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We investigate spontaneously generated coherence (SGC) and Autler–Townes Splitting
(ATS) in various three-level systems. Through detailed analytical calculations on ab-
sorption spectrum of probe laser field, we show that in V -type system the SGC can
completely eliminate the absorption of the probe field and at the same time signifi-
cantly reduce the group velocity. By using residue theorem and spectrum decomposition
method, we prove that there exists a crossover from SGC to ATS for both cold and warm
atoms when the magnitude of SGC is changed. Different contributions of SGC and ATS
to probe-field absorption spectrum are clearly clarified in different parameter regions. In
addition, our results show that there is no SGC and hence no SGC-ATS crossover in Λ-
and Ξ-type systems.
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1. Introduction

Quantum interference effect is an important subject of many studies due to their

important applications in quantum computing and information processing. In multi-

level atomic systems, due to the quantum interference effect induced by a control

laser field, the absorption of a probe laser field can be largely eliminated even if it

is tuned to a very strong one-photon transition. Such phenomenon, called electro-

magnetically induced transparency (EIT),1 can result in a significant reduction of

group velocity and a giant enhancement of Kerr nonlinearity. Based on these strik-

ing features, EIT has been used to realize slow light, quantum memory,2 quantum

phase gates,3,4 ultraslow optical solitons,5,6 and so on.

However, in EIT media it is crucial to have at least two laser fields, i.e., a con-

trol field and a probe field. In addition, optical absorption of the probe field cannot
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be eliminated especially for warm atoms, which can result in significant attenua-

tion of the probe field for long propagation distance. It is noteworthy that, besides

EIT, another important type of quantum interference phenomenon, known as spon-

taneously generated coherence (SGC), exists.7 The quantum interference in SGC

media occurs between two spontaneous emission channels without using any control

field. In recent years, much attention has been paid to the study of SGC and related

topics, including lasing without inversion,8–11 coherent population trapping,12 spec-

tral narrowing and fluorescence quenching,13–17 adiabations,18 fluorescence squeez-

ing,19 giant self-phase modulation,20 ground-state quantum beats,21 cavity-mode

entanglement,22 electromagnetically induced grating23 ultraslow optical solitons24

etc.

In SGC media, a significant dip in probe-field absorption spectrum may ap-

pear, which is similar to the phenomenon known as the Autler–Townes splitting

(ATS),25,26 which is not a quantum interference phenomenon. Thus, it is impor-

tant to clarify the relation and distinction between SGC and ATS. In this article,

we investigate the SGC and ATS in resonant three-level atomic systems, and give

a definite answer to when the detected reduction in absorption is a result of SGC,

when of ATS, and when of the joint contribution from SGC and ATS. Through

detailed analytical calculations on probe-field absorption spectrum, we show that

in V -type system the SGC can completely eliminate the absorption and at the

same time significantly reduce the group velocity. By using residue theorem and

spectrum decomposition method, we find that there exists a crossover region from

SGC to ATS (called SGC-ATS crossover for short) for both cold and warm atoms

when we change the magnitude of SGC. Different contributions of SGC and ATS

to the probe-field absorption spectrum are clearly clarified in different parameter

regions. Additionally, our results show that there is no SGC and hence no SGC-ATS

crossover in Λ- and Ξ-type systems.

The rest of the article is arranged as follows. In Sec. 2, the model of three-level

V -type configuration with SGC is introduced. Linear dispersion and absorption

properties are analyzed based on full density matrix calculations. The existence of

crossover from SGC to ATS in this system is demonstrated. Different contributions

of SGC and ATS are clarified in different regions for both cold and warm atoms.

In Sec. 3, the same analysis is carried out for models of three-level Λ- and Ξ-type

configurations. We find no SGC and hence no SGC-ATS crossover in Λ- and Ξ-type

systems. Finally, the last section contains a summary of our main results.

2. SGC-ATS Crossover in V -Type System

2.1. Model

We consider a three-level V -type atomic system, shown in Fig. 1(a), in which two

closely spaced excited states |2〉 and |3〉 decay simultaneously into the ground state

|1〉 by the spontaneous emission with decay rates Γ2 and Γ3, respectively. The quan-

tum interference between two decay channels (i.e., |2〉 to |1〉 and |3〉 to |1〉) results
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Fig. 1. (a) Energy level diagram and excitation scheme of a three-level V -type system with SGC.
|j〉 (j = 1, 2, 3) are atomic bare states, Ep is probe field, ∆ and δ are detunings, and Γj (j = 1, 2)
are decay rates of relevant states. (b) The alignment of dipole matrix elements d12 and d13 and
the unit polarization vector of the probe field ep. θ1 (θ2) is the angle between d12 (d13) and ep.
θ = θ1 + θ2 is the angle between d12 and d13.

in the SGC of the system.27 A weak probe field of frequency ωp and wavevector kp,

i.e., Ep(r, t) = epEp(r, t)ei(kp·r−ωpt) + c.c, couples the ground state |1〉 to excited

states |2〉 and |3〉, where ep and Ep(r, t) are the unit polarization vector and the

envelope function of the probe field, respectively.

Under electric-dipole, rotating-wave, and Weisskopf–Wigner approximations,

the equations of motion for the density matrix governing atomic dynamics are:

ρ̇11 = Γ2ρ22 + Γ3ρ33 − iΩpρ12 + iΩ∗

pρ21 − ipΩpρ13 + ipΩ∗

pρ31

+ η
√

Γ2Γ3(ρ23 + ρ32) , (1)

ρ̇22 = −Γ2ρ22 + iΩpρ12 − iΩ∗

pρ21 − η

√
Γ2Γ3

2
(ρ23 + ρ32) , (2)

ρ̇33 = −Γ3ρ33 + ipΩpρ13 − ipΩ∗

pρ31 − η

√
Γ2Γ3

2
(ρ23 + ρ32) , (3)

ρ̇21 =

[

i(∆ + δ)− Γ2

2

]

ρ21 + iΩp(ρ11 − ρ22)− ipΩpρ23 − η

√
Γ2Γ3

2
ρ31 , (4)

ρ̇31 =

[

i(−∆+ δ)− Γ3

2

]

ρ31 + ipΩp(ρ11 − ρ33)− iΩpρ32 − η

√
Γ2Γ3

2
ρ21 , (5)

ρ̇32 = −
(

i2∆+
Γ2 + Γ3

2

)

ρ32 − iΩ∗

pρ31 + ipΩpρ12 − η

√
Γ2Γ3

2
(ρ22 + ρ33) , (6)

where Ωp = ep ·d12Ep/~ is half Rabi frequency of the probe field with dij ≡ 〈i|d|j〉
being density-matrix elements related to states |i〉 and |j〉, ∆ = (E3 − E2)/(2~) is

half frequency difference between |2〉 and |3〉, and δ = −kp ·v+ωp− (E3+E2)/(2~)
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is one-photon detuning [see Fig. 1(a)] with v being the velocity of atoms. The cross

coupling term contributed by the SGC effect is manifested by the factor η
√
Γ2Γ3/2,

with η = d12 · d13/|d12||d13| = cos θ denoting the alignment of two dipole matrix

elements d12 and d13, where θ is the misalignment angle between d12 and d13 [see

Fig. 1(b)]. If d12 and d13 are parallel (i.e. θ = 0), one has η = 1, the system exhibits

maximum SGC; if d12 and d13 are perpendicular (i.e. θ = π/2), one has η = 0, the

system displays no SGC. p = |ep · d13|/|ep · d12| = |d13| cos θ1/[|d12| cos θ2], where
θ1 (θ2) is the misalignment angle between d12 (d13) and ep.

The equation of motion for Ωp can be obtained by using Maxwell equation. The

electric polarization intensity of the system is given by:

P = Na

∫ ∞

−∞

dvf(v){p12σ21 exp[i(kpz − ωpt)]

+ pp13σ31 exp[i(kpz − ωpt)] + c.c.} (7)

where Na is atomic density and f(v) is the atomic velocity distribution. In deriving

above equation, we have assumed kp is along z-direction. In thermal equilibrium,

the velocity distribution profile is Gaussian, i.e.,

f(v) =
1√
πvT

e−(v/vT )2 , (8)

where vT =
√

2kBT/M is the most probable atomic speed at temperature T . Under

slowly-varying envelope approximation, the Maxwell equation reads:

i

(

∂

∂z
+

1

c

∂

∂t

)

Ωp +

∫ ∞

−∞

dvf(v)(κ12ρ21 + κ13pρ31) = 0 , (9)

where κ12 = Naωp|ep · d12|2/(2ǫ0c~) and κ13 = Naωp|ep · d13|2/(2ǫ0c~).
Since |2〉 and |3〉 are closely spaced, for simplicity we assume that |d13| ≃ |d12|.

In addition, a particular case can be found that θ is equally partitioned by ep,

i.e., θ1 = θ2 ≡ θ/2, as did in Ref. 23. Under above considerations, we take Γ2 ≈
Γ3 ≡ Γ, κ12 ≃ κ13 ≡ κ and p = 1.

2.2. Cold atoms

We first consider the V -type system for cold atoms. In this case one should take

v → 0 in Eqs. (1)–(6) and f(v) → δ(v) in Eq. (9). When the probe field is absent,

the steady-state solution of the system reads ρ
(0)
11 = 1 and ρ

(0)
22 ≃ ρ

(0)
33 ≃ ρ

(0)
32 = 0.

The linear optical response of the system can be obtained by solving the

Maxwell–Bloch (MB) Eqs. (1)–(6) and (9). Assuming ρ21, ρ31 and Ωp are small

quantities proportional to exp{i[KV (ω)z − ωt]}, we obtain the linear dispersion

relation:

KV (ω) =
ω

c
− κ

2ω + i(1− η)Γ

DV (ω)
, (10)
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Fig. 2. (a) ReKV and (b) ImKV as functions of ω with the maximum SGC (η = 1; the solid
line) and without SGC (η = 0; the dashed line).

where DV (ω) = (ω + ∆ + iΓ/2)(ω − ∆ + iΓ/2) + η2Γ2/4. For deriving (10),

we have set δ = 0 for simplicity. By Taylor expanding KV (ω) around ω = 0,a

we obtain KV (ω) = KV 0 + KV 1ω + · · · , with expansion coefficients KV j =

(∂jKV (ω)/∂ω
j)|ω=0 (j = 0, 1, . . .). Here KV 0 = ReKV 0 + i ImKV 0 gives the phase

shift per unit length and absorption coefficient and ReKV 1 determines the group

velocity Vg (≡ 1/ReKV 1).

Shown in Figs. 2(a) and 2(b) are respectively the real part and imaginary part of

KV (ω), which characterize the dispersion and absorption of the system, respectively.

The dashed lines are results in the absence of the SGC (η = 0) while the solid lines

are results with the maximum SGC (η = 1). System parameters are chosen as

κ = 1.0× 109 cm−1 s−1, Γ = 1.0× 107 s−1 and ∆ = 1.0× 107 s−1. From Fig. 2 we

see that: (i) In the region around ω = 0 the probe field displays a drastic change

of dispersion (and hence a drastic reduction of group velocity) [panel (a)] and

complete elimination of absorption [panel (b)]. (ii) Steepness of the group velocity

and reduction of the absorption are much more significant with the maximum SGC

than those without the SGC.

Now we discuss the SGC effect in the probe-field absorption in more detail. From

Fig. 2(b) we find that the reduction in absorption occurs around ω = 0 even when

SGC is absent, resulting in a doublet structure of the absorption spectrum. This

is because the reduction may be a consequence of two similar, but very different

mechanisms, i.e., SGC and ATS, appearing in the same system. The depth and

width of transparency windows produced by above two mechanisms are, however,

quite different.

For analyzing the above mentioned two mechanisms, we employ the spectrum

decomposition method developed in Refs. 28–30 to transform K(ω) into the form

of a superposition of two resonant responses associated with the transitions from

the ground state to corresponding decaying-dressed states:

KV (ω) =
ω

c
+R+ +R− , (11)

aThe frequency and wavenumber of the probe field are given by ωp+ω and kp+K(ω), respectively.
Thus ω = 0 corresponds to the probe field.
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where,

R± = −κ
A±

ω − ω±

, (12)

represent two resonances, with poles:

ω± = −i
Γ

2
±
√

∆2 − η2Γ2/4 , (13)

and amplitudes

A± = ±ω± + i(1− η)Γ/2
√

∆2 − η2Γ2/4
. (14)

The total absorption ImKV (ω) can be discussed in the following regions determined

on parameters Γ, ∆ and η:

(i) SGC region: If 2∆/Γ < η ≤ 1, ω± are purely imaginary given as:

ω± = i

[

−Γ

2
±
√

η2Γ2/4−∆2

]

≡ iW± , (15)

and A± are purely real given as:

A± = ±W± + (1− η)Γ/2
√

η2Γ2/4−∆2
. (16)

Thus the total absorption can be expressed as:

ImKV (ω) = −κ

(

A+W+

ω2 +W 2
+

+
A−W−

ω2 +W 2
−

)

. (17)

From Eq. (17) we note that the absorption spectrum possesses following charac-

teristics. First, the total absorption spectrum is made of two Lorentzians, which

completely overlap (i.e., peak on peak). Second, one Lorentzian is positive indicat-

ing the absorption whereas the other one is negative indicating the gain. Third, the

positive Lorentzian is wider than the negative one (i.e., |W−| > |W+|). Thus, the dip
in the total absorption can be regarded as an “imprint” of one Lorentzian into the

other, which is a result of a destructive interference between the two Lorentzians.

This destructive interference is a signature of SGC.

(ii) SGC-ATS crossover region: If 0 < η < 2∆/Γ, both ω± and A± are complex

written as ω± = ±ω0 − iΓ/2 and A± = 1 ∓ iB, with ω0 =
√

∆2 − η2Γ2/4 and

B = ηΓ/(2ω0). The total absorption can be expressed as:

ImKV (ω) = κ

[

Γ/2

(ω − ω0)2 + Γ2/4
+

Γ/2

(ω + ω0)2 + Γ2/4

+
(ω − ω0)B

(ω − ω0)2 + Γ2/4
− (ω + ω0)B

(ω + ω0)2 + Γ2/4

]

. (18)

We see that in this region the absorption spectrum is made of four terms. The first

two terms are Lorentzians with the same width (determined by Γ/2) corresponding

to two absorption resonances from the ground state to the pair of excited states.
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A dip in the total absorption can be interpreted as a gap between two resonances,

which is a typical character of ATS.29 The next two terms are interference terms.

Because they lower the dip formed by the first two terms, a destructive interference

(i.e., SGC) occurs. A joint contribution from SGC and ATS occurs in the SGC-ATS

crossover region.

(iii) ATS region: If η ≃ 0, one has ω0 ≃ ∆, thus the next two terms (SGC terms)

in Eq. (18) can be neglected and no SGC occurs. The total absorption spectrum

consists of two Lorentzians

ImKV (ω) = κ
Γ

2

[

1

(ω −∆)2 + Γ2/4
+

1

(ω +∆)2 + Γ2/4

]

, (19)

a typical character of ATS. Thus in this situation a dip in the total absorption

contributes by ATS effect.

The absorption properties in different regions are summarized in Fig. 3. In

panel (a), we show the imaginary part of two resonances, Im(R1) = −κA+W+/(ω
2+

W 2
+) (dash line) and Im(R2) = −κA−W−/(ω

2+W 2
−) (dashed-dotted line) and their

combination as the total absorption in the SGC region (solid line) by taking η = 1.

In panel (b), we show the first two terms (ATS terms; dashed-dotted lines), the next

two terms (SGC terms; dashed line), and their combination as the total absorption

in the SGC-ATS crossover region (solid line) by taking η = 0.6. In panel (c) we

show the total absorption in the ATS region by taking η = 0. System parameters are

chosen as κ = 1.0× 109 cm−1 s−1, Γ = 1.0× 107 s−1, δ = 0 and ∆ = 4.5× 106 s−1.

We see that the crossover from SGC to ATS can be achieved by changing the

magnitude of SGC (i.e., η).
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Fig. 3. (a) Im(R1) (dash line), Im(R2) (dashed-dotted line), and the total absorption ImKV

(solid line) as functions of ω with η = 1. (b) The first two terms in Eq. (18) (ATS terms; dashed-
dotted lines), the next two terms in Eq. (18) (SGC terms; dashed lines), and ImKV (solid line) as
functions of ω with η = 0.6. (c): ImKV as a function of ω with η = 0. Panels (a)–(c) correspond
to SGC, SGC-ATS crossover and ATS regions, respectively.
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2.3. Warm atoms

Now we consider the V -type system with warm atoms. The linear dispersion relation

taken into account the Doppler effect reads:

KV (ω) =
ω

c
− κ

∫ ∞

−∞

dvf(v)
2ω − 2kpv + i(1− η)Γ

DV (ω)
, (20)

where DV (ω) = (ω − kpv +∆+ iΓ/2)(ω − kpv −∆+ iΓ/2) + η2Γ2/4.

The integration in Eq. (20) with the Gaussian velocity distribution leads to some

complicated combination of error functions, which is inconvenient for a simple and

clear analytical approach. As did by Lee et al.,31 in the following we use the modified

Lorentzian velocity distribution:

f(v) =
vT√

π(v2 + v2T )
. (21)

Then Eq. (20) can be solved analytically by using a contour integral in complex

plane.

Notice that Eq. (20) has four first-order poles

kpv = ±ikpvT , kpv = ω ∓
√

∆2 − η2Γ2/4 + i
Γ

2
(22)

and only one of them is located in the lower half complex plane, i.e., kpv = −ikpvT ≡
−i∆ωD, where ∆ωD represents the Doppler width. The integration in (20) can be

calculated by the contour that goes along the real axis from r to −r and then

counterclockwise along a semicircle centered at 0 from −r to r in the lower half

complex plane under the limit r → ∞ (see Fig. 4). According to residue theorem,32

we obtain the result:

KV (ω) =
ω

c
−√

πκ
2ω + i[2∆ωD + (1− η)Γ]

D̃V (ω)
, (23)
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Fig. 4. (a) Gaussian velocity distribution (Eq. (8); solid line) and the modified Lorentzian velocity
distribution (Eq. (21); dashed line) for vT = 4 × 104 cm/s. The central part of the modified
Lorentzian velocity distribution coincides with that of the Gaussian velocity distribution. (b) The
pole (0,−i∆ωD) in the lower complex half plane of the integrand in Eq. (20). The closed curve
with arrows is the contour chosen for calculating the integration in Eq. (20) by using residue
theorem.
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where D̃V = [ω +∆+ i(2∆ωD + Γ)/2][ω −∆+ i(2∆ωD + Γ)/2] + η2Γ2/4.

By spectrum decomposition similar to that used in the last subsection, we

obtain:

KV (ω) =
ω

c
+R+ +R− , (24)

where

R± = −√
πκ

A±

ω − ω̃±

(25)

with

ω̃± = −i
2∆ωD + Γ

2
±
√

∆2 − η2Γ2/4 , (26)

A± = ± ω̃± + i[2∆ωD + (1− η)Γ]/2
√

∆2 − η2Γ2/4
. (27)

The total absorption ImKV (ω) can be discussed in the following parameter regions:

(i) SGC region: If 2∆/Γ < η ≤ 1, the total absorption can be expressed as:

ImKV (ω) = −√
πκ

( A+W+

ω2 +W2
+

+
A−W−

ω2 +W2
−

)

, (28)

where

W± = −2∆ωD + Γ

2
±
√

η2Γ2/4−∆2 , (29)

A± = ±W± + [2∆ωD + (1− η)Γ]/2
√

η2Γ2/4−∆2
. (30)

The dip in the total absorption is a result of a destructive interference between two

Lorentzians, which is a signature of SGC.

(ii) SGC-ATS crossover region: If 0 < η < 2∆/Γ, the total absorption can be

expressed as:

ImKV (ω) =
√
πκ

[ W
(ω − ω0)2 +W2

+
W

(ω + ω0)2 +W2

+
(ω − ω0)B

(ω − ω0)2 +W2
− (ω + ω0)B

(ω + ω0)2 +W2

]

, (31)

where ω0 and B are the same with those defined in (18) and W = (2∆ωD + Γ)/2.

The dip in the total absorption is a result of a joint contribution from the ATS (the

first two terms) and the SGC (the next two terms).

(iii) ATS region: If η ≃ 0, the total absorption can be expressed as two

Lorentzians

ImKV (ω) =
√
πκ

[ W
(ω −∆)2 +W2

+
W

(ω +∆)2 +W2

]

. (32)

Thus the dip in the total absorption is produced only by ATS effect.
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The absorption properties in different regions are summarized in Fig. 5. The

total absorptions with ∆ωD = 0 s−1, 0.5× 107 s−1 and 1.0× 107 s−1 are displayed

in each panels. Other parameters are the same as those used in Fig. 3. From Fig. 5,

we obtain the following conclusions. First, the Doppler effect does not change the

property of SGC-ATS crossover. Second, when ∆ωD → 0, Eqs. (28), (31) and (32)

are respectively reduced to Eqs. (17)–(19). Third, the transparency window in the

absorption spectrum becomes smaller due to the Doppler effect.

3. Λ- and Ξ-Type Systems

3.1. Λ-type system

We now consider a three-level Λ-type system. In such a system, a weak probe field

with the form Ep(r, t) = epEp(r, t)ei(kpz−ωpt) + c.c couples the excited state |3〉 to
the two ground states |1〉 and |2〉, with corresponding spontaneous decay rates Γ1

and Γ2, respectively [see Fig. 6(a)]. A SGC occurs by the quantum interference

between two spontaneous decay channels from |3〉 to |1〉 and from |3〉 to |2〉.33
The atomic dynamics is described by the density matrix equations:

ρ̇11 = Γ1ρ33 + ipΩ∗

pρ31 − ipΩpρ13 , (33)

ρ̇22 = Γ2ρ33 + iΩ∗

pρ32 − iΩpρ23 , (34)

ρ̇33 = −(Γ1 + Γ2)ρ33 − ipΩ∗

pρ31 + ipΩpρ13 − iΩ∗

pρ32 + iΩpρ23 , (35)

ρ̇21 = −i2∆ρ21 + iΩ∗

pρ31 − ipΩpρ23 + η
√

Γ1Γ2ρ33 , (36)

1350065-10
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2(∆+   )δ

Fig. 6. (a) Three-level Λ-type and (b) Ξ-type systems. |j〉 (j = 1, 2, 3) are atomic bare states,
Ep is weak probe laser field, ∆ and δ are detunings and Γj are decay rates of relevant states.

ρ̇31 =

[

−i(∆ + δ)− Γ1 + Γ2

2

]

ρ31 + ipΩp(ρ11 − ρ33) + iΩpρ21 , (37)

ρ̇32 =

[

i(∆− δ)− Γ1 + Γ2

2

]

ρ32 + iΩp(ρ22 − ρ33) + ipΩpρ12 , (38)

where Ωp = ep · d13Ep/~ is half Rabi frequency of the probe field, ∆ = (E2 −
E1)/(2~) is half frequency difference of two closely spaced ground-state levels and

δ = −kp · v + (2E3 − E1 − E2)/(2~) − ωp is one-photon detuning [see Fig. 6(a)].

The SGC effect is described by the factor η
√
Γ1Γ2/2, with η = d13 ·d23/|d13||d23|.

The factor p = |ep · d13|/|ep · d23| = cos θ1/ cos θ2 (|d13| ≃ |d23|).
The equation of motion for Ωp is:

i

(

∂

∂z
+

1

c

∂

∂t

)

Ωp +

∫ ∞

−∞

dvf(v)(κ13pρ31 + κ23ρ32) = 0 . (39)

For simplicity, we assume in the following that Γ1 ≈ Γ2 = Γ, κ13 ≃ κ23 = κ and

p = 1.

When the probe field is absent, the steady-state solution of the system reads

ρ
(0)
11 + ρ

(0)
22 = 1 and ρ

(0)
33 = ρ

(0)
mn = 0 (m,n = 1, 2, 3;m 6= n).

Using MB Eqs. (33)–(39), in the case of cold atoms (v → 0 and f(v) → δ(v)),

the linear dispersion relation of the system reads:

KΛ(ω) =
ω

c
− κ

[

ρ
(0)
11

ω −∆+ iΓ
+

ρ
(0)
22

ω +∆+ iΓ

]

(40)

and the total absorption

ImKΛ(ω) = κΓ

[

ρ
(0)
11

(ω −∆)2 + Γ2
+

ρ
(0)
22

(ω +∆)2 + Γ2

]

. (41)
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In the case of warm atoms (v > 0 and f(v) = (vT /
√
π(v2 + v2T ))), the linear

dispersion relation of the system reads:

KΛ(ω) =
ω

c
− κ

∫ ∞

−∞

dvf(v)

[

ρ
(0)
11

ω − kpv −∆+ iΓ
+

ρ
(0)
22

ω − kpv +∆+ iΓ

]

, (42)

where the integrand has only one pole in the lower half complex plane, i.e., kpv =

−i∆ωD. Thus, Eq. (42) can be easily solved as:

KΛ(ω) =
ω

c
−√

πκ

[

ρ
(0)
11

ω −∆+ i(∆ωD + Γ)
+

ρ
(0)
22

ω +∆+ i(∆ωD + Γ)

]

, (43)

and the total absorption

ImKΛ(ω) =
√
πκ(∆ωD + Γ)

[

ρ
(0)
11

(ω −∆)2 + (∆ωD + Γ)2

+
ρ
(0)
22

(ω +∆)2 + (∆ωD + Γ)2

]

. (44)

Both Eqs. (41) and (44) consist of two Lorentzians corresponding to resonances

between |3〉 and |1〉 and between |3〉 and |2〉, respectively. Thus, a dip in the ab-

sorption spectrum of the probe field is produced only by the ATS. This tells us the

SGC has no effect on the linear dispersion and absorption properties of the Λ-type

system.

3.2. Ξ-type system

For completeness, we finally consider a three-level Ξ-type system, as shown in

Fig. 6(b), in which a weak probe field with the form Ep(r, t) = epEp(r, t)ei(kpz−ωpt)+

c.c couples the ground state |1〉 to the intermediate state |2〉 and simultaneously

couples the state |2〉 to the excited state |3〉, as suggested in Ref. 34. States |2〉
and |3〉 decay to |1〉 and |2〉 with decay rates Γ1 and Γ2, respectively. The density

matrix equations governing the atomic dynamics are given by

ρ̇11 = Γ2ρ22 + iΩ∗

pρ21 − iΩpρ12 , (45)

ρ̇22 = −Γ2ρ22 + Γ3ρ33 − iΩ∗

pρ21 + iΩpρ12 − ipΩpρ23 + ipΩ∗

pρ32 , (46)

ρ̇33 = −Γ3ρ33 + ipΩpρ23 − ipΩ∗

pρ32 , (47)

ρ̇21 =

(

−iδ − Γ2

2

)

ρ21 + iΩp(ρ11 − ρ22) + ipΩ∗

pρ31 + η

√
Γ2Γ3

2
ρ32 , (48)

ρ̇31 =

[

−i2 (∆ + δ)− Γ3

2

]

ρ31 + ipΩpρ21 − iΩpρ32 , (49)

ρ̇32 =

[

−i(2∆+ δ)− Γ2 + Γ3

2

]

ρ32 + ipΩp(ρ22 − ρ33)− iΩ∗

pρ31 , (50)
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where Ωp = |ep · d12|Ep/~ is half Rabi frequency of the probe field, ∆ = (E3 −
2E2 + E1)/(2~) is half frequency difference of the transitions |1〉 ↔ |2〉 and |2〉 ↔
|3〉 and δ = (E2 − E1)/~ − ωp is one-photon detuning [see Fig. 6(b)]. The last

term on the right-hand side of Eq. (48) comes from the SGC effect, with η =

d12 · d23/|d12||d23| = cos θ. The factor p = |ep · d23|/|ep · d12| = cos θ1/ cos θ2
(|d23| ≃ |d12|).

The equation of motion for Ωp is:

i

(

∂

∂z
+

1

c

∂

∂t

)

Ωp +

∫ ∞

−∞

dvf(v)(κ12ρ21 + κ23pρ32) = 0 . (51)

For simplicity, we assume in the following that Γ2 ≈ Γ3 = Γ, κ12 ≃ κ23 = κ and

p = 1.

When the probe field is absent, the steady-state solution of the system reads:

ρ
(0)
11 = 1 and ρ

(0)
22 = ρ

(0)
33 = ρ(0)mn = 0 (m,n = 1, 2, 3;m 6= n) .

Using MB Eqs. (45)–(51) we obtain the linear dispersion relation of the system

KΞ(ω) =
ω

c
− κ

1

ω + iΓ/2
, (52)

for cold atoms and

KΞ(ω) =
ω

c
− κ

1

ω + i(∆ωD + Γ/2)
, (53)

for warm atoms. Thus, the total absorptions in the cases of cold atoms and warm

atoms are:

ImKΞ(ω) = κ
Γ/2

ω2 + Γ2/4
(54)

and

ImKΞ(ω) = κ
∆ωD + Γ/2

ω2 + (∆ωD + Γ/2)2
, (55)

respectively. From these results, we see that the Ξ-type system possess neither SGC

nor ATS because there is no dip in the probe-field absorption spectrum.

4. Summary

The SGC occurs in systems having near-degenerated levels with the same angular

momentum quantum numbers J and mJ and nonorthogonal dipole moments, which

are usually rare in atomic media.35 However, in a recent experiment,36 a SGC has

been observed in a rubidium atoms with N - and inverted Y -type level configura-

tions. In addition, the quantum interference via SGC can be observed in many other

systems such as semiconductor quantum wells and quantum dots,37–39 autoionizing

media,40 and anisotropic vacuum.41 Our theoretical approach presented above can

be easily generalized to these systems with the SGC. The next step is to extend

our theoretical approach to four-level systems.
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In summary, in this article we have investigated SGC and ATS in various three-

level atomic systems. By detailed analytical calculations on absorption spectrum

of probe laser field, we have shown that in V -type system the SGC can completely

eliminate the absorption of the probe field and at the same time significantly reduce

the group velocity. Using residue theorem and spectrum decomposition method, we

have found that there exists a SGC-ATS crossover for both cold and warm atoms

when the magnitude of SGC is changed. Different contributions from SGC and

ATS to probe-field absorption spectrum were clearly clarified in different parameter

regions. In addition, our research shows that there is no SGC and hence no SGC-

ATS crossover in Λ- and Ξ-type systems. The results obtained in this work may

guide new experimental findings related to SGC and have promising applications

in optical information processing.
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