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We propose a scheme to generate vector optical solitons in a four-level active-Raman-gain medium. We show
that this scheme, which is fundamentally different from that using optical fibers and that via electromagneti-
cally induced transparency, is capable of achieving robust vector optical solitons with superluminal propagat-
ing velocity. We demonstrate that such vector optical solitons can be generated at room temperature and with
very low light intensity. We investigate also the interaction between two superluminal vector optical solitons
and point out that their elastic and inelastic colliding properties can be used to design rapidly responding op-
tical soliton switching and logic gates. © 2009 Optical Society of America
OCIS codes: 270.0270, 190.3270.
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. INTRODUCTION
ost vector optical solitons are solutions of two coupled

onlinear Schrödinger (NLS) equations, which describe
he envelope evolution of two polarization components of
n electromagnetic field in a nonlinear optical medium.
here has been much interest focused on the temporal

1–6] and spatial [7–9] vector optical solitons in various
hysical systems, which is due to their promising applica-
ions for optical information processing and transmission
10,11].

As far as we know, up to now vector optical solitons are
roduced in passive media such as optical fibers,
aveguides, and photorefractive materials [1–11] (except

or the work by Cundiff et al. where vector optical solitons
re generated in a pumped fiber laser [12]), in which far-
ff resonance excitation schemes are employed in order to
void unmanageable optical attenuation and distortion.
s a result, nonlinear effect in these media is very weak
nd, hence, to form a vector optical soliton very high input
ight power is needed. Furthermore, because of the lack of
istinctive energy levels and selection rules, an active
ontrol of vector optical solitons in such far-off resonant
ystems is difficult to sustain. In addition, vector optical
olitons produced in far-off resonant media generally
ravel with a speed very close to c, the speed of light in
acuum, and they require an extended propagation dis-
ance in order to generate.

In recent years, considerable attention has been paid to
he study of optical propagation via electromagnetically
nduced transparency (EIT), in which an on-resonance ex-
itation scheme is used [13]. Based on several interesting
eatures under weakly driven EIT conditions, the possibil-
ty of generating ultraslow optical solitons has been ex-
lored recently [14–18]. However, weakly driven EIT
0740-3224/09/030413-7/$15.00 © 2
chemes still have some inherent drawbacks, including
he significant signal field attenuation and distortion at
oom temperature and the very long response time due to
he ultraslow propagating velocity. These drawbacks may
ecome obstacles in developing further applications of
oom-temperature and ultrafast all-optical devices for
IT schemes.
The study on superluminal propagation of light (i.e.,

ight propagates in a medium with apparent group veloc-
ty exceeding c, or even becoming negative) is a topic with
very long history [19]. Chu and Wong [20] presented the
rst experimental demonstration of superluminal propa-
ation of an optical wavepacket in an absorptive medium.
n order to avoid substantial attenuation and to obtain a
table superluminal propagation, Chiao [21,22] et al. sug-
ested the use of an on-resonant, active Raman gain
ARG) medium with an inverted atomic population. Later
n, there appeared a large amount of theoretical and ex-
erimental investigations of superluminal propagation in
RG atomic media [23–29]. An ARG system is fundamen-

ally different from that based on EIT. The signal field in
he ARG system operates in a stimulated Raman emis-
ion mode and, hence, may propagate with group velocity
aster than c, and it has no attenuation or distortion even
hen the system works at room temperature.
Recently, it has been shown that a gain-assisted, large

nd rapidly responding Kerr effect is possible by using a
oom-temperature ARG medium [30]. A fast-responding
onlinear phase shifter using an ARG system has also
een demonstrated [31]. These important works hint at
he possibility of realizing superluminal optical solitons in
RG media. The authors of [32,33] made interesting the-
retical studies on superluminal solitons in resonant
tomic media. However, in those works a short-pulse con-
009 Optical Society of America
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ition was used to neglect decay rates of atomic levels,
.e., the solutions require the system to work in a coherent
ransient regime. Without using such short-pulse condi-
ion, recent studies [34,35] have shown that superluminal
ptical solitons can be generated and propagate stably in
three-level ARG medium when working outside of a co-
erent transient regime.
In this paper, a four-level tripod system, which can be

ealized by 87Rb atoms, with an ARG configuration is pro-
osed to generate superluminal vector optical solitons.
uch a scheme is fundamentally different from those us-

ng passive media [1–12] and those via EIT-based atomic
edia [18]. The vector optical solitons predicted here

ave superluminal propagating velocity and can be pro-
uced at room temperature and under very low light in-
ensity. The interaction between superluminal vector op-
ical solitons display interesting elastic and inelastic
olliding properties, which may have potential applica-
ions in designing rapidly responding, low-light-level soli-
on switching and logic gates.

The remainder of the paper is arranged as follows. In
ection 2, the theoretical model under study is intro-
uced, and its solution in a linear regime is presented. In
ection 3, an asymptotic expansion on Maxwell–
chrödinger equations is made, and coupled NLS equa-
ions governing the time evolution of two polarization
omponents of a signal field are derived by means of a
ethod of multiple scales. In Section 4, weak-light super-

uminal vector optical soliton solutions are provided, and
heir stability is discussed by means of numerical simula-
ions. In the same section, a numerical study is carried
ut to explore the collision property of the superluminal
ector optical solitons. Finally, the last section contains a
iscussion and summary of the main results of our work.

. MODEL AND SOLUTIONS IN THE
INEAR REGION
e consider a four-level, tripod atomic system interacting
ith a weak, linear-polarized pulsed signal field of central

requency �s /2� and a strong, linear-polarized continu-
us wave pump field of frequency �P /2�, respectively. The
wo circular-polarized components of the signal field
rive, respectively, the transitions from �2�↔ �4� and

3�↔ �4�, while the pump field drives the transitions from
1�↔ �4� (see Fig. 1), respectively. Here, states
1�,|2�, and �3� are sublevels of one atomic state due to a
eeman split induced by an applied magnetic field B.

|1〉

|4〉

|2〉 |3〉

∆
4

∆
2

∆
3

Ω
P

Ω
s1

Ω
s2

(σ−) (σ+)

ig. 1. Energy-level diagram and excitation scheme of a four-
tate tripod atomic system interacting with a strong, linear-
olarized continuous-wave pump field of Rabi frequency �P and a
eak, pulsed signal field of two circular-polarized components �+

nd �− with Rabi frequencies �s1 and �s2, respectively. 	j is the
etuning between the corresponding optical field and the level �j�.
The electric field of the system can be written as
= ��̂+Es++ �̂−Es−� exp �i�ksz−�st��+ êPEP exp �i�kP ·r−�Pt��
c.c.. Here �̂+= �x̂+ iŷ� /�2 ��̂−= �x̂− iŷ� /�2� is the signal
eld unit vector of the �+ ��−� circular polarization com-
onent with the envelope Es+ �Es−�, which drives the tran-
ition �3�↔ �4� ��2�↔ �4��. êP is the unit vector of the pump
eld with the envelope EP. For simplicity, we have chosen
he wavevector direction of the signal field along the z
xis.
The Hamiltonian of the system is Ĥ=Ĥ0+Ĥ�, where Ĥ0

escribes a free atom and Ĥ� describes the interaction be-
ween the atom and the optical field. In the Schrödinger
icture, the state vector of the system is expressed by

��t��s=�j=1
4 Cj�z , t��j�, where �j� is the eigenstate of Ĥ0. Un-

er electric-dipole and rotating-wave approximations, the
amiltonian of the system takes the form

Ĥ = �
j=1

4

�j�j�	j� + �
�Pexp�i�kP · r − �Pt���4�	1� + �s1

�exp�i�ksz − �st���4�	2� + �s2

�exp�i�ksz − �st���4�	3� + H.c.�, �1�

here �j is the energy of state �j�, �s1= �p42· �̂−�Ep−/�,
s2= �p43· �̂+�Ep+/�, and �P= �p41· êP�Ec /� are relevant
alf Rabi frequencies, with pij being the electric dipole
atrix element associated with the transition from �j� to

i�.
For convenience, we employ an interaction picture to

liminate fast spatial-temporal variables, which can be
btained by making the transformation Cj=Aj exp
i�kj ·r
��j /�+	j�t��, with k1=0, k2=k3=kPeP−ksez, and k4
kPeP. The detunings 	j are defined as 	2=�P−�s− ��2
�1� /�, 	3=�P−�s− ��3−�1� /�, and 	4=�P− ��4−�1� /�. It

s noteworthy that	���3−�2� /�= �2
B /��gB is the Zee-
an shift of atomic sublevels with 
B, the Bohr magne-

on, and g, the gyromagnetic factor. Then we obtain the
amiltonian in the interaction picture

Ĥint = ��	2�2�	2� + 	3�3�	3� + 	4�4�	4�� − ���P�4�	1� + �s1�4�

�	2� + �s2�4�	3� + H.c.�. �2�

sing the Schrödinger equation i�����t��int /�t
Hint���t��int with ���t��int= �A1 ,A2 ,A3 ,A4�T (T represents

ranspose) one can readily obtain the equations governing
tomic response


i
�

�t
+ d2,3�A2,3 + �s1,s2

* A4 = 0, �3a�


i
�

�t
+ d4�A4 + �PA1 + �s1A2 + �s2A3 = 0, �3b�

ith �j=1
4 �Aj�2=1, where Aj (j=1 to 4) is the probability am-

litude of the bare atomic state �j�. Note that in Eq. (3) we
ave defined dj=	j+ i�j �j=2,3,4�, with �j being the decay
ate of the level �j�. We assume that the system works at
oom temperature, and thus the Doppler effect is signifi-
ant. In order to suppress a large gain and the Doppler
ffect, we choose the one-photon detuning 	4 to be much
arger than any Rabi frequencies, Doppler broadened line
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idths, atomic decay rates, and frequency shift induced
y the pump field.
To obtain the equations of motion for �s1�z , t� and

s2�z , t�, we use the Maxwell equation

�2E −
1

c2

�2E

�t2 =
1

�0c2

�2P

�t2 �4�

ith

P = Na
p41A4A1
* exp�i�kP · r − �Pt�� + p42A4A2

* exp�i�ksz

− �st�� + p43A4A3
* exp�i�ksz − �st�� + c.c.�.

nder a slowly varying envelope approximation, Eq. (4) is
educed to

i
 �

�z
+

1

c

�

�t��s1,s2 + �A4A2,3
* = 0, �5�

here �=Na�s�p24�2 / �2�0c���Na�s�p34�2 / �2�0c�� with Na
eing the atomic density, p24 �p34� the electric-dipole ma-
rix element for the transition from �2� (�3�) to �4�.

Before solving the coupled nonlinear Eqs. (3) and (5), a
imple physical analysis on linear property of the system
s useful. We assume that atoms are initially populated in
he state �1�. Equations (3) and (5) admit the steady-state
olution A1=1/�1+ ��P /d4�2, A2=A3=0, A4=
�P / �d4�1+ ��P /d4�2�, and �s1=�s2=0. It is easy to obtain
he solution of linear excitation around this steady state,
hich is proportional to exp
i�K���z−�t��. The dispersion

elation of the linear excitation displays two branches,
hich are given by

K1,2 =
�

c
+

���P�2

�� − d2,3
* ���d4�2 + ��P�2�

, �6�

orresponding to �− and �+ components of the signal field,
espectively.

By Taylor-expanding Eq. (6) around the central fre-
uency of the signal field �s (i.e., at �=0) we obtain
1���=K01+K11�+K21� /2+O��3� and K2���=K02
K12�+K22� /2+O��3�, with �Kij= ��iKj��� /��i���=0.
ere, K01=
1+ i�1 /2 �K02=
2+ i�2 /2� with 
1
−���P�2	2 / ��d2�2�d4�2� �
2=−���P�2	3 / ��d3�2�d4�2�� and �1
−2���P�2�2 / ��d2�2�d4�2� ��2=−2���P�2�3 / ��d3�2�d4�2�� being

he phase shift and absorption coefficient, respectively.
ote that the two polarization components of the signal
eld in fact acquire gain during propagation because �1
nd �2 are always negative. This is very different from an
IT-based system, which is inherently absorptive. The
roup velocity of the �− ��+� component of the signal field
s given by Vg1=1/Re�K11�=c /ng1 �Vg2=1/Re�K12�=c /ng2�
ith the group index ng1=1+c���P�2��2

2−	2
2� / ��d2�4�d4�2�

ng2=1+c���P�2��3
2−	3

2� / ��d3�4�d4�2��. Thus, if �2�	2 ��3
	3� one obtains 0�Vg1�c �0�Vg2�c� (corresponding to
subluminal propagation); if �2�	2 ��3�	3� one has

g1�c �Vg2�c� or Vg1�0 �Vg2�0� (corresponding to a su-
erluminal propagation). K21 �K22� represents the group-
elocity dispersion of the �− ��+� component of the signal
eld.
. ASYMPTOTIC EXPANSION AND
ONLINEAR ENVELOPE EQUATIONS
e know that group-velocity dispersion will result in a

preading of the signal field, which is harmful for optical
nformation processing. It is natural to use nonlinear ef-
ects, i.e., self-phase modulation (SPM) and cross-phase
odulation (CPM) of the signal field, to balance

ispersion-induced spreading. To investigate the influ-
nce of both nonlinear and dispersion effects in a trans-
arent way, we apply a method of multiple scales to de-
ive nonlinear envelope equations of the signal field. For
his aim we make the asymptotic expansion Aj

�l=0
� �lAj

�l� (j=1 to 4), �s1=�l=1
� �l�s1

�l�, and �s2=�l=1
� �l�s2

�l�

ith A1
�0�=1/�1+ ��P /d4�2, A2

�0�=A3
�0�=0, and A4

�0�

−�P / �d4�1+ ��P /d4�2�, where � is a small parameter
haracterizing the amplitude of the signal field. To obtain
divergence-free expansion, all quantities on the right-

and side of the expansion are considered as functions of
he multiscale variables zl=�lz (l=0 to 2) and tl=�lt (l=0,
). Substituting such expansion into Eqs. (3)–(5), we ob-
ain a series of equations for Aj

�l�, �s1
�l�, and �s2

�l� (j
1,2,3,4; l=1,2,3, . . .).
The leading (i.e., O���) order solution is given by �s1

�1�

F1 exp�i�1� ��s2
�1�=F2 exp�i�2�� with �1=K1���z0−�t0 ��2

K2���z0−�t0�, here F1 �F2� is a yet to be determined en-
elope function of the �− ��+� component depending on the
low variables t1 and zj �j=1,2�. We also obtain A1

�1�

A4
�1�=0 and A2

�1�= ��K1
* −� /c�F1

* / ��A4
*�0���exp�−i�1

*� �A3
�1�

��K2
* −� /c�F2

* / ��A4
*�0���exp�−i�2

*��.
At the second �O��2�� order, divergence-free conditions

or the second-order solution require

i��F1/�z1 + �1/Vg1��F1/�t1� = 0, �7a�

i��F2/�z1 + �1/Vg2��F2/�t1� = 0, �7b�

here Vg1 and Vg2 are the (complex) group velocity of the
nvelopes F1 and F2, respectively. The second-order solu-
ion reads

A1
�2� = �

n=1

2

B1,2�Fn�2e−�̄nz2, �8a�

A2,3
�2� = i

1

�A4
*�0�
1

c
−

1

Vg1,g2
* � �F1,2

*

�t1
e−i�

1,2
* , �8b�

A4
�2� = −

1

d4
�
n=1

2 
K1,2
* − �/c

�A4
*�0�

+ �PB1,2��F1,2�2e−�̄1,2z2,

�8c�

ith

B1,2 =
1

2�A1
�0��1 + ��P/d4�2�

��K1,2 − �/c

d4
*

+
K1,2

* − �/c

d4
−

�K1,2 − �/c�2

��A4
�0��2 � , �9�

here � =�2�̄ �� =�2�̄ �.
1 1 2 2
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At the third �O��3�� order, divergence-free conditions
ield the coupled nonlinear equations for F1 and F2:

i
�F1

�z2
−

K21

2

�2F1

�t1
2 − �W11�F1�2 + W12�F2�2�F1 = 0, �10a�

i
�F2

�z2
−

K22

2

�2F2

�t1
2 − �W21�F1�2 + W22�F2�2�F2 = 0, �10b�

here

W11,22 =
���P�2

d2,3
* �d2,3�2

d2,3d4 + �d2,3d4�* − ��P�2

��d4�2 + ��P�2�2 , �11a�

W12,21 =
���P�2

d2,3
* �d3,2�2

d3,2d4 + �d3,2d4�* − ��P�2

��d4�2 + ��P�2�2 , �11b�

re the coefficients of SPM (W11 and W22) and CPM (W12
nd W21), respectively. It is easy to prove that these non-
inear coefficients satisfy the relation W11W22=W12W21,
esulting from the symmetry of the configuration of the
ystem.

. WEAK-LIGHT SUPERLUMINAL VECTOR
PTICAL SOLITON SOLUTIONS
e now consider possible soliton solutions of the coupled

onlinear equations (10a) and (10b), which can be con-
erted into the following dimensionless form:

i
 �

�s
+ gA1�u1 + ig�

�u1

��
− gD1

�2u1

��2 − 2�g11�u1�2 + g12�u2�2�u1

= 0, �12a�

i
 �

�s
+ gA2�u2 − ig�

�u2

��
− gD2

�2u2

��2 − 2�g22�u2�2 + g21�u1�2�u2

= 0. �12b�

ote that, while obtaining the above equations, we have
ntroduced the dimensionless variables s=z / �2LD�, �
�t−z /Vg� /�0, u1= ��s1 /U0�exp�−i Re�K01�z�, and u2
��s2 /U0�exp�−i Re�K02�z��. The coefficients are defined
y gA1=�1LD, gA2=�2LD, g�=2 sign���LD /L�, gD1
K12/ �K22�, gD2=sign�K22� and g11,12,21,22
W11,12,21,22/ �W22�, with �= �1/Vg1−1/Vg2� /2 and Vg
2Vg1Vg2 / �Vg1+Vg2�. LD=�0

2 / �K22� is characteristic disper-
ion length, L�=�0 / ��� is characteristic group velocity mis-
atch length, with �0 being characteristic pulse length of

he signal field. Since our aim is to obtain solitonlike so-
utions, in Eqs. (12a) and (12b) we have assumed LD is
qual to the characteristic nonlinear length of the system,
efined by LNL=1/ �U0

2�W22��.
In general, Eqs. (12a) and (12b) are two coupled

inzburg–Landau equations with complex coefficients.
owever, if a realistic parameter set can be chosen (see
elow) so that these coefficients become real, Eqs. (12a)
nd (12b) can be reduced into two coupled NLS equations
nd, hence, one can obtain shape-preserving soliton solu-
ions. The coupled NLS equations admit bright–bright,
right–dark, and dark–dark vector soliton solutions
hrough a balance between the dispersion and nonlinear
ffects [11]. The bright–bright vector soliton solution
eads

u1,2 = V1,2 sech � exp�i�P1,2� + Q1,2s��, �13�

f the condition g22gD1=g12gD2 can be fulfilled. Here we
ave defined P1=g� / �2gD1�, P2=−g� / �2gD2�, Q1
−g�

2 / �4gD1�−gD1 �Q2=−g�
2 / �4gD2�−gD2�, and V2= ��gD1

g11V1
2� /g12�1/2. A bright–dark vector soliton solution is

iven by

u1 = V1 sech � exp�i�P1� + Q1s��, �14a�

u2 = V2 tanh � exp�i�P2� + Q2s�� �14b�

nder the same condition given above, where P1
g� / �2gD1�, P2=−g� / �2gD2�, Q1=−P1g�−gD1�1−P1

2�
2g12V2

2, Q2=P2g�+gD2P2
2−2g22V2

2, and V2= ��g11V1
2

gD1� /g12�1/2. In both solutions given by Eqs. (13) and
14), V1 is a free real parameter.

To demonstrate that the imaginary parts of the coeffi-
ients of Eqs. (12a) and (12b) can be much less than their
orresponding real parts, we consider a set of realistic pa-
ameters relevant to a 87Rb alkali atom vapor [30]. The
tomic levels can be chosen as �1�= �5S1/2 ,F=1,mF=0�,

2�= �5S1/2 ,F=1,mF= +1�, �3�= �5S1/2 ,F=1,mF=−1�, and
4�= �5P1/2 ,F�=1,mF�=0�. For such system working at
emperature (around 300 K), the Doppler effect may con-
ribute linewidth broadening around 500 MHz, which
ay degrade the effectiveness of an EIT-based scheme. It

s, however, much less important in an ARG-based
cheme, because we can choose a large one-photon detun-
ng 	4 to suppress the Doppler effect. This can be easily
eached by taking 	4=−2.0 GHz in the present system.
pecifically, the parameters are given by 2�2�2�3
300 Hz, 2�4=500 MHz (a large value of �4 is mainly due

o Doppler broadening), �=1.0�1010 cm−1 s−1, �P=4.0
107 s−1, 	2=3.1�106 s−1, 	3=2.9�106 s−1 (i.e., 	=2.0
105 s−1), �p=c /�p=0.8�10−4 cm, and �0=0.7�10−6 s.
ith these parameters we get K01=−�1.27+ i0.06
10−3�cm−1, K02=−�1.36+ i0.07�10−3�cm−1 (i.e., �1
−0.12�10−3 cm−1, �2=−0.14�10−3 cm−1), K11=−�40.96
i0.004��10−8 cm−1 s, K12=−�46.81+ i0.005�
10−8 cm−1 s, K21=−�26.43+ i0.004��10−14 cm−1 s2, K22
−�32.28+ i0.005��10−14 cm−1 s2, W11=−�45.52+ i0.002�
10−17 cm−1 s2, W12=−�49.05+ i0.002��10−17 cm−1 s2,
21=−�48.66+ i0.003��10−17 cm−1 s2, and W22=−�52.43
i0.003��10−17 cm−1 s2. We see that the imaginary part
f the coefficients are indeed much smaller than their cor-
esponding real part. With these results we obtain LD
LNL=1.5 cm and L�=24 cm. The system works in an
nomalous dispersion region with the group velocity
iven by

Vg1 = − 8.1 � 10−5c �for �− component�, �15�

Vg2 = − 7.1 � 10−5c �for �+ component�, �16�

espectively. Consequently, the obtained vector optical
oliton travels with superluminal propagating velocity.

Shown in Fig. 2(a) is the result of numerical simulation
n the evolution of �− component of the signal field versus
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imensionless time t /�0 and distance z / �2LD� with the
bove parameters. (The evolution of �+ component is very
imilar thus not shown.) The simulation is made by nu-
erically integrating Eqs. (12a) and (12b) and the bright–

right soliton solution (13) as an initial condition. We see
hat the superluminal vector optical soliton can propagate
tably over a long distance.

In order to make further confirmation on the superlu-
inal vector optical soliton solutions and check their sta-

ility, we have done additional numerical simulations
tarting directly from Eqs. (3) and (5) with the same pa-
ameters and initial condition. Shown in Fig. 2(b) is the
aveshape of ��s1 /U0�2 after propagating to z=7.5 cm.
ne can see that the pulse shape suffers no serious dis-

ortion except for some small radiations (ripples) appear-
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ig. 2. (a) Waveshape of ��s1 /U0�2 obtained by numerically in-
egrating Eq. (12) with the bright-bright soliton solution as an
nitial condition. (b) Waveshape of ��s1 /U0�2 obtained by numeri-
ally integrating Eqs. (3) and (5) with the same initial condition.
Waveshape of ��s2 /U0�2 is similar to ��s1 /U0�2 and hence not
hown.) The parameters are given in the text [just below Eq.
14)].
ng on its two wings due to the contribution of the high-
rder dispersion and high-order nonlinear effects that
ave not been included in the analytical approach given
bove. Thus the superluminal vector soliton in the system
s indeed rather robust during propagation.

The input power of the vector optical soliton can be es-
imated by Poynting’s vector. It is easy to get the average
ux of energy over carrier-wave period P1=P1

max sech2��t
z /Vg1� /�0� and P2=P2

max sech2��t−z /Vg2� /�0�, with the
eak power

P̄1
max � P̄2

max = 5.2 � 10−3 mW. �17�

hen obtaining this result we have taken �p23���p43�
2.1�10−27 cm C and the beam radius of the signal laser
s R�=0.01 cm. We see that, to generate the superluminal
ptical vector soliton in this ARG system, only very low in-
ut power is needed.
Notice that the weak-light vector solitons produced in

he present ARG system have many obvious advantages
ver those based on EIT systems [18]. One of the advan-
ages is that the ARG system can work at room tempera-
ure and the vector solitons in such system suffer no seri-
us absorption or Doppler effect. Another one is that the
ector solitons generated in the ARG scheme can travel
ith superluminal propagating velocity, which is very
romising for the design of rapidly responding all-optical
evices [30,31].
Since the parameters of the present ARG system can be

ctively manipulated, the coefficients of Eqs. (12a) and
12b) can be easily tuned to allow a Manakov system to be
ealized[36], which is a completely integrable and sup-
orts multisoliton solutions. In fact, with the parameters
f the 87Rb system given just below Eq. (14), we have
A1�gA2=−0.2�10−3, g�=0.1, gD1=−0.8, gD2=−1.0, g11
g12�g21=−0.9, and g22=−1.0. Then Eqs. (12a) and (12b)

an be written into the perturbed Manakov equations

i
�u1

�s
+

�2u1

��2 + 2��u1�2 + �u2�2�u1 = R1, �18a�

i
�u2

�s
+

�2u2

��2 + 2��u2�2 + �u1�2�u2 = R2, �18b�

ith R1, R2 being small quantities. When R1 and R2 are
eglected, one obtains the bright vector soliton solution of
anakov equations [37–39]:
u1 =
p1e�1 + p2e�2 + e�1+�

1
*+�2+d1 + e�1+�2+�

2
*+d2

1 + e�1+�
1
*+r1 + e�1+�

2
*+d0 + e�

1
*+ta2+d

0
* + e�2+�

2
*+r2 + e�1+�

1
*+�2+�

2
*+r3

, �19a�

u2 =
q1e�1 + q2e�2 + e�1+�

1
*+�2+d1� + e�1+�2+�

2
*+d2�

1 + e�1+�
1
*+r1 + e�1+�

2
*+d0 + e�

1
*+ta2+d

0
* + e�2+�

2
*+r2 + e�1+�

1
*+�2+�

2
*+r3

, �19b�
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here

ed0 =
c12

w1 + w2
*
, er1 =

c11

w1 + w1
*
, er2 =

c22

w2 + w2
*
,

ed1 =
w1 − w2

�w1 + w1
*��w1

* + w2�
�p1c21 − p2c11�,

ed2 =
w2 − w1

�w2 + w2
*��w1 + w2

*�
�p2c12 − p1c22�,

ed1� =
w1 − w2

�w1 + w1
*��w1

* + w2�
�q1c21 − q2c11�,

ed2� =
w2 − w1

�w2 + w2
*��w1 + w2

*�
�q2c12 − q1c22�,

er3 =
�w1 − w2�2

�w1 + w1
*��w2 + w2

*��w1 + w2
*�2

�c11c22 − c12c21�,

ith cij= �pipj
*+qiqj

*� / �wi+wj
*�, �i=wi��+ iwis�, pj, qj, wj �j

1,2� being arbitrary complex parameters.
Although the total energy of the vector soliton is con-

erved, the distribution of the energy density for each
omponent may change due to the interaction between
wo components. In fact, both elastic and inelastic colli-
ions can be obtained by changing the relative phase of pi
nd qi. In Fig. 3, we have plotted the intensity profiles in
wo different cases of �− component of the signal field ver-
us dimensionless time t /�0 and distance z / �2LD�. (The
volution of the �+ component is omitted here.) The sys-
em is still based on the 87Rb atom, and the physical pa-
ameters are the same as those used in Fig. 2. In the
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ig. 3. The intensity profiles of collision between two �− compo-
ents of superluminal vector solitons. (a) and (b): Waveshape of

�s1 /U0�2 with w1=1+ i, w2=1.5− i, and p1=p2=q1=q2=1. (c) and
d): Waveshapes of ��s1 /U0�2 with w1=1+ i, w2=1.5− i, p1=q1
q2=1, and p2=ei� ���64° �. The results in (a) and (c) are ob-

ained by numerically integrating Eqs. (18a) and (18b), where
mall perturbations R1 and R2 have been taken into account. The
esults in (b) and (d) are obtained by numerically integrating
qs. (3) and (5). The parameters are the same as those used in
ig. 2.
imulation in Fig. 3(a), Eq. (19) is chosen as an initial con-
ition with w1=1+ i, w2=1.5− i, and p1=p2=q1=q2=1.
he result is obtained by numerically integrating Eqs.

18a) and (18b), where small perturbations R1 and R2
ave been taken into account. We see that, in this case, an
lastic collision between two �− components of vector soli-
ons is realized. In panel (c), the initial condition is still
q. (19), but taking p2=ei� with ��64°. One sees that, in

his case, an inelastic collision occurs instead. In Figs.
(b) and 3(d), we show the waveshape of ��s1 /U0�2 after
ropagating to z=7.5 cm with the same initial conditions
s those used in Figs. 3(a) and 3(c). The results are ob-
ained by numerical simulations starting directly from
qs. (3) and (5).
The results obtained here raise the possibility of real-

zing new types of optical soliton switching and logic
ates. Because group velocities of the two components of
uperluminal vector optical solitons are well matched and
aster than light speed in vacuum, the switching and logic
ates based on such superluminal vector optical solitons
an be very fast [30,31].

. DISCUSSION AND SUMMARY
e have proposed a scheme to generate and propagate su-

erluminal vector optical solitons based on a room-
emperature four-level ARG medium. Contrary to the pre-
iously used EIT-based scheme, which is absorptive in
ature, the new scheme is based on the key idea of the
ignal field operating in a stimulated Raman emission
ode and, hence, can eliminate all attenuation and dis-

ortion at room temperature. By means of a method of
ultiple scales we have derived a couple of NLS equa-

ions that govern the envelope evolution of two polariza-
ion components of the signal field. Superluminal Mana-
ov vector soliton solutions have been obtained under a
et of realistic physical parameters associated with 87Rb
toms. We have shown that the input power needed for
enerating superluminal vector optical solitons can be
ery low. We have carried out a numerical simulation for
hecking the stability of the superluminal vector optical
olitons and demonstrated that such vector solitons are
ather robust. We have also made a numerical investiga-
ion on the collision between two bright superluminal vec-
or optical solitons. Both elastic and inelastic collisions
ave been observed, thereby raising the possibility of de-
igning rapidly responding optical switching and logic
ates based on the superluminal vector optical solitons in
he ARG system working at room temperature.
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