiting the enhanced Kerr nonlinearity, plasmonic
solitons and dromions (i.e., high-dimensional solitons with

longwave and shortwave components) can be obtained,
which have ultraslow propagation velocity and ultralow
generation power. Fourth, due to the active character
of PIT, plasmonic polaritons with orbital angular momen-
tums (OAMs) can be obtained, which can be stored and
retrieved with high efficiency and fidelity if some gain el-
ements are inserted into the PIT meta-atoms and so on.

In this article, we present a brief introduction on recent
theoretical developments of nonlinear plasmonic polari-
tons via PIT. We review several different physical schemes
for realizing nonlinear PIT metamaterials. Interesting
physical properties and promising applications of nonlin-
ear PIT metamaterials are discussed, including the
enhancement of Kerr nonlinearity, the realization of plas-
monic solitons and dromions, the analogous atomic four-
wave mixing (FWM) and vector plasmonic solitons, and
the storage and retrieval of plasmonic polaritons with
OAMs. Finally, perspectives on the further study of non-
linear plasmonic polaritons in metamaterials are given.

Ten years ago, Zhang et al.[25] proposed an array of
meta-atoms that consist of one metal strip and two paral-
lel metal strips to realize a PIT metamaterial. This
pioneering work opened a new direction in plasmonic
metamaterials and stimulated a series of researches on
PIT[26–38,40–42,45,47,48]. In particular, Gu et al.[34] suggested that
the meta-atom can be made by one cut wire (CW) and two
splitting ring resonators (SRRs) [see Fig. 1(a)]. To get a
PIT, an incident gigahertz (GHz) radiation is assumed to
be collimated on the metamaterial array with the electric
field parallel to the CW, as illustrated in Fig. 1(b)[64,65].

Fig. 1. (a) Schematic of the meta-atom (unit cell) in the linear PIT metamaterial, consisting of a metal CW and a pair of metal SRRs.
Geometrical parameters of the meta-atom are L ¼ 1.7, w ¼ 0.1, a ¼ 0.58, b ¼ 0.1, Px ¼ 1.6, and Py ¼ 2.4 mm. (b) SRR pair with a
hyperabrupt tuning varactor mounted onto slits. (c) Possible experimental arrangement for the measurement of GHz radiation in the
nonlinear PIT metamaterial. (d) Normalized absorption spectra of the CW (red), SRR pair (blue), and meta-atom of the linear PIT
metamaterial (green). Adapted from Ref. [64].
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The normalized absorption spectra of the sole CW (red),
SRR pair (blue), and the meta-atom of the linear PIT
metamaterial (green) are shown in Fig. 1(d). The CW ar-
ray shows a typical localized surface plasmon resonance,
while the SRRs support an inductive–capacitive (LC) res-
onance at the same frequency. The CW is directly excited
by the incident electric field along the CW, while the SRRs
are weakly coupled to the incident field due to the
perpendicular orientation of the field. The near-field cou-
pling between the CW and SRRs excites the LC resonance
in the SRRs, and hence, the CW and SRRs serve, respec-
tively, as the bright and dark modes in such an excitation
scheme, which leads to a dip at the center of the broad
peak for the absorption spectrum.
The dynamics of the bright and dark modes in the meta-

atom at the position r are described by the Lorentz equa-
tions for two coupled oscillators[25,34,64,65]:

q̈1 þ γ1 _q1 þ ω2
0q1 − κ2q2 ¼ gEðr; tÞ; (1)

q̈2 þ γ2 _q2 þ ðω0 þ ΔÞ2q2 − κ2q1 ¼ 0; (2)

where q1 and q2 are, respectively, amplitudes of the
bright and dark modes, with γ1 and γ2, respectively, their
damping rates; ω0 ¼ 2π × 32 GHz and ω0 þ Δ are, respec-
tively, linear natural frequencies of the bright and dark
modes (γ2 ≪ γ1 ≪ ω0); parameter κ denotes the coupling
strength between the CW and SRR pair; g is the param-
eter indicating the coupling strength of the bright mode
with the incident electric field E.
Since an array of meta-atoms has been considered

in the scheme presented [see Fig. 1(b)], and the distance
between the meta-atoms is much less than the radiation
wavelength, the system may be treated as an effective
EM medium. The equation of motion for the electric field
E is governed by the Maxwell equation,

∇2E −
1
c2

∂2E
∂t2

¼ 1
ε0c2

∂2P
∂t2

; (3)

with the electric-polarization intensity given by

P ¼ ε0χ
ð1Þ
D E þ Neq1, where N is the density of unit cells,

e is the unit charge, and χð1ÞD is the optical susceptibility of
the background material. In terms of the relation
P ¼ ε0χE, the electric susceptibility χ can be obtained

by the formula χ ¼ χð1ÞD þ Ne
ε0E

q1.
The normalized absorption spectra can be obtained

directly by solving the coupled Maxwell–Lorentz (ML)
Eqs. (1)–(3). We assumed the incident radiation has fre-
quency ωf , which is near ω0. Thus, there is resonant inter-
action between the electric field E and the oscillators q1
and q2. Assuming the electric field E to be proportional
to FeiðKz−δtÞ (F is a constant), from Eqs. (1)–(3), one gets
the linear dispersion relation

K ¼ nD

c
δþ κ0gD2ðδÞ

D1ðδÞD2ðδÞ− κ4
: (4)

Here, DjðlδÞ ¼ ω2
0 − l2ðω0 þ δÞ2 − ilγjðω0 þ δÞ ðj; l ¼

1; 2Þ and κ0 ¼ ðNeω0Þ∕ð2ε0cnDÞ.
Shown in Figs. 2(a)–2(c) are, respectively, the normal-

ized absorption spectrum versus frequency for separation
d ¼ 0.38, 0.24, and 0.02 mm, obtained by using the com-
mercial finite difference time domain software package
(CST Microwave Studio). One observes that a PIT win-
dow in the absorption spectrum opens, which means that
the signal field can propagate in the system with negligible
absorption. Such a phenomenon, similar to the EIT in
atomic systems[1], is one of basic characters of PIT; further-
more, the transparency window becomes wider and deeper
as d is reduced. Figures 2(d)–2(f) show the absorption
spectrum ImðKÞ (the imaginary part of K) as a function
of frequency. When plotting the figure, the damping rates
γ1 ≈ 60 GHz and γ2 ≈ 10 GHz are used, which are nearly
independent of d, whereas κ decreases from 152.5 GHz at
d ¼ 0.02 mm to 69 GHz at d ¼ 0.38 mm. One observes
that the analytical result (the lower part of Fig. 2) fits well
with the numerical one (the upper part of Fig. 2).

One can extend the model given above to work in a non-
linear regime through an insertion of a nonlinear varactor
into the slits of the SRRs[64,65] [see Fig. 1(c)]. In this case,
the dark oscillator in the meta-atom becomes an anhar-
monic one, i.e., Eq. (2) is replaced by the following non-
linear Lorentz equation[51,59]:

q̈2 þ γ2 _q2 þ ðω0 þ ΔÞ2q2 − κ2q1 þ αq22 þ βq32 ¼ 0; (5)

where α and β are nonlinear coefficients, describing the
nonlinear character of the varactor.

Now, the ML Eqs. (1), (3), and (5) are nonlinearly
coupled ones. By inspecting their nonlinear feature,
one can assume qj ¼ qdj þ ½qf jeiðk0z−ω0tÞ þ c:c:� þ
½qsje2iðk0z−ω0tÞ þ c:c:�, E ¼ Ed þ ½Ef eiðkf z−ωf tÞ þ c:c:� þ
fEsei½ð2kfþΔkÞz−2ωf t� þ c:c:g. Here, qdj , qf j , and qsj are, re-
spectively, amplitudes of the longwave (rectification field
or mean field), shortwave (fundamental wave), and sec-
ond harmonic wave of the jth oscillator, with k0 (ω0)
the wavenumber (frequency) of the fundamental wave;
Ed , Ef , and Es are, respectively, amplitudes of the long-
wave, shortwave, and second harmonic wave of the elec-
tric field; kf (ωf ) is the wavenumber (frequency) of the
fundamental wave, and Δk is a detuning. From the ML
equations, using the rotating wave, and slowly varying
envelope approximations (SVEAs), one can obtain a series
of equations for the motion of qμj and Eμ (μ ¼ d; f ).

The equations for qαj and Eα can be solved analytically
by using the singular perturbation method of multiple

scales[64,65]. Take the expansion qf j ¼ ϵqð1Þf j þ ϵ2qð2Þf j þ � � � ,
qdj ¼ ϵ2qð2Þdj þ � � � , qsj ¼ ϵ2qð2Þsj þ � � � , Ef ¼ ϵEð1Þ

f þ ϵ2Eð2Þ
f þ � � � ,

Ed ¼ ϵ2Eð2Þ
d þ � � � , where ϵ is a dimensionless small param-

eter characterizing the amplitude of the incident electric
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field. All quantities on the right-hand side of the expansion
are assumed as functions of the multi-scale variables
x1 ¼ ϵx, y1 ¼ ϵy, zj ¼ ϵj z ðj ¼ 0; 1; 2Þ, and tj ¼ ϵj t
ðj ¼ 0; 1Þ. Substituting this expansion into the equations
for qμj and Eμ and comparing the expansion parameter of
each power ϵ, one obtains a chain of linear but inhomo-
geneous equations, which can be solved order by order.
The first-order solution of the above expansion is the

linear PIT one, given in the last subsection. However,
in the present case, F ¼ Fðx1; y1; z1; t1; z2; t2Þ is an
envelope function yet to be determined. At the second-
order, a divergence-free condition requires ∂F∕∂z1 þ
ð1∕VgÞ∂F∕∂t1 ¼ 0, where Vg ¼ ð∂K∕∂δÞ−1 is the group
velocity of the (shortwave) envelope F . With the above
result, we proceed to the third order, where a diver-
gence-free condition yields the equation

i
∂F
∂z2

−
1
2
K2

∂2F
∂τ21

þ c
2ω0nD

�
∂2

∂x21
þ ∂2

∂y21

�
F

þ ω0

2cnD
χð3ÞjF j2Fe−2ᾱz2 þm1ω0

2cnD
χð2ÞGF ¼ 0: (6)

Here, τ1 ¼ ϵτ (τ ≡ t − z∕Vg), ᾱ ¼ ϵ−2ImðKÞ is the
coefficient describing linear absorption, K2 ¼ ∂2K∕∂δ2 is
the coefficient describing group-velocity dispersion,
m1 ≡ jD1ðδÞD2ðδÞ− κ4j2∕½D1ðδÞD2ðδÞ− κ4�2, χð2Þ and χð3Þ

are, respectively, the second-order and third-order nonlin-
ear susceptibilities with the form

χð2Þ ¼ −2Neg2κ6α
ϵ0ðω4

0 − κ4ÞjD1ðδÞD2ðδÞ− κ4j2 ; (7)

χð3Þ ¼
�
4α2ω2

0

ω4
0 − κ4

þ 2α2D1ð2δÞ
D1ð2δÞD2ð2δÞ− κ4

− 3β
�

×
g3κ8Ne

ϵ0½D1ðδÞD2ðδÞ− κ4�2jD1ðδÞD2ðδÞ− κ4j2 : (8)

We observed that χð2Þ is proportional to the parameter
α, i.e., it is contributed by the quadratic nonlinearity in
Eq. (5); χð3Þ is proportional to the parameters α and β,
which means that it comes from the contributions by
the quadratic and cubic nonlinearities in Eq. (5). Note
that in Eq. (6) a longwave (rectification) field G appears.

To get the equation for G, one must go to the fourth-
order approximation, which yields

�
∂2

∂x21
þ ∂2

∂y21

�
G −

�
1
V 2

p
−

1
V 2

g

�
∂2G
∂τ21

−
χð2Þ

c2
∂2jF j2
∂τ21

e−2ᾱz2 ¼ 0;

(9)

where Vp is the phase velocity of the longwave field G,
defined by 1∕V 2

p ¼ ðnD∕cÞ2 þ ðNegω2
0Þ∕½ε0c2ðω4

0 − κ4Þ�.
The occurrence of the last term on the left-hand side of
Eq. (9) is due to the plasmonic rectification contributed
by the second-order nonlinearity in Eq. (5). Equations (6)
and (9) are Davey–Stewartson equations[66], describing
here high-dimensional nonlinear plasmonic polaritons in
the system.

Shown in Figs. 3(a) and 3(b) are, respectively, curves of
χð3Þ and χð2Þ as functions of the frequency detuning δ. One
observes that χð2Þ is nearly real and has the order of mag-
nitude 10−3 m·V−1; the real part of the third-order sus-
ceptibility, Re(χð3Þ), has the order of magnitude
10−6 m2·V−2. The physical reason for such large second-
and third-order nonlinearities predicted here is the fact
that the incident electric E is resonant with the oscillators
q1, q2, and the system works under the PIT condition. One
also observes that the imaginary part of χð3Þ, which con-
tributes a nonlinear absorption to the radiation field, is
much less than the real part Re(χð3Þ) when the system
works in the PIT transparency window. Such suppression
of the nonlinear absorption is also due to the PIT effect.

Fig. 2. Numerical result of the normalized absorption spectrum of the linear PIT (Fig. 1) for (a) d ¼ 0.38, (b) d ¼ 0.24, and
(c) d ¼ 0.02 mm, respectively. Analytical result given in (d), (e), and (f) is obtained from solving the model Eqs. (1) and (3) in
the linear regime. Adapted from Ref. [64].
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Interestingly, the third-order nonlinear susceptibility
χð3Þ may be further enhanced using a longwave–shortwave
resonance. For simplicity, consider the case that the trans-
verse distribution of the radiation is large so that the dif-
fraction effect is negligible. From Eq. (9), one obtains
G ¼ χð2ÞjEf j2∕½c2ð1∕V 2

g − 1∕V 2
pÞ�. Plugging this result

into Eq. (6) yields

χð3Þeff ¼ χð3Þ þ χð3ÞSL ; (10)

χð3ÞSL ¼ m1
ðχð2ÞÞ2

c2
�

1
V 2

p
− 1

V 2
g

� ; (11)

which means that if Vp ≈ Vg (i.e., longwave–shortwave
resonance), in addition to the PIT enhancement, the effec-

tive third-order nonlinear susceptibility χð3Þeff can be further

enhanced because of the drastic enhancement of χð3ÞSL . It
was proved that such longwave–shortwave resonance
may occur in the present nonlinear PIT system. For more
detail see Ref. [65].
Illustrated in Fig. 4(a) is the denominator 1∕V 2

p − 1∕V 2
g

of χð3ÞSL as a function of δ and κ. The rectangle enclosed by
purple dashed lines in the upper part of the figure illus-
trates the parameter region where Vg ≈ Vp. Conse-
quently, the longwave–shortwave resonance can indeed
happen in the system.
Figure 4(b) shows curves of the real part and the imagi-

nary part of the effective third-order nonlinear susceptibil-

ity χð3Þeff as functions of δ for κ ¼ 180 GHz. We observed

that Re(χð3Þeff ) [which is much larger than Im(χð3Þeff ) near
δ ¼ 0] is enhanced by one order of magnitude (up to
the value 6.64 × 10−5 m2·V−2), which is contributed
by the longwave–shortwave resonance interaction[65].
Consider first the simple case where the transverse

distribution of the radiation is large enough so that the
diffraction effect of the system can be neglected. Then,
Eq. (6) for α ¼ 0 is simplified to the nonlinear Schrödinger
(NLS) equation,

i
�
∂
∂z

þ α1

�
U −

1
2
K2

∂2U
∂τ2

−W jU j2U ¼ 0; (12)

when returning to the original variables, where
W ¼ −½ω0∕ð2cnDÞ�χð3Þ, τ ¼ t − z∕Vg, and U ¼ ϵF expð−α1zÞ.

Generally, Eq. (12) has complex coefficients, and hence,
it is a Ginzburg–Landau equation. However, due to the PIT
effect, the imaginary part of the complex coefficients can be
made much smaller than their real part[65]. The electric field
of the system corresponding to a single-soliton solution

reads E ¼ 1
τ0

�����eK2eW
r

sech
h
1
τ0

�
t − zeVg

�
e−z∕LA

i
eiΦðz;tÞ−z∕LA þ c:c:,

with τ0 being the typical pulse length, LA ¼ 1∕α1
being the absorption length, and Φðz; tÞ≡
½eK þ kf − 1∕ðLDÞ�z − ωf t, which describes a damped

bright soliton traveling with velocity eVg.
With the system parameters, the propagating velocity

of the soliton is found to be eVg ¼ 1.4 × 10−3c. Thus, the
plasmonic soliton found is a slow one similar to that found
in an EIT atomic system. The peak power of the plasmonic
soliton can be estimated by using Poynting’s vector inte-
grated over the cross-section of the radiation in the trans-
verse directions, given by Pmax ¼ 568 mW, which means
that to generate the soliton in the present system, a very
low input power is needed. This is a drastical contrast to
the case in conventional media, such as optical fibers,
where picosecond or femtosecond laser pulses are needed
to reach a very high peak power [usually at the order of
several hundred kilowatts (kW)] to stimulate enough non-
linearity for the formation of solitons.

The stability of the plasmonic soliton was tested by us-
ing numerical simulation. Figure 5(a) shows the result of
the radiation intensity jE∕U 0j2 of the soliton as a function
of t∕τ0 and z∕LD. The solution is obtained by numerically
solving Eq. (12) with the complex coefficients taken into
account. One sees that the shape of the soliton undergoes
no apparent deformation during propagation. The colli-
sion between two plasmonic solitons was also studied

Fig. 3. Nonlinear susceptibilities of the PIT metamaterial.
(a) Real and imaginary parts of the third-order susceptibility
χð3Þ [i.e., Re(χð3Þ) and Im(χð3Þ)] as functions of the frequency
detuning δ. (b) Real and imaginary parts of the second-order
susceptibility χð2Þ [i.e., Re(χð2Þ) and Im(χð2Þ)] as functions of δ.
System parameters used are given in the text. Adapted from
Ref. [65].

Fig. 4. (a) 1∕V 2
p − 1∕V 2

g of χ
ð3Þ
SL as a function of frequency detun-

ing δ and the coupling coefficient κ. The rectangle enclosed
by purple dashed lines shows the region where the longwave–
shortwave resonance occurs (i.e., Vg ≈ Vp). (b) Real part

Re(χð3Þeff ) (orange solid line) and imaginary part Im(χð3Þeff ) (green
dashed line) of the effective third-order nonlinear susceptibility

χð3Þeff as functions of frequency detuning δ for κ ¼ 180 GHz.
Adapted from Ref. [65].

COL 17(1), 012501(2019) CHINESE OPTICS LETTERS January 10, 2019

012501-5



numerically, with the result shown in Fig. 5(b). One sees
that both solitons can resume their original shapes after
the collision, indicating that solitons in the PIT metama-
terial are robust during interaction.
If the transverse distribution of the radiation is small,

the diffraction effect of the system will play a significant
role. In this case, it is possible to obtain high-dimensional
nonlinear plasmon polaritons. Equations (6) and (9) are
coupled (3þ 1)-dimensional nonlinear equations, which
include effects of dispersion, diffraction, and nonlinearity.
For simplicity, first we assume that the dispersion length
LDisp, diffraction length LDiff , and nonlinearity length
LNonl have the same order of magnitude, which can be

achieved by taking τ0 ¼
���������������������������
−ω0nD

eK2∕c
q

Rx and

U 0 ¼
��������������������������������������������
2c2nD∕ðω2

0nDR2
x ~χð3ÞÞ

q
. Second, by choosing realis-

tic system parameters, the loss is small and can be safely
taken as a perturbation. Then, Eqs. (6) and (9) turn out to
be completely integrable and can be solved exactly by the
use of inverse scattering transform, and various solutions
of dromion [i.e. (2þ 1)-dimensional solitons with long-
wave and shortwave components] can be obtained[65,66].
A single-dromion solution consists of a localized envelope
u (proportional to the shortwave envelope F) [Fig. 6(a)]
and two plane solitons for the longwave component v (pro-
portional to the shortwave G) [Fig. 6(b)].

Shown in Figs. 6(c1)–6(c4) [Figs. 6(d1)–6(d4)] are
the numerical results for the evolution of the shortwave
juj2 (longwave jv1j2) during the collision between

Fig. 5. Propagation of the plasmonic soliton and the interaction between two plasmonic solitons. (a) The radiation intensity jE∕U 0j2
of the soliton as a function of t∕τ0 and z∕LD. (b) The collision between two solitons. Adapted from Ref. [64].

Fig. 6. Plasmonic dromions and their collision. (a) [(b)] is the intensity profile of the shortwave juj2 (longwave jv1j2) as a function of ξ1 and
τ1 at s ¼ 0. (c1), (c2), (c3), (c4) [(d1), (d2), (d3), (d4)] are intensity profiles of the shortwave juj2 (longwave jv1j2) during the interaction
between two dromions, respectively, at s ≡ z∕ð2LdiffÞ ¼ 0; 1; 2; 3. System parameters are given in the text. Adapted from Ref. [67].
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two dromions. One sees that two initial dromions become
four after the collision, which separate gradually and
propagate almost stably, indicating that the collision
between dromions is inelastic. With the system parame-
ters, the average peak power of the plasmon dromion
is Ppeak ¼ 814 mW, which corresponds to the average
peak intensity I peak ¼ 361 mW∕cm2. One sees that in
the PIT metamaterial, extremely low generation power
is needed for generating (2þ 1)-dimensional spatiotempo-
ral dromions.
Based on the idea of the classical analog of EIT, the

atomic FWM can be classically analogous with the PIT
metamaterial as well[67]. In contrast to the EIT and the
analogous PIT, where a bright (radiative) mode and a
dark (trapped) mode are required, the atomic FWM
and its analogy require two bright and one dark modes.
We first review the atomic FWM in brief. The double-

Λ-type four-level atomic system can be used to describe a
resonant atomic FWM process, as schematically shown in
Fig. 7(a). The first laser field (i.e., the control field tuned
to the j2i↔j3i transition with the half-Rabi frequency
Ωc1) and the second laser field (i.e., the probe field tuned
to the j1i↔j3i transition with the Rabi frequency Ωp1) can
adiabatically establish a large atomic coherence of the
Raman transition, described by the off-diagonal density
matrix element σ21. The third laser field, i.e., the control
field tuned to the j2i↔j4i transition with the Rabi fre-
quency Ωc2, can mix with the coherence σ21 to generate
a fourth field with the Rabi frequency Ωp2 resonant
with the j1i↔j4i transition. The dark state reads

jψdarki ¼ ðΩc1j1i− Ωp1j2iÞ∕
�������������������������������
jΩp1j2 þ jΩc1j2

q
, exclusive

of the excited states j3i and j4i, provided that

Ωp1Ωc2 − Ωp2Ωc1 ¼ 0. Under rotating-wave approxima-
tion (RWA) and SVEA, the Maxwell–Bloch (MB) equa-
tions of the system in the linear regime (two weak probe
fields are applied) reduce to

�
i
∂
∂t

þ d31

�
σ31 þ Ωc1σ21 þ Ωp1 ¼ 0; (13a)

�
i
∂
∂t

þ d41

�
σ41 þ Ωc2σ21 þ Ωp2 ¼ 0; (13b)

�
i
∂
∂t

þ d21

�
σ21 þ Ω�

c1σ31 þ Ω�
c2σ41 ¼ 0; (13c)

i
�
∂
∂z

þ 1
c
∂
∂t

�
Ωp1 þ κ13σ31 ¼ 0; (13d)

i
�
∂
∂z

þ 1
c
∂
∂t

�
Ωp2 þ κ14σ41 ¼ 0; (13e)

where dj1 ¼ Δj þ iγj1 with γj1 ¼ Γ1j∕2 (j ¼ 2; 3; 4), and
κ13ð14Þ ¼ N 0jep1ðp2Þ·p13ð14Þj2ωp1ðp2Þ∕ð2ℏε0cÞ is the light-
atom coupling coefficient. One sees that σ31 and σ41 are
two bright oscillators due to their direct coupling to the
probe fieldsΩp1 andΩp2, but σ21 is a dark oscillator because
it has no direct coupling to any of the two probe fields. The
linear dispersion relation KaðωÞ is given by

K�
a ðωÞ ¼

ω

c
þ −ðκ14D3 þ κ13D4Þ �

�����������������������������������������������������������������������������
ðκ14D3 − κ13D4Þ2 þ 4κ13κ14jΩc1Ωc2j2

p
2½jΩc1j2ðωþ d41Þ þ jΩc2j2ðωþ d31Þ− ðωþ d21Þðωþ d31Þðωþ d41Þ�

: (14)

As shown in Fig. 7(b), Ka displays two branches, one is

the EIT-mode, and the other is the non-EIT mode with
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Fig. 7. (a) Double-Λ-type four-level atomic system with the atomic states jji (j ¼ 1; 2; 3; 4) coupled with two probe fields (with Rabi
frequency Ωpn) and two strong control fields (with Rabi frequency Ωcn) ðn ¼ 1; 2Þ. Δ3, Δ2, and Δ4 are, respectively, the one-, two-, and
three-photon detunings. (b) ImðKþ

a Þ as a function of ω for different Ωc1 ¼ Ωc2. EIT transparency window is opened near the central
frequency of the probe fields (i.e., at ω ¼ 0). The blue solid curve is ImðK−

a Þ, which always has a large absorption peak at ω ¼ 0 for
arbitrary Ωc1 and Ωc2. Adapted from Ref. [67].
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large radiation loss. For details, see Refs. [68,69] and refer-
ences therein.
The possible classical analogue of the above four-level

atomic model by using a metamaterial is assumed to be
an array [Fig. 8(a)] of meta-atoms [Fig. 8(b)], consisting
of two CWs (indicated by “A” and “B”) and an SRR.
The CW A and CW B are, respectively, positioned along
the x and y directions, while the SRR is formed by a square
ring with a gap at the center of each side. We assume
that an incident GHz radiation E ¼ exEx þ eyEy [with
Ej ¼ Ej0e−iωpt þ c:c: (j ¼ x; y)] is collimated on the array
of the meta-atoms, with polarization component Ex (Ey)
parallel to the CW A (CW B).
Shown in Figs. 8(c) and 8(d) is the result of the normal-

ized absorption spectrum. The blue dashed lines in two
panels of Fig. 8(c) denote Ey0 ¼ −Ex0 for two sets of dx

and dy, in which the surface current is cooperatively in-
duced through the near-field coupling between the SRR
and CWs, resulting in a maximum enhancement of the
dark-oscillator resonance, and thus, the substantial sup-
pression of the absorption of the incident radiation, acting
like a typical PIT metamaterial we refer to as the “PIT
mode”. Oppositely, the blue dashed line of Fig. 8(d) de-
notes Ey0 ¼ Ex0, in which the surface current is suppressed
due to an opposite excitation direction, leading to a com-
plete suppression of the dark-oscillator resonance. As a
result, the radiation absorption is significant (acting like
a sole CW), and hence, no PIT behavior occurs, so we refer
to it as the “non-PIT mode”. One can see that the absorp-
tion spectrum profile depends on the excitation condition,
which is quite different from the PIT absorption spectrum
considered before.

The dynamics of two bright oscillators (i.e., CW A and
CW B) and dark oscillator (i.e., SRR) in the meta-atoms
can be described by the coupled Lorentz equations[25,30,34,64],

∂2q1
∂t2

þ γ1
∂q1
∂t

þ ω2
1q1 − κ1q3 ¼ g1Ex ; (15a)

∂2q2
∂t2

þ γ2
∂q2
∂t

þ ω2
2q2 − κ2q3 ¼ g2Ey; (15b)

∂2q3
∂t2

þ γ3
∂q3
∂t

þ ω2
3q3 − κ1q1 − κ2q2 ¼ 0; (15c)

where qj are displacements from the equilibrium position
of the bright oscillators (j ¼ 1; 2) and the dark oscillator
(j ¼ 3), with γj and ωj , respectively, the damping rate and
the natural frequency of the lth oscillator; g1 (g2) is the
parameter describing the coupling between the CW A
(CW B) and the x-polarization (y-polarization) compo-
nent of the EM wave, and κ1 (κ2) is the parameter describ-
ing the coupling between the CW A (CW B) and SRR.
The absorption spectrum of the system can be alterna-
tively obtained by Imðq1Þ [or Imðq2Þ], shown by the red
solid lines. The coefficients in Eq. (15) are then determined
by fitting the monochromatic solutions with the numerical
results presented in Figs. 8(c) and 8(d) under the same
input condition. If the two bright oscillators are not ex-
cited, one arrives at the “dark state” of the system, which
can be excited if κ2Ey0 − κ1Ex0 ¼ 0, equivalent to the one
obtained in the four-level double-Λ-type atomic system.
Obviously, the PIT mode shown in Fig. 8(c) corresponds
to the case κ2 ¼ −κ1, where the minus symbol can be
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Fig. 8. (a) Schematic of the plasmonic metamaterial for an analog to atomic FWM, which is an array of meta-atoms. (b) The meta-
atom consists of two CWs (indicated by “A” and “B”) and an SRR. For generating nonlinear excitations, four hyperabrupt tuning
varactors are mounted onto the slits of the SRR. (c) The numerical result (blue dashed lines) of the normalized absorption spectrum of
the EM wave as a function of frequency by taking Ey0 ¼ −Ex0, dx ¼ dy ¼ 4.0 mm (first panel), and dx ¼ dy ¼ 3.4 mm (second panel).
(d) The numerical result (blue dashed line) of normalized absorption spectrum for Ey0 ¼ Ex0, dx ¼ dy ¼ 4.0 mm. Red solid lines in (c)
and (d) are corresponding analytical results. Details on the figure can be found in Ref. [67].
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understood as a π-phase difference, resulting in a
cooperative coupling effect.
By assuming Ejðr; tÞ ¼ Ejðz; tÞeiðkpz−ωptÞ þ c:c: and

qlðr; tÞ ¼ ~qlðz; tÞ exp½iðkpz − ωl t − Δl tÞ� þ c:c:, where
Ejðz; tÞ and ~qlðz; tÞ are slowly varying envelopes and Δl ¼
ωp − ωl is a small detuning, under RWA and SVEA one
obtains the reduced ML equations�

i
∂
∂t

þ d1

�
~q1 þ

κ1
2ωp

~q3 þ
g1
2ωp

Ex ¼ 0; ð16aÞ

�
i
∂
∂t

þ d2

�
~q2 þ

κ2
2ωp

~q3 þ
g2
2ωp

Ey ¼ 0; ð16bÞ

�
i
∂
∂t

þ d3

�
~q3 þ

κ1
2ωp

~q1 þ
κ2
2ωp

~q2 ¼ 0; ð16cÞ

i
�
∂
∂z

þ nD

c
∂
∂t

�
Ex þ κ0 ~q1 ¼ 0; (16d)

i
�
∂
∂z

þ nD

c
∂
∂t

�
Ey þ κ0 ~q2 ¼ 0; (16e)

with dj ¼ Δj þ iγj∕2, κ0 ¼ Nmeωp∕ð2ε0cnDÞ,
nD ¼

����������������
1þ χð1ÞD

q
. One sees that Eq. (16) has a similar form

to the atomic optical Bloch equation of Eq. (13). Conse-
quently, each meta-atom in the metamaterial is analogous
to a four-level double-Λ-type atom in atomic gas. The cou-
pling between the CW A (CW B) and the SRR, described
by κ1 (κ2), is equivalent to the control field Ωc1 (Ωc2)
driven by the atomic transition j2i↔j3i (j2i↔j4i)[67].
The propagation feature of a plasmonic polariton in the

metamaterial can be obtained by assuming all quantities
in Eq. (16) proportional to exp½iðKmz − ωtÞ�. It is easy to
get the linear dispersion relation

K�
mðωÞ ¼

nD

c
ωþ κ0

−ðR1gf 2 þ R2gf 1Þ �
���������������������������������������������������������������������
ðR1gf 2 − R2gf 1Þ2 þ 4κ2f 1κ

2
f 2gf 1gf 2

q
2½κ2f 1ðωþ d2Þ þ κ2f 2ðωþ d1Þ− ðωþ d3Þðωþ d1Þðωþ d2Þ�

; (17)

which has similar form as the atomic one in Eq. (14),
where Rj ¼ κ2f j − ðωþ djÞðωþ d3Þ, with κf j ¼ κj∕ð2ωpÞ
and gf j ¼ gj∕ð2ωpÞ (j ¼ 1; 2). As expected, the metamate-
rial system allows two normal modes with the linear
dispersion relation, respectively, given by the PIT mode
Kþ

m and the non-PIT mode K−
m. Shown in Fig. 9(a) are

Im(Kþ
m) (blue dashed line) and Re(Kþ

m) (red solid line)
for κ2 ¼ −κ1 ¼ 50 GHz2 (first panel corresponds to
dx ¼ dy ¼ 4.0 mm) and κ2 ¼ −κ1 ¼ 250 GHz2 (second
panel corresponds to dx ¼ dy ¼ 3.4 mm), respectively.
One sees that ImðKþ

mÞ displays a transparency window
(called the PIT transparency window) near ω ¼ 0, analo-
gous to the EIT transparency window in ImðKþ

a Þ of the
four-level double-Λ-type atomic system [red dashed line

and green dashed-dot line in Fig. 9(b)]. The steep
slope of ReðKþ

mÞ indicates a normal dispersion and a
slow group velocity of the plasmonic polariton. As the cou-
pling strength between the CWs and the SRR gets larger
(i.e., the separations dx and dy are reduced), the PIT trans-
parency window becomes wider and deeper, and the slope
of ReðKþ

mÞ gets flatter. The opening of the PIT transpar-
ency window is attributed to the destructive interference
between the two bright oscillators and the dark oscillator
through cooperative near-field coupling. Shown in Fig. 9(b)
are the imaginary (red solid line) and the real (blue dashed
line) parts of K−

m, which is nearly independent of the cou-
pling constant κ1 (κ2 ¼ −κ1). One sees that ImðK−

mÞ has a
single, large absorption peak, and ReðK−

mÞ has an abnormal
dispersion near ω ¼ 0, analogous to ImðK−

a Þ of the
double-Λ-type atomic system [blue solid line in Fig. 9(b)].

As indicated above, the meta-atoms in the present
metamaterial system are analogous to the four-level atoms
with the double-Λ-type configuration, and hence, an
analogous resonant FWM phenomenon for the plasmonic
polaritons is possible. That is to say, if initially only one
(e.g., x) polarization component of the radiation is injected
into the metamaterial, a new (e.g., y) polarization compo-
nent will be generated. It was shown that the ML equations

admit the solution Exðz; tÞ ¼ G−
0

G−
0 −Gþ

0
Exð0; τþÞeiKþ

0 z ,

Eyðz; tÞ ¼ G−
0 G

þ
0

G−
0 −Gþ

0
Exð0; τþÞeiKþ

0 z . Here, τþ ¼ t − z∕Vþ
g

[Vþ
g ≡ ð∂Kþ

m∕∂ωÞ−1jω¼0 is the group velocity of the normal
mode Kþ

m], G
þ
0 and G−

0 are functions of ω, and Exð0; τþÞ is
the initial input of the radiation. When deriving the above
expression, K�

m ¼ K�
0 þ ω∕V�

g þOðω2Þ and G�
0 ≈�1 are

used, and the fast-decaying non-PITmodeK−
0 is neglected.

One sees that the x- and y-polarization components of the
radiation have matched group velocityVþ

g . The conversion
efficiency of the FWM reads

ηðLÞ ¼ jGþ
0 G

−
0 j2

jGþ
0 −G−

0 j2
j expðiKþ

0 LÞj2: (18)

Shown in Fig. 10 is the FWM conversion efficiency η as a
function of the dimensionless optical depth ðκ0gf 1∕γ1ÞL for
Δ1 ¼ Δ2 ¼ 0 (blue dashed line) and for Δ1 ¼ Δ2 ¼ 5γ1
(red solid line). When plotting this figure, we have set
Δ3 ¼ 0 and γ3 ≈ 0 in order for a better analogue to the
atomic system. The influence of γ3 can be effectively re-
duced by introducing a gain dielectric into the gaps of
the SRRs[70–72]. From the figure, we see that for the case
of exact resonance (i.e., Δ1 ¼ Δ2 ¼ 0) the FWM efficiency
η increases and rapidly saturates to 25% when the dimen-
sionless optical depth ðκ0gf 1∕γ1ÞL ≈ 5 (i.e., L ≈ 0.9 cm),
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indicating a unidirectional energy transmission from Ex to
Ey. For the case of far-off resonance (i.e., Δ1 ¼ Δ2 ¼ 5γ1),
the FWM efficiency displays a damped oscillation in the
interval 0 < ðκ0gf 1∕γ1ÞL < 250, indicating a back-and-
forth energy exchange between Ex and Ey; eventually,
the efficiency reaches the steady-state value of 25% when
ðκ0gf 1∕γ1ÞL ≥ 300 (see the inset). Interestingly, the value
of the FWM conversion efficiency may reach η ≈ 76% at
ðκ0gf 1∕γ1ÞL ≈ 15 (i.e., L ≈ 3 cm).
Note that when deriving Eq. (16), the diffraction effect

has been neglected, which is invalid for the plasmonic po-
laritons with small transverse size or long propagation dis-
tance; furthermore, because of the highly resonant (and
hence, dispersive) character inherent in the PIT metama-
terial, the linear plasmonic polaritons obtained above
inevitably undergo significant distortion during propaga-
tion. Hence, it is necessary to seek the possibility of
obtaining a robust propagation of the plasmonic polari-
tons, which can be realized by using a nonlinear metama-
terial, with the nonlinear varactors mounted onto the gaps
of the SRRs [see Fig. 8(b)]. Then, Eq. (15c) is replaced by

∂2q3
∂t2

þ γ3
∂q3
∂t

þ ω2
3q3 − κ2q1 − κ2q2 þ αq23 þ βq33 ¼ 0;

(19)

where α, β are nonlinear coefficients introduced before.
Due to the quadratic and cubic nonlinearities in
Eq. (19), the input radiation field (with only a fundamen-
tal wave) will generate longwave (rectification) and
second harmonic components, i.e., Elðr; tÞ ¼ Edlðr; tÞ þ
½Ef lðr; tÞeiðkpz−ωptÞ þ c:c:� þ ½Eslðr; tÞeiθp þ c:c:� (l ¼ x; y),
with θp ¼ ð2kp þ ΔkÞz − 2ωpt and Δk a detuning in wave-
number. The oscillations of the Lorentz oscillators in
the meta-atoms have the form qjðr; tÞ ¼ qdjðr; tÞ þ
½qf jðr; tÞeiθj þ c:c:� þ ½qsjðr; tÞe2iθj þ c:c:� (j ¼ 1; 2; 3), with
θj ¼ kjz − ωj t − Δj t.

In order to solve the ML equations of the system, the
radiation field is assumed to be weakly nonlinear, so a
standard method of multiple scales is applied, similar to
that used in the last section. At the first-order, the solu-

tion for the shortwave field is obtained, given by Eð1Þ
f x ¼

Fþeiθþ þ F−eiθ− and Eð1Þ
f y ¼ Gþ

0 Fþeiθþ þG−
0 F−eiθ− , where

θ� ¼ K�
mz0 − ωt0, and F� is a slowly varying envelope

function to be determined in higher-order approximations.
Note that the non-PIT (i.e.,K−

m) mode decays rapidly dur-
ing propagation; as indicated before, we only considered
the low-loss PIT (i.e.,Kþ

m) mode. The calculation proceeds
on the higher-order approximation, then follows the pro-
cedures for seeking low-power plasmonic solitons and dro-
mions of the PIT mode, similar to that given in the last
section. For details, see Ref. [67].

Based on the analogous FWM process, one can acquire
the vector character of plasmonic polaritons (i.e., two
orthogonal polarizations of the EM wave), which has a
large suppression of the radiation loss for the PIT mode.
The explicit expression for the electric field in the system
takes the form

Eðr; tÞ ≡ exκ1 þ eyκ2
κ21 þ κ22

½ðUeikpz−iωpt þ c:c:Þ� þ V ; (20)

whenU ¼ ϵF andV ¼ ϵ2G are taken as the soliton or dro-
mion solutions described in the last section[67]. Note that,
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Fig. 10. FWM conversion efficiency η as a function of the dimen-
sionless optical depth ðκ0gf 1∕γ1ÞL for Δ1 ¼ Δ2 ¼ 0 (blue dashed
line) and Δ1 ¼ Δ2 ¼ 5γ1 (red solid line). Inset: FWM conversion
efficiency η for optical depth up to 300 for Δ1 ¼ Δ2 ¼ 5γ1.
Adapted from Ref. [67].
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Fig. 9. (a) Linear dispersion relation of theKþ
m mode (PITmode). Im(Kþ

m) (blue dashed line) and Re(Kþ
m) (red solid line) are plotted as

functions of ω for κ2 ¼ −κ1 ¼ 50 GHz2 (first panel) and κ2 ¼ −κ1 ¼ 250 GHz2 (second panel). (b) Linear dispersion relation of theK−
m

mode (non-PIT mode) for arbitrary κ1 (κ2 ¼ −κ1). Adapted from Ref. [67].
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different from the scalar model[64,65] introduced above, the
polarization of the EM field obtained here can be actively
selected by adjusting the separation between the CWs and
SRR [i.e., dx and dy in Fig. 8(b), and hence, the coupling
constants κ1 and κ2], which can serve as a polarization se-
lector for practical applications[73,74].
In recent experiments, an important technique for plas-

monic memory with PIT meta-atoms was proposed by
Nakanishi and Kitano[40,47]. The meta-atom considered
in Ref. [40] consists of a metallic structure loaded with
the two varactors on two arms [see Fig. 11(a)]. The varac-
tor on the left (right) arm in the meta-atom has variable
capacitance CL ¼ C0 − C1ðtÞ [CR ¼ C0 þ C1ðtÞ] and can
be actively manipulated by using a controlled EM
field. The meta-atom can be well modeled as a resistor–
inductor–capacitor (RLC) circuit with external excita-
tion, as sketched in Fig. 11(b), where the circuit elements
R and rt are radiation resistances, C is the capacitance
between neighboring meta-atoms in the vertical direction,
and L is the inductance of each metallic arm. The electro-
motive voltage V is induced by the incident signal field
that is parallel to the arm.
The problem of EM-wave memory in a plasmonic

metamaterial was first investigated theoretically in
Ref. [75], where an array of meta-atoms is used, with
the meta-atoms the same as that proposed in Refs. [36,47]

[see Fig. 11(c)]. By such a system, it is possible to get
(3þ 1)-dimensional, multi-mode EM waves with OAMs,
which have very slow propagation velocity and may be
stored and retrieved through the switching-off and switch-
ing-on of the control field[75], as described below.

Assume that incident signal field E is incident in the z
direction with the polarization direction along the x axis
(i.e., collimated on a metamaterial array with the electric
field parallel to the arm of meta-atom unit cells), and a
control field (continuous wave) is incident along the x di-
rection, as shown in Fig. 11(c). Both the signal and control
fields are EM waves with frequencies at orders of GHz. If
assuming the capacitance modulation of the varactors by
the control field is small, and C1ðtÞ has the form C1ðtÞ ¼
CM cosðωct þ ϕÞ (CM ≪ C0), with ωc the modulation fre-
quency and ϕ a phase constant, then one obtains the equa-
tions of motion for q�:

L
d2qþ
dt2

þ r
dqþ
dt

þ qþ
C 0 −

CM

C2
0
cosðωct þ ϕÞq− ¼ 2El;

(21a)

L
d2q−
dt2

þ rt
dq−
dt

þ q−
C0

−
CM

C2
0
cosðωct þ ϕÞqþ ¼ 0; (21b)

where q� ¼ qR � qL [qL (qR) is the electric charge at the
varactor on the left (right) arm], r ¼ 2Rþ rt ,
1∕C 0 ¼ 2∕C þ 1∕C0, and the electromotive voltage V is
induced by the incident signal field with electric field
E ¼ V∕l, with l the height of the meta-atom unit cell.
One sees that, similar to the traditional PIT system[25],
qþ (q−) acts as a bright (dark) oscillatory mode with
the resonant frequency ωr ¼ 1∕

���������
LC 0p

(ωt ¼ 1∕
����������
LC 0

p
),

which couples (does not couple) to the external field E.
One can also see that the parameters r and rt are equiv-
alent radiation resistances of the bright and dark oscilla-
tory modes. In addition, one has rt∕r ≪ 1, because the
radiation from the bright oscillatory mode is much greater
than that from the dark oscillatory mode.

Assuming the signal field has the form
E ¼ Eeiðkpz−ωptÞ þ c:c:, here, kp ¼ ωpnD∕c and nD ¼
ð1þ χhostÞ1∕2 is the refractive index of the background
material, where one has qþ ¼ ~qþeiðkpz−ωptÞ þ c:c: and
q− ¼ ~q−ei½kpz−ðωp−ωcÞt� þ c:c:. Under RWA, Eq. (21)
reduces to

d~qþ
dt

¼ −ðγ þ iΔÞ~qþ þ igE þ iΩce−iϕ ~q0−; (22a)

d~q0−
dt

¼ −½γt þ iðΔ− δÞ�~q0− þ iΩceiϕ ~qþ; (22b)

where ~q0− ¼ ��������������
ωt∕ωr

p
~q−, g ¼ l∕ðωrLÞ is the parameter

characterizing the coupling strength between the bright
oscillatory mode in the meta-atom and the signal field,
γ ¼ r∕ð2LÞ [γt ¼ rt∕ð2LÞ] is the reduced damping rate
of the bright (dark) oscillatory mode, Δ ¼ ωr − ωp and
δ ¼ ωr − ωt − ωc are quantities representing detunings,

Fig. 11. (a) The meta-atom consisting of a metallic structure
loaded with two varactors with capacitance CL ¼ C0 − C1ðtÞ
[CR ¼ C0 þ C1ðtÞ] on its left (right) arm. (b) Equivalent RLC
circuit model of the meta-atom. The electromotive voltage V
is induced by the incident signal field that is parallel to the
arm. R and rt are radiation resistances, C is the capacitance be-
tween neighboring meta-atoms in the vertical direction, and L is
the inductance of each metallic arm. (c) Possible experimental
arrangement for measuring the propagation of the signal field
and multi-mode polarition memory in the PIT metamaterial.
The signal (control) field is incident along the z (x) direction.
Adapted from Ref. [75].
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and Ωc ¼ ωt

��������������
ωt∕ωr

p
CM∕ð4C 0Þ is the “Rabi frequency” of

the control field characterizing the coupling strength be-
tween the bright mode and the dark mode, which can be
changed by adjusting the control field. Expecting no con-
fusion in the reader, the primes will be omitted in the fol-
lowing calculation.
The equation of motion for E can be obtained by the

Maxwell Eq. (3), which under SVEA reduces to

i
�
∂
∂z

þ nD

c
∂
∂t

�
E þ 1

2kp
∇2

⊥E þ κ0 ~qþ ¼ 0; (23)

where ∇2
⊥ ¼ ∂2∕∂x2 þ ∂2∕∂y2 and κ0 ¼ ðNωpdÞ∕ð2ε0nDcÞ.

To investigate the propagation and memory of EM
waves with OAMs, the signal-field envelope E can be ex-
panded into the form

Eðr; tÞ ¼
X
m;p

umpðr;φ; zÞEmpðz; tÞ; (24)

where r ¼ ðx2 þ y2Þ1∕2 and φ are radial and azimuthal co-
ordinates in the frame of a cylindrical coordinate system,
Empðz; tÞ are expansion coefficients, umpðr;φÞ are the
Laguerre–Gaussian ðLGÞmp modes with

umpðr;φÞ ¼
Cmp������
w0

p
� ���

2
p

r
w0

�jmj
exp

�
−

r2

w2
0

�

× Ljmj
p

�
2r2

w2
0

�
expðimφÞ: (25)

Profiles of the ðLGÞmp modes show concentric rings, the
number of which is determined by the mode index p. The
mode index m is contained in the azimuthal phase term
expðimφÞ, which gives rise to jmj intertwined helical
wave-fronts, i.e., the surfaces of equal phase. The handed-
ness of these helixes is determined by the sign of m. Since
L̂zðLGÞmp ¼ mℏðLGÞmp , here, L̂z ¼ −iℏ∂∕∂φ, ðLGÞmp modes
carry OAMs mℏ along the z direction and are usable for
information processing with large capacity[76,77].
It is convenient to express the bright and dark oscilla-

tory modes in the same basis as used for the signal field,
i.e., we take the following expansions:

~qþðr; tÞ ¼
X
m;p

~qmp
þ ðz; tÞumpðr;φÞ; (26a)

~q−ðr; tÞ ¼
X
m;p

~qmp
− ðz; tÞumpðr;φÞ; (26b)

where ~qmp
þ ðz; tÞ and ~qmp

− ðz; tÞ are expansion coefficients.
Substituting Eqs. (24) and (26) into the MB Eqs. (22)
and (23), multiplying u�mpðr;φÞ, and making the integra-
tion for r and φ, the MB equations for the expansion co-
efficients Emp, ~q

mp
þ , and ~qmp

− can be obtained[75].
For obtaining a deeper insight, a simple case was con-

sidered, in which the control field depends on time, i.e.,
Ωc ¼ ΩcðtÞ. If the control field is changed adiabatically,

and γt can be neglected, from the above equations, one
can obtain the equation for plasmonic polariton,

�
∂
∂t

þ c
nD

cos2θðtÞ ∂
∂z

�
Pmpðz; tÞ ¼ 0; (27)

where Pmpðz; tÞ ¼ cos θðtÞEmpðz; tÞ− sin θðtÞ ����������������������
κ0c∕ðgnDÞ

p
~qmp
− ,

with cos θðtÞ ¼ ΩcðtÞ∕½Ω2
cðtÞ þ gκ0c∕nD�1∕2 and

sin θðtÞ ¼ ðgκ0c∕nDÞ1∕2∕½Ω2
cðtÞ þ gκ0c∕nD�1∕2. There are

two interesting features for Pmpðz; tÞ. First, it is a combi-
nation (hybridization) between the EM signal field
Empðz; tÞ and the mode oscillation ~qmp

− . Second, it is always
shape-preserved during propagation, with the propaga-
tion velocity VgðtÞ ¼ ðc∕nDÞcos2θðtÞ, which can become
zero through manipulating ΩcðtÞ. Such polariton
carries OAMs because the complete combination function
including the transverse ðLGÞmp modes is given by
Pmpðz; tÞumpðr;φÞ, and they predict possible storage
and retrieval of the multi-mode EM waves.

To get more understanding on the storage and retrieval
of the EM waves in the system, it is necessary to make
further numerical simulations by removing the
assumption of γt ¼ 0 and making the simulations directly
based on the MB Eqs. (22) and (23). Shown in Fig. 12 is
the result of the intensity distributions of the signal field
with the transversal LG modes in the x-y plane before and
after storage for γt¼ 10−3ωr and γ ¼ 0.1ωr . Figure 12(a)
gives the intensity patterns for the superposition of a set of
LG modes [ðLGÞ20 þ ðLGÞ−2

0 ] at the time t ¼ 0, 3τ0, 15τ0,
and 27τ0, respectively. Figures 12(b) and 12(c) give similar
intensity patterns as in Fig. 12(a), but, respectively,

Fig. 12. The storage and retrieval of the (3þ 1)-dimensional
signal field. (a) The intensity patterns for the superposed LG
modes [ðLGÞ20 þ ðLGÞ−2

0 ] in the x-y plane, respectively, at the time
t ¼ 0, 3τ0, 15τ0, and 27τ0. (b) The same as (a) but for the super-
posed LG modes [ðLGÞ40 þ ðLGÞ−4

0 þ ðLGÞ00 þ ðLGÞ02]. (c) The
same as (a) but for the superposed LG modes
[ðLGÞ60 þ ðLGÞ−6

0 þP5
p¼0 ðLGÞ0p]. The first column is the patterns

before storage, the second and third columns are the patterns dur-
ing storage, and the fourth column is the patterns after storage.
The fifth column shows the phase distribution of the input LG
modes. Adapted from Ref. [75].
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for the superposed LG modes [ðLGÞ40 þ ðLGÞ−4
0 þ

ðLGÞ00 þ ðLGÞ02] and [ðLGÞ60 þ ðLGÞ−6
0 þP5

p¼0 ðLGÞ0p].
In the figure, the first column (for t ¼ 0) is the patterns
before storage, the second and third columns (for
t ¼ 3τ0 and 15τ0) are the patterns during storage, and
the fourth column (for t ¼ 27τ0) is the patterns after stor-
age. The fifth column shows the phase distribution of the
input LG modes.
The above result shows that the (3þ 1)-dimensional

multi-mode EM waves with OAMs can indeed be stored
and retrieved by actively manipulating the control field.
In particular, the phase distribution of the LG modes,
which carry OAM information, can also be stored and
recovered again. To describe the quality of the PIT-
based memory quantitatively, similar to Ref. [11], we
define the memory efficiency η ¼ Rþ∞

−∞ jEoutðz; τÞj2 dτ∕Rþ∞
−∞ jEinðτÞj2 dτ for a given storage period. Figure 13
shows η as a function of z for the storage period
ts ¼ Ton − Toff ¼ 25τ0. The red solid, blue dashed, green
dotted, and purple dashed–dotted curves in the figure
are for γt taking −4.2 × 10−4ωr , −1 × 10−4ωr , 0, and
1 × 10−4ωr , respectively. From the figure, we can obtain
the following conclusions. (i) For all γt , as z increases, the
memory efficiency η first has a fast growth, then arrives
at a peak value, and finally decreases slowly. (ii) The
smaller the damping rate γt , the larger the peak value
of η. For instance, η can reach 94% at z ¼ 26.4 cm for
γt ¼ −4.2 × 10−4ωr . The existence of γt is mainly due to
ohmic loss, which, however, can be suppressed by intro-
ducing gain elements into the dark-mode oscillator. For
instance, one can inset tunnel (Esaki) diodes into the
two metallic arms of the meta-atom. The tunnel diodes
have negative resistance[57], and hence, may provide gain
to the PIT metamaterial. The method using tunnel diodes

to compensate the ohmic loss in metals has been recog-
nized as a promising technique, particularly in the micro-
wave regime. In this way, one can make γt be very small
and even take a negative value.

SUMMARY AND OUTLOOK

In this article, several schemes for realizing nonlinear ef-
fects via PIT in plasmonic metamaterials have been briefly
reviewed. Important properties and potential applications
of these schemes have been discussed. Especially, the cre-
ation and propagation of nonlinear plasmonic polaritons
(i.e., solitons, dromions, and vector solitons) based on
PIT have been described in detail. The results obtained
in these schemes are not only interesting for fundamental
physics research but also promising for designing novel
chip-scale nonlinear plasmonic devices that may be ac-
tively manipulated at very low radiation power.

Although in recent years much attention has been paid
to various nonlinear metamaterials[59,60], and the study of
nonlinear PIT has also attracted growing interest, further
theoretical extension to the optical-frequency domain is
still needed. On the other hand, it demands to develop
experimental techniques for observing the nonlinear phe-
nomena predicted by theory. Based on PIT, it is hopeful to
fabricate novel low-loss metamaterials, highly sensitive
sensors, optical buffers, ultrafast optical switches, memory
devices, etc. Furthermore, for the research of linear and
nonlinear PIT, there are yet many other research topics
deserving of pursuit or exploration in depth; some of them
are suggested in the following.

One of the topics is the study of surface polaritons (SPs)
when multi-level quantum emitters are doped at the inter-
face between a dielectric and a metamaterial[78–86]. In recent
years, SP has become an active research topic in nanoplas-
monics[78], involving all-optical control of SPs at subwave-
length scales and various quantum optical applications.
However, due to the inevitable ohmic loss in metals, the
propagation distance of SPs is severely limited, hindering
further progress towards practical nanoplasmonic devices.
As a technique to solve this problem, one can introduce
gain elements doped in the dielectric to compensate for
the ohmic loss in metal. On the other hand, quantum emit-
ters combined with PIT meta-atoms can be used to obtain
new plasmonic metamaterials that may have useful func-
tionalities for practical applications.

Another possible topic is the storage and retrieval of
nonlinear polaritons in plasmonic metamaterials. Due to
their rich physics and important applications in informa-
tion processing, in recent years, light memory in atomic
systems has attracted much attention in both theory
and experiments[9–13]. In metamaterial science, a challeng-
ing problem is how to obtain radiation pulses that are sta-
ble during propagation and can be stored and retrieved
with high efficiency and fidelity. Due to the balance be-
tween dispersion, diffraction, and Kerr nonlinearity, plas-
monic solitons are robust, and hence, their storage and
retrieval are more desirable than those of linear plasmonic

Fig. 13. PIT-based memory efficiency η as a function of propa-
gation distance z and γt for storage period ts ¼ 25τ0. Red solid,
blue dashed, green dotted, and purple dashed–dotted curves are
for γt , taking −4.2 × 10−4ωr , −1 × 10−4ωr , 0, and 1 × 10−4ωr ,
respectively. Adapted from Ref. [75].
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polaritons[75]. Thus, it will be interesting if one can realize
the memory of plasmonic solitons via PIT.
Lastly, the theoretical method developed for investigat-

ing the PIT in nonlinear metamaterials described in this
review may be generalized to the study of all-dielectric
analogue of EIT, a brand new research direction proposed
quite recently[46,87]. We anticipate that nonlinear PIT, in-
cluding but not limited to nonlinear effects, will attract
tremendous research interests and find more practical ap-
plications in the near future.
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