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We propose a scheme to generate vector optical solitons in a four-level active-Raman-gain medium. We show
that this scheme, which is fundamentally different from that using optical fibers and that via electromagneti-
cally induced transparency, is capable of achieving robust vector optical solitons with superluminal propagat-
ing velocity. We demonstrate that such vector optical solitons can be generated at room temperature and with
very low light intensity. We investigate also the interaction between two superluminal vector optical solitons
and point out that their elastic and inelastic colliding properties can be used to design rapidly responding op-
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tical soliton switching and logic gates. © 2009 Optical Society of America

OCIS codes: 270.0270, 190.3270.

1. INTRODUCTION

Most vector optical solitons are solutions of two coupled
nonlinear Schrodinger (NLS) equations, which describe
the envelope evolution of two polarization components of
an electromagnetic field in a nonlinear optical medium.
There has been much interest focused on the temporal
[1-6] and spatial [7-9] vector optical solitons in various
physical systems, which is due to their promising applica-
tions for optical information processing and transmission
[10,11].

As far as we know, up to now vector optical solitons are
produced in passive media such as optical fibers,
waveguides, and photorefractive materials [1-11] (except
for the work by Cundiff et al. where vector optical solitons
are generated in a pumped fiber laser [12]), in which far-
off resonance excitation schemes are employed in order to
avoid unmanageable optical attenuation and distortion.
As a result, nonlinear effect in these media is very weak
and, hence, to form a vector optical soliton very high input
light power is needed. Furthermore, because of the lack of
distinctive energy levels and selection rules, an active
control of vector optical solitons in such far-off resonant
systems is difficult to sustain. In addition, vector optical
solitons produced in far-off resonant media generally
travel with a speed very close to ¢, the speed of light in
vacuum, and they require an extended propagation dis-
tance in order to generate.

In recent years, considerable attention has been paid to
the study of optical propagation via electromagnetically
induced transparency (EIT), in which an on-resonance ex-
citation scheme is used [13]. Based on several interesting
features under weakly driven EIT conditions, the possibil-
ity of generating ultraslow optical solitons has been ex-
plored recently [14-18]. However, weakly driven EIT
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schemes still have some inherent drawbacks, including
the significant signal field attenuation and distortion at
room temperature and the very long response time due to
the ultraslow propagating velocity. These drawbacks may
become obstacles in developing further applications of
room-temperature and ultrafast all-optical devices for
EIT schemes.

The study on superluminal propagation of light (i.e.,
light propagates in a medium with apparent group veloc-
ity exceeding c, or even becoming negative) is a topic with
a very long history [19]. Chu and Wong [20] presented the
first experimental demonstration of superluminal propa-
gation of an optical wavepacket in an absorptive medium.
In order to avoid substantial attenuation and to obtain a
stable superluminal propagation, Chiao [21,22] et al. sug-
gested the use of an on-resonant, active Raman gain
(ARG) medium with an inverted atomic population. Later
on, there appeared a large amount of theoretical and ex-
perimental investigations of superluminal propagation in
ARG atomic media [23-29]. An ARG system is fundamen-
tally different from that based on EIT. The signal field in
the ARG system operates in a stimulated Raman emis-
sion mode and, hence, may propagate with group velocity
faster than ¢, and it has no attenuation or distortion even
when the system works at room temperature.

Recently, it has been shown that a gain-assisted, large
and rapidly responding Kerr effect is possible by using a
room-temperature ARG medium [30]. A fast-responding
nonlinear phase shifter using an ARG system has also
been demonstrated [31]. These important works hint at
the possibility of realizing superluminal optical solitons in
ARG media. The authors of [32,33] made interesting the-
oretical studies on superluminal solitons in resonant
atomic media. However, in those works a short-pulse con-
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dition was used to neglect decay rates of atomic levels,
i.e., the solutions require the system to work in a coherent
transient regime. Without using such short-pulse condi-
tion, recent studies [34,35] have shown that superluminal
optical solitons can be generated and propagate stably in
a three-level ARG medium when working outside of a co-
herent transient regime.

In this paper, a four-level tripod system, which can be
realized by 3"Rb atoms, with an ARG configuration is pro-
posed to generate superluminal vector optical solitons.
Such a scheme is fundamentally different from those us-
ing passive media [1-12] and those via EIT-based atomic
media [18]. The vector optical solitons predicted here
have superluminal propagating velocity and can be pro-
duced at room temperature and under very low light in-
tensity. The interaction between superluminal vector op-
tical solitons display interesting elastic and inelastic
colliding properties, which may have potential applica-
tions in designing rapidly responding, low-light-level soli-
ton switching and logic gates.

The remainder of the paper is arranged as follows. In
Section 2, the theoretical model under study is intro-
duced, and its solution in a linear regime is presented. In
Section 3, an asymptotic expansion on Maxwell-
Schrodinger equations is made, and coupled NLS equa-
tions governing the time evolution of two polarization
components of a signal field are derived by means of a
method of multiple scales. In Section 4, weak-light super-
luminal vector optical soliton solutions are provided, and
their stability is discussed by means of numerical simula-
tions. In the same section, a numerical study is carried
out to explore the collision property of the superluminal
vector optical solitons. Finally, the last section contains a
discussion and summary of the main results of our work.

2. MODEL AND SOLUTIONS IN THE
LINEAR REGION

We consider a four-level, tripod atomic system interacting
with a weak, linear-polarized pulsed signal field of central
frequency w,/27 and a strong, linear-polarized continu-
ous wave pump field of frequency wp/27, respectively. The
two circular-polarized components of the signal field
drive, respectively, the transitions from |2)«|4) and
|3)«|4), while the pump field drives the transitions from
|1)«]4) (see Fig. 1), respectively. Here, states
| 1),]2), and |3) are sublevels of one atomic state due to a
Zeeman split induced by an applied magnetic field B.

1)
Fig. 1. Energy-level diagram and excitation scheme of a four-
state tripod atomic system interacting with a strong, linear-
polarized continuous-wave pump field of Rabi frequency (p and a
weak, pulsed signal field of two circular-polarized components o*
and o~ with Rabi frequencies ();; and Q,, respectively. A; is the
detuning between the corresponding optical field and the level |}).
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The electric field of the system can be written as
E=(8,&,+&_&) exp [i(kz - wst)]+eppexp [i(kp-r—wpt)]
+c.c.. Here &,=(%+i9)/\2 (5_=(%-i9)/\2) is the signal
field unit vector of the o* (¢7) circular polarization com-
ponent with the envelope &, (&,_), which drives the tran-
sition |3)«|4) (|2)«|4)). &p is the unit vector of the pump
field with the envelope Ep. For simplicity, we have chosen
the wavevector direction of the signal field along the z
axis.

The Hamiltonian of the system is H=H 0 +H', where H, 0
describes a free atom and H' describes the interaction be-
tween the atom and the optical field. In the Schrodinger
picture, the state vector of the system is expressed by
|‘I’(t)>s=E}‘=ICj(z,t){j), where |j) is the eigenstate of H,. Un-
der electric-dipole and rotating-wave approximations, the
Hamiltonian of the system takes the form

4
H-= 2 gl + i{Qpexpli(kp - r — wpt) ]| 4)(1| + Qyy
j=1
xexpli(kyz — wgt)]|4)2] + Qo
xexpli(ksz — w,t)]|4)3] + H.c., (1)

where g; is the energy of state 1, O1=(pa2-€.)E,_ 11,
Qgo=(P43 €,)Ep,/h, and Qp=(pyi-€p)E./h are relevant
half Rabi frequencies, with p;; being the electric dipole
matrix element associated with the transition from |j) to
|2).

For convenience, we employ an interaction picture to
eliminate fast spatial-temporal variables, which can be
obtained by making the transformation C;=A; exp{i[k; r
—(Sj/ﬁ+Aj)t]}, with k1=0, k2=k3=kpep—ksez, and k4
=kpep. The detunings A; are defined as Ay=wp—w;—(gy
—81)/ﬁ, A3=a)p—(1)s— (83—81)/ﬁ, and A4= wp— (84—81)/h. It
is noteworthy thatA=(s3—g9)/h=(2up/h)gB is the Zee-
man shift of atomic sublevels with ug, the Bohr magne-
ton, and g, the gyromagnetic factor. Then we obtain the
Hamiltonian in the interaction picture

Hipy = H[A52)(2] + Ag|3)(3| + Agl4)(4[] - ALQH4X1| + Qyy]4)
X{(2| + Qy04)(3| + H.c.]. (2)

Using the Schrodinger equation  ihd|W(¢))in/ ot
=H; |V (#))ine With [W(£))ine=(A1,A9,A5,A4)T (T represents
transpose) one can readily obtain the equations governing
atomic response

J
(l% + d2,3>A2’3 + Q:l,sZA4 = 0, (33)

d
(ig+d4)A4+QPA1+QslA2+QSZA3=O7 (3b)

with E;=1|Aj|2= 1, where A; (j=1 to 4) is the probability am-
plitude of the bare atomic state |j). Note that in Eq. (3) we
have defined d;=A;+iv; (j=2,3,4), with y; being the decay
rate of the level |j). We assume that the system works at
room temperature, and thus the Doppler effect is signifi-
cant. In order to suppress a large gain and the Doppler
effect, we choose the one-photon detuning A, to be much
larger than any Rabi frequencies, Doppler broadened line
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widths, atomic decay rates, and frequency shift induced
by the pump field.

To obtain the equations of motion for Q. (z,f) and
QO o(z,t), we use the Maxwell equation

1 #E 1 #P

c? at? 8002 at?

(4)

with
P =N {puAA] expli(kp - r - wpt)] + PsoA.A, expli(kz
- wgt)]+ PasAA; expli(kz — wit)] +c.c.}.

Under a slowly varying envelope approximation, Eq. (4) is
reduced to

Jd 19
l(;'l- ;5)981,824' KA4A;3=0, (5)
where K=Naw5|p24|2/(280cﬁ) 2Naws|p34|2/(2800h) with Na
being the atomic density, poy (P34) the electric-dipole ma-
trix element for the transition from [2) (|3)) to |4).

Before solving the coupled nonlinear Egs. (3) and (5), a
simple physical analysis on linear property of the system
is useful. We assume that atoms are initially populated in
the state |1). Equations (3) and (5) admit the steady-state
solution A1= 1/\5“’1+|Qp/d4|2, A2=A3=0, A4=
—Qp/(dg\1+]Qp/d4l?), and Q=05 =0. It is easy to obtain
the solution of linear excitation around this steady state,
which is proportional to exp{i[K(w)z— wt]}. The dispersion
relation of the linear excitation displays two branches,
which are given by

w K|QP‘2

C ,
¢ (@-dj)(ds+ ]2

K1,2 = (6)

corresponding to ¢~ and ¢* components of the signal field,
respectively.

By Taylor-expanding Eq. (6) around the central fre-
quency of the signal field w, (i.e., at v=0) we obtain
Kl(a))=K01+K11w+K21w/2+(’)(w3) and Kg(a)) =K02
+K12(1)+K22(1)/2+O((1)3), with ‘KLJ=((9LK]((1))/(9(1)1)|GI:0
Here, K01=<p1+ia1/2 (K02=Q02+i(12/2) with o1
=—k[Qp[? s/ (|dol*|d4f?) (po=—-r|Qp[*As/(|d3[?|d4l*) and ay
==2k|Qp[*yo/ (|daf?|d4l?) (ag=-2kQp|*ys/(|d5[*|d4|?)) being
the phase shift and absorption coefficient, respectively.
Note that the two polarization components of the signal
field in fact acquire gain during propagation because «;
and «y are always negative. This is very different from an
ElT-based system, which is inherently absorptive. The
group velocity of the o~ (o%) component of the signal field
is given by Vgl = 1/R6(K11) =c/ng1 (Vg2= l/Re(Klz) =c/ng2)
with the group index ngy=1+cx|Qp|?(v3—A3)/(|ds/*d4l?)
(ngo=1+ck|Qp(v5-A3)/(d3l*d4/»). Thus, if y3>As (y5
> A3) one obtains 0 <V, <c (0 <Vzy<c) (corresponding to
a subluminal propagation); if y,<Ay (y3<Aj3) one has
Va1>c (Vga>c) or Vg <0 (V49 <0) (corresponding to a su-
perluminal propagation). K9y (K99) represents the group-
velocity dispersion of the o~ (o*) component of the signal
field.
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3. ASYMPTOTIC EXPANSION AND
NONLINEAR ENVELOPE EQUATIONS

We know that group-velocity dispersion will result in a
spreading of the signal field, which is harmful for optical
information processing. It is natural to use nonlinear ef-
fects, i.e., self-phase modulation (SPM) and cross-phase
modulation (CPM) of the signal field, to balance
dispersion-induced spreading. To investigate the influ-
ence of both nonlinear and dispersion effects in a trans-
parent way, we apply a method of multiple scales to de-
rive nonlinear envelope equations of the signal field. For
this aim we make the asymptotic expansion A
=37 0e!AY (=1 to 4), O, =37 /0, and QSFE;;lalQ;é
with  AV=1/V1+]Qp/d,>, AY=AP=0, and A
=—Qp/(d\1+|Qp/d4?), where ¢ is a small parameter
characterizing the amplitude of the signal field. To obtain
a divergence-free expansion, all quantities on the right-
hand side of the expansion are considered as functions of
the multiscale variables z;=¢'z (I=0 to 2) and ¢;=¢'t (=0,
1). Substituting such expansion into Eqs. (3)-(5), we ob-
tain a series of equations for A(l), le), and QLIQ) (j
=1,2,3,4;1=1,2,3,...).

The leading (i.e., O(e)) order solution is given by Qill)
=Fyexp(i6;) (Q)=F,exp(ify) with 6;=K;(w)zq—wty (6,
=Ks(w)zo— wtp), here F; (Fy) is a yet to be determined en-
velope function of the o_ (o,) component depending on the
slow variables #; and z; (j=1,2). We also obtain A(ll)
=AP=0 and AY=[(K;-w/c)F:/(kAL")]exp(-it}) (A
=[(K,- w/c)F%/ (kAL ") exp(-i 6])).

At the second (O(¢2)) order, divergence-free conditions
for the second-order solution require

l[(?Fl/aZI + (1/Vg1)(9F1/at1] = O, (73)

i[ﬁF2/z921+ (1/Vg2)(9F2/19t1] =0, (7b)

where V,; and Vg4 are the (complex) group velocity of the
envelopes F; and F, respectively. The second-order solu-
tion reads

2

AP = By |F,[e 2, (8a)
n=1
1 /1 1 \oF,
AR =i - Zemif s, (8b)
2,3 +(0) V* gt
KA, "\ ¢ gl.82 1
K’; ,— wlc )
AP =- a2 o tQpBio |Fy ol e 122,
4n=1 1(144
(8¢)
with
1
By,

" 2kA (1 + |Qp/d,[?)

Kiy-wle Ki,-ole |K ;- ol
X - ) (9)

* +
d4 dy K|A£10)|2

where o= 82a1 (a2 = 8252).
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At the third (O(&®)) order, divergence-free conditions
yield the coupled nonlinear equations for F; and F:

Py Kn#Fy (Wyg [ Fy[? + WyolFol5)F, =0, (10a)
Il = — - + =Y, a
2 11 121872 )y
P2 KndT, (Was|Fy|2 + Wl Fo|)Fy =0, (10b)
l_____ + = b
7 2 i 2111 20[70|") o
where
K| Qp|? d2’3d4+(d2,3d4)*—|ﬂp|2 (11a)
11,22 = % ) a
d2,3|d2,3|2 (‘d4|2 + ‘QP|2)2
K| Qp|? d3ody+ (d3edsy)* ~ |Qp[?
Wigo1 = (11b)

d;3|ds,2|2 (Idal? +10p%)? ’
are the coefficients of SPM (W;; and Wyy) and CPM (W,
and Wy,), respectively. It is easy to prove that these non-
linear coefficients satisfy the relation Wi;Wgoo=WoWsy,
resulting from the symmetry of the configuration of the
system.

4. WEAK-LIGHT SUPERLUMINAL VECTOR
OPTICAL SOLITON SOLUTIONS

We now consider possible soliton solutions of the coupled
nonlinear equations (10a) and (10b), which can be con-
verted into the following dimensionless form:

J duq ﬁ2u1
| —+8a1 |u1+i8s——8p1—5 ~ 2(z‘>’11|u1|2 +g12|u2\2)u1
s dor o>

:0, (IZa)

J (7u2 (9211/2
i\ —+8a2 |Us 185 —8p2— — 2(é,’22|u2|2 +g21\u1|2)u2
s do Jo?

-0. (12b)

Note that, while obtaining the above equations, we have
introduced the dimensionless variables s=z/(2Lp), o
= (t—Z/Vg)/T(), U= (Qsl/Uo)eXp[—i Re(KOl)z], and Ug
=(Qg9/Up)exp[—i Re(Ky2)z]). The coefficients are defined
by gai=ailp, gas=asLp, gs=2sign(é)Lp/Ls gp1
=K1/ Ky, &p2=sign(Kyy) and 811,12,21,22
= W11’12’21,22/|W22|, with 6= (l/Vgl_ l/ng)/2 and Vg
=2V,1Vyo/ (V414 Vo). Lp= 72/|Ky| is characteristic disper-
sion length, L s=7y/|4| is characteristic group velocity mis-
match length, with 7y being characteristic pulse length of
the signal field. Since our aim is to obtain solitonlike so-
lutions, in Egs. (12a) and (12b) we have assumed Lp is
equal to the characteristic nonlinear length of the system,
defined by Ly =1/(U3[Way)).

In general, Eqs. (12a) and (12b) are two coupled
Ginzburg-Landau equations with complex coefficients.
However, if a realistic parameter set can be chosen (see
below) so that these coefficients become real, Eqs. (12a)
and (12b) can be reduced into two coupled NLS equations
and, hence, one can obtain shape-preserving soliton solu-
tions. The coupled NLS equations admit bright-bright,

C. Hang and G. Huang

bright—-dark, and dark-dark vector soliton solutions
through a balance between the dispersion and nonlinear
effects [11]. The bright-bright vector soliton solution
reads

uq9=V1 9 sech oexpli(P 20+ Q1 95)], (13)

if the condition g99gp1=g19gp2 can be fulfilled. Here we
have defined P1=g4s/(2gp1), Po=-8s5/(28p2), 1
=—g3/(4gp1)-gp1 (Qa=-83/(4gp2)—8p2), and Ve=[(gp1
—gnV%)/gm]l/z. A bright-dark vector soliton solution is
given by

u;=V; sech oexpli(Pio+ Q18)], (14a)

Ug = VQ tanh o exp[i('P20'+ QQS)] (14b)

under the same condition given above, where P;
=g5/(28p1),  P2=-8s/(28p2),  Qi=-Pigs—8p1(1-P%)
-2g19V5,  Qo=Pags+8p2Ps—2820V5, and Vo=[(g1 V]
-gp1)/g12)"2. In both solutions given by Eqgs. (13) and
(14), V, is a free real parameter.

To demonstrate that the imaginary parts of the coeffi-
cients of Egs. (12a) and (12b) can be much less than their
corresponding real parts, we consider a set of realistic pa-
rameters relevant to a 8’Rb alkali atom vapor [30]. The
atomic levels can be chosen as [1)=|5Syy,F=1,mp=0),
|2>=|5Sl/2,F=1,mF= +1>, |3>=|5S1/2,F=1,mp=—1>, and
|4y=|5P1/9,F'=1,mp=0). For such system working at
temperature (around 300 K), the Doppler effect may con-
tribute linewidth broadening around 500 MHz, which
may degrade the effectiveness of an EIT-based scheme. It
is, however, much less important in an ARG-based
scheme, because we can choose a large one-photon detun-
ing A4 to suppress the Doppler effect. This can be easily
reached by taking A;=-2.0 GHz in the present system.
Specifically, the parameters are given by 2vy,=~2y3
=300 Hz, 2y,=500 MHz (a large value of y, is mainly due
to Doppler broadening), x=1.0x10°cm™ s, Qp=4.0
X107 s71, Ay=3.1x108s71, A3=2.9%x10%s7! (i.e, A=2.0
x10°% g71), N,=c/v,=0.8X 1074 cm, and 7,=0.7x10"%s.
With these parameters we get Ky;=-(1.27+i0.06
X107%)em™!,  Kpo=—(1.836+:0.07x103)ecm™! (e., o
=-0.12x10"% ecm !, ay=-0.14x10% cm™1), K;;=-(40.96
+10.004) X108 cm™!s, K19=-(46.81+i0.005)
X108 em™1s, Ky1=—(26.43+i0.004) X 10" em~1s2, Ky
=—(32.28+:0.005) X 107 em~1s2, W,;=—-(45.52+i0.002)
X 10717 em1 82, Wi9=—(49.05+:0.002) X 1017 cm~1 2,
Wy1=—(48.66+:0.003) X 1017 em™1 52, and Wyy=-(52.43
+i0.003) X 10717 em™! s2. We see that the imaginary part
of the coefficients are indeed much smaller than their cor-
responding real part. With these results we obtain Lp
=Ly;=1.5cm and Ls=24 cm. The system works in an
anomalous dispersion region with the group velocity
given by

Ve1=-8.1X10" (for o_ component), (15)

Vee=-17.1%x10" (for o, component), (16)

respectively. Consequently, the obtained vector optical

soliton travels with superluminal propagating velocity.
Shown in Fig. 2(a) is the result of numerical simulation

on the evolution of ¢~ component of the signal field versus
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Fig. 2. (a) Waveshape of [,;/Uy|? obtained by numerically in-
tegrating Eq. (12) with the bright-bright soliton solution as an
initial condition. (b) Waveshape of |Q),;/U,|? obtained by numeri-
cally integrating Eqs. (3) and (5) with the same initial condition.
(Waveshape of |Q.,/Uy|? is similar to [Q,;/Uy> and hence not
shown.) The parameters are given in the text [just below Eq.
(14)].

dimensionless time /7, and distance z/(2Lp) with the
above parameters. (The evolution of ¢* component is very
similar thus not shown.) The simulation is made by nu-
merically integrating Eqs. (12a) and (12b) and the bright—
bright soliton solution (13) as an initial condition. We see
that the superluminal vector optical soliton can propagate
stably over a long distance.

In order to make further confirmation on the superlu-
minal vector optical soliton solutions and check their sta-
bility, we have done additional numerical simulations
starting directly from Eqgs. (3) and (5) with the same pa-
rameters and initial condition. Shown in Fig. 2(b) is the
waveshape of |Q,/Uy|? after propagating to z=7.5 cm.
One can see that the pulse shape suffers no serious dis-
tortion except for some small radiations (ripples) appear-
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ing on its two wings due to the contribution of the high-
order dispersion and high-order nonlinear effects that
have not been included in the analytical approach given
above. Thus the superluminal vector soliton in the system
is indeed rather robust during propagation.

The input power of the vector optical soliton can be es-
timated by Poynting’s vector. It is easy to get the average
flux of energy over carrier-wave period P;=P"** sech?[(t
-2/Vg1)/ 1] and Py=P3* sech?[(t-2/V,y)/ 7], with the
peak power

P~ P, = 5.2 X 108 mW., (17)

When obtaining this result we have taken |pos|=|pas|
=2.1X10"%" ¢cm C and the beam radius of the signal laser
as R, =0.01 cm. We see that, to generate the superluminal
optical vector soliton in this ARG system, only very low in-
put power is needed.

Notice that the weak-light vector solitons produced in
the present ARG system have many obvious advantages
over those based on EIT systems [18]. One of the advan-
tages is that the ARG system can work at room tempera-
ture and the vector solitons in such system suffer no seri-
ous absorption or Doppler effect. Another one is that the
vector solitons generated in the ARG scheme can travel
with superluminal propagating velocity, which is very
promising for the design of rapidly responding all-optical
devices [30,31].

Since the parameters of the present ARG system can be
actively manipulated, the coefficients of Eqs. (12a) and
(12b) can be easily tuned to allow a Manakov system to be
realized[36], which is a completely integrable and sup-
ports multisoliton solutions. In fact, with the parameters
of the 8Rb system given just below Eq. (14), we have
841=842=-0.2X107%, g,=0.1, gp1=-0.8, gpe=-1.0, g1;
=g19=g91=-0.9, and g99=—1.0. Then Eqs. (12a) and (12b)
can be written into the perturbed Manakov equations

(9u1 (;ZUI
i+ —— 2w+ lusPhu =Ry, (18a)
5u2 aZUQ 9 2
— + —— + 2 + =Ry, 18b
s oo el s = Ry (18

with R{, Ry being small quantities. When R; and R, are
neglected, one obtains the bright vector soliton solution of
Manakov equations [37-39]:

pie” +pge™ + et nyragrdy 4 o mF Tzt Myt

up=

1+ e”l*’f{”l + e7]1+n;+d0 + en’;+ta2+dg + e7/2+n;+r2 + enl+7]i+n2+7/;+r3’

(19a)

£ ’ # ’
gieMm+qgqe™+e mAT ety | oMMty

Ug =

- . & & * & # & ’
1+ eM+*1 4 Mt lytdo 4 pWyHtagtd | | oMot )4 | o M+ + Mt 4Ty

(19b)
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where
d C12 C11 Cag
e 0= £ erlz R er2= *
wi+w, wy+w) wo +w,
d Wi — Wy
1= % s (pICQI_pZCll)’
(w1 +w) (W] +ws)
Wo — Wy
d
2= " —(Pac12—P1C29),
(w2+w2)(w1+w2)
d' Wy — Wy
1= — (q1€21 = q2c11),
(w1 +w) (W] +ws)
d Wy — Wy
2= (q2c12—q1C29),

(Wo +wy) (W +wy)

. |wy - wz|2
3

= ; " 2(011022 —C19€91),
(W1 +w) Wy +wy)w; +w

with cij=(pip;+QiQ;)/(wi+W%), mi=w;(o+iw;s), pj, qj, w; (j
=1,2) being arbitrary compjlex parameters.

Although the total energy of the vector soliton is con-
served, the distribution of the energy density for each
component may change due to the interaction between
two components. In fact, both elastic and inelastic colli-
sions can be obtained by changing the relative phase of p;
and q;. In Fig. 3, we have plotted the intensity profiles in
two different cases of o~ component of the signal field ver-
sus dimensionless time ¢/7, and distance z/(2Lp). (The
evolution of the o component is omitted here.) The sys-
tem is still based on the 3’Rb atom, and the physical pa-
rameters are the same as those used in Fig. 2. In the

3.75
z (cm)

tius) ©

100 t(us) © 100

Fig. 3. The intensity profiles of collision between two ¢~ compo-
nents of superluminal vector solitons. (a) and (b): Waveshape of
|Q1/Uy|? with wy=1+i, wy=1.5-1, and p;=p,=q1=q,=1. (c) and
(d): Waveshapes of |Q,/Uy|?> with w;=1+i, wy=1.5-i, p;=q;
=qo=1, and py=e'? (¢=<64°). The results in (a) and (c) are ob-
tained by numerically integrating Eqgs. (18a) and (18b), where
small perturbations R; and R, have been taken into account. The
results in (b) and (d) are obtained by numerically integrating
Egs. (3) and (5). The parameters are the same as those used in
Fig. 2.
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simulation in Fig. 3(a), Eq. (19) is chosen as an initial con-
dition with w;=1+i, wy=1.5-i, and p;=ps=qi=q9=1.
The result is obtained by numerically integrating Egs.
(18a) and (18b), where small perturbations R; and R,
have been taken into account. We see that, in this case, an
elastic collision between two ¢~ components of vector soli-
tons is realized. In panel (c), the initial condition is still
Eq. (19), but taking py=e!? with ¢=<64°. One sees that, in
this case, an inelastic collision occurs instead. In Figs.
3(b) and 3(d), we show the waveshape of [ ;/U|? after
propagating to z=7.5 cm with the same initial conditions
as those used in Figs. 3(a) and 3(c). The results are ob-
tained by numerical simulations starting directly from
Egs. (3) and (5).

The results obtained here raise the possibility of real-
izing new types of optical soliton switching and logic
gates. Because group velocities of the two components of
superluminal vector optical solitons are well matched and
faster than light speed in vacuum, the switching and logic
gates based on such superluminal vector optical solitons
can be very fast [30,31].

5. DISCUSSION AND SUMMARY

We have proposed a scheme to generate and propagate su-
perluminal vector optical solitons based on a room-
temperature four-level ARG medium. Contrary to the pre-
viously used ElT-based scheme, which is absorptive in
nature, the new scheme is based on the key idea of the
signal field operating in a stimulated Raman emission
mode and, hence, can eliminate all attenuation and dis-
tortion at room temperature. By means of a method of
multiple scales we have derived a couple of NLS equa-
tions that govern the envelope evolution of two polariza-
tion components of the signal field. Superluminal Mana-
kov vector soliton solutions have been obtained under a
set of realistic physical parameters associated with 8"Rb
atoms. We have shown that the input power needed for
generating superluminal vector optical solitons can be
very low. We have carried out a numerical simulation for
checking the stability of the superluminal vector optical
solitons and demonstrated that such vector solitons are
rather robust. We have also made a numerical investiga-
tion on the collision between two bright superluminal vec-
tor optical solitons. Both elastic and inelastic collisions
have been observed, thereby raising the possibility of de-
signing rapidly responding optical switching and logic
gates based on the superluminal vector optical solitons in
the ARG system working at room temperature.
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