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We investigate the collective modes of a quasi-two-dimensional (Q2D) superfluid Fermi gas in Bardeen—-Cooper—
Schrieffer Bose-Einstein condensation (BCS-BEC) crossover. For solving a generalized Gross—Pitaevskii equation
by using a time-dependent variational method, we take a trial wavefunction with the form of hybrid Gaussian-
parabolic type, which not only reflects the Q2D character of the system and also allows an essentially analytical
approach of the problem. We present a Q2D criterion that is valid for various superfluid regimes and displays

clearly the relation between the maximum condensed particle number and the parameters of trapping potential
as well as atom—atom interaction. We show that due to the small particle number in the Q2D condensate, the

contribution to oscillating frequencies by the quantum pressure in the strong confinement direction is significant

and hence a Thomas—Fermi approximation can not be used.

PACS: 03.75.Ss, 32.80.Pj, 67.40.Db

Since the first experimental realization of the quan-
tum degenerate Fermi gas in a trap,!! much interest
has been focused on the study of ultracold fermionic
atoms and fermionic superfluidity.2=%! Since for dilute
atomic systems the atom—atom interaction, character-
ized by s-wave scattering length as, can be tuned by
magnetic-field-induced Feshbach resonance, one can
manipulate the interaction strength over the range
from —oo to 400 in a controllable way. Using this
technique condensed fermionic pairs and the Bardeen—
Cooper—Schrieffer Bose-Einstein condensation (BCS-
BEC) crossover has been realized in a series of beau-
tiful experiments.3 At the same time, the collec-
tive excitations in various superfluid regimes have also
been investigated intensively.l24—8 These dramatic
progress raises an important question about the role
of dimensionality effect in ultracold fermionic atom
gases.

In this Letter, we investigate the collective exci-
tations of a quasi-two-dimensional (Q2D) superfluid
Fermi gas in BCS-BEC crossover. Based on a super-
fluid order-parameter equation and a polytropic ap-
proximation for equation of state, we calculate the
excitation spectrum by using a time-dependent vari-
ational method. We present a unified Q2D criterion,
which is valid for the various crossover regimes. We
demonstrate that, due to the small particle number
in the Q2D condensate, the modification to oscillat-
ing frequencies by the quantum pressure is significant
and hence a Thomas-Fermi approximation (TFA)[!
cannot be used.

In the ground state of a superfluid fermionic atom
gas, all particles are paired with n/2 being pair den-
sity. These pairs, called the condensed fermionic atom

pairs, are originated from two-component fermionic
atom systems (i.e. °Li or *°K) with different internal
states. By means of Feshbach resonance one can eas-
ily realize the transitions from BCS to BEC regimes.
When as; < 0 (as > 0), the system is in a BCS
(BEC) regime. By defining a dimensionless quan-
tity n = 1/(kpas), where kp = (37r2n)1/3 is Fermi
wavenumber, one can distinguish several different su-
perfluidity regimes,|”®l ie. BCS regime (n < —1),
BEC regime (n > 1), and BCS-BEC crossover regime
(=1 < n < 1). In particular, the point n = 0 is called
the unitarity limit, corresponding to as = £o00. Both
theoretical and experimental studies demonstrate that
the transition from BCS regime to BEC regime is
smooth, which hints that one can study the physical
property of the system in various superfluid regimes
in a unified way.

In the experiments on the superfluid of ultracold
fermionic atom gas, the system is confined in a finite
space by an external trapping potential.?3] The in-
homogeneous character of the system makes a micro-
scopic approach based on a quantized model Hamil-
tonian difficult. However, notice that at very low T
(around 10~8 K) low-frequency collective modes can-
not decay by formation of single fermionic excitations
because of the gap in their energy spectrum. Since
thermal excitations play no significant role, the system
can be taken as a perfect superfluid and may be well
described by the generalized Gross—Pitaevskii (GGP)
equation, 6=l

L0 R _,

ihoth = [ = 52+ Ve () + ()], (1)
where 1 is superfluid order parameter, n = ||? is
superfluid density satisfying the normalization condi-
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tion [drn = N (N is the particle number in the con-
densate), Vexs is an external trapping potential, p(n)
is the chemical potential (also called the equation of
state) obtained when V., = 0. Different superfluid
regimes are characterized by u(n), which can be ob-
tained by using a quantum Monte Carlo simulation!®!
or some other techniques.®! It can be shown that[6~8!
p(n) = dne(n)]/on, where e(n) is the ground state
energy per particle. For a dilute Fermi gas it can

3
be written as e(n) = gEF(’I’L)U(T]), where ep(n) =

i%k% /(2m) is the Fermi energy; o(n) is a yet unknown
function. Some asymptotic expressions of o(n) have
been obtained by fitting calculating data.[®19 Inter-
polating these asymptotic expressions for small and
large |n| one can obtain the following general formula:
o(n) = a1 — azarctan|asn(By + [n])/(B2 + |n])]. The
fitting parameters o; (j = 1,2,3) and 5; (I = 1,2)
have been given in Ref. [7].

A simple approach for the equation of state is to
take a polytropic approximation, i.e. one assumes!® 8!
u(n) = po(n/ng)?, where po and ng are reference
chemical potential and particle-number density of the
system, introduced here for the convenience of later
calculation. It is easy to show that the effective

So(n) -

2?770’(17) + Z—;a”(n)}/[a(n) - ga’(n)]. There are two

well-known limits for the value of the polytropic index
~. Oneisy = 2/3 at n = —oco (BCS limit) and another
one is ¥y =1 at n = co (BEC limit). Mathematically,
the polytropic approximation, is a little rough but it
has the advantage of allowing one to obtain an an-
alytical expressions for the eigenfunctions and eigen-
frequencies of collective modes® 8! for all superfluid
regimes in a unified way.

polytropic index takes the form["8! ~(n) = [

As in most experiments, 3 we consider a har-
monic trapping potential of cylindrical symmetry,
with the form Vg (r) = %mwﬁ [A2(2% +y?) +22]. Here
A =w, Jw,, with w, and w, being the harmonic fre-
quencies in the radial (i.e.  and y) and axial (i.e. 2)
directions, respectively. For a Q2D (disc-shape) trap
one has A <« 1.

To determine the dynamics of the Q2D condensate
we employ a time-dependent variational method™!! to
solve the GGP equation (1). The corresponding La-
grange density is £ = ih(y0y* /0t — ¢*0¢/dt)/2 +
B2V /(2m) + Vexe (r)[9]* + pol¢ 272/ (ng (v + 1)).

Because the system is strongly (weakly) confined
in the axial (radial) direction, the condensate wave-
function in the axial (radial) direction should have a
Gaussian (parabolic) form. Thus we choose the fol-
lowing hybrid trail variational wavefunction:!]

1 2
:232 2 _Z . 2 2 2
Y )276 207 i(Buw®+Byy*+B.27)

¢:A”< 22

)

(2)

where 1;(t) and B;(t) (j = =z,y,2z) are condensate
width and phase parameters. Their time evolution
determine completely the dynamics of the conden-
sate. The normalization condition requires A% =
(14 )N/ (ol L. m3/2).

Using the integration L = f/Ldr, we obtain the
Lagrangian

_hN 2 5 12 5 12 5 12
=5 g g etz + At + 6-22]
h2N ~ 9 1
- 12 2l2 2l2 -
m {2 +1( +ﬁ )+/6 +4l2}
mez 2 272 2 2
; [2 N +l)+l}

[+ 12y N
V(L +27)nd (lplyl,m3/2)7’

(3)

where the quantum pressure (i.e. kinetic energy) term
in the radial (axial) direction has been omitted (re-
tained) because the wavefunction varies slowly (fast)
in this direction. The Euler-Lagrange equations yield
the dynamic equations for the condensate widths [;(¢)
and phases (§;(t). Defining the dimensionless time
T = w,t and the width d; = [;/a, with a, = \/h/mw,
(i.e. the harmonic oscillator length in the axial direc-
tion), we obtain

2
%di = = Xjd; + dj(djizdz)v (1 - 1?21 i )
+ e @
where A, = A, =X, A, =1 and
¢, _ 201y A 5
VI3 /2] RS2

To find a ground state solution we set d; = d;o and
by eliminating d,o and d,o we obtain the equation for
dzO

s <C/A2>1+’y 1 (6)
1429\ da d2,

Since the first term on the right-hand side of
Eq.(6) is much smaller than the second term and
hence can be safely neglected. Then we obtain d,q =
1, which means that the ground state width of the
condensate wavefunction in the axial direction is just
the axial harmonic oscillator length I, = /h/mw..
This is the minimum width the condensate shape can
attain and it is also the solution for the width of a non-
interacting gas. Thus the gas along z-direction has a
feature of a noninteracting gas.

We now give the criterion for a Q2D superfluid
Fermi gas. By a detailed calculation we obtain

N e
p=yh. |1+ (CHYNZ) T3 | (7)

The Q2D condition of the system is Nhw, < pu <
Nhw,. From the result given by Eq. (7) we obtain the
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Q2D criterion:

1

N < Nmax = mv
ph

(8)

where C,, = C,/N" is constant independent of N
(see Eq. (5)). The inequality (8) shows clearly the con-
straint condition among the superfluid particle num-
ber N, the anisotropic parameter A, and the poly-
tropic index 7. Figure 1 presents the curves of
maximum particle number in the condensate N =
Numax(n,7) for fixed A based on the criterion (8),
in which we have chosen w, = 27 x 2200Hz and
A = 7/2200. The parameters ng and po, appearing
in Eq. (5), are chosen as the peak density of the con-
densate (i.e. ng = n(0) = (v + 1)N/(vlzolyol.0m/?))
and the chemical potential per particle in the BCS
limit (i.e. pp = h2(37r2)2/3n(2)/3/(2m)), respectively.
From the figure we can see that the maximum parti-
cle number in the BCS regime is less than that in the
BEC regime, but both of them have the same order of
magnitude (around 10? for given w, and A). The inset
shows the case for w, = 27 x 700Hz and A = 1/100.
In this situation the maximum particle number is low-
ered to about 103. Thus for different A, the maximum
particle number in the superfluid can be quite differ-
ent. In general, as \ decreases, N, ., increases in a
way inversely proportional to A? (see Eq. (8)).

16000

14000

Nmax

12000

1/{kpas)

Fig. 1. The relation between the maximum particle num-
ber in Q2D Fermi superfluid and the interaction param-
eter n = 1/(kpas). The trapping parameters are w, =
2m X 2200Hz and XA = 7/2200. The inset shows the case
for w, = 700 X 2w Hz and A = 1/100.

Our next topic is to investigate the collective
modes in the Q2D superfluid Fermi gas. Notice that
the trail wave function Eq. (2) allows three modes to
be generated. For the axially symmetric trap, the
three modes are m = 2 mode and the m = 0 low-
and high-lying modes, where m denotes the angular
momentum quantum number. In order to reach their
eigen frequencies and corresponding eigenvectors, we
take d; = djo+e;(t) with €;(t) being small excitations.
Then we obtain

(2+7)Cy v 7Cp
dog " dyd, dyg " d g dY, dy " diydg”
Ew 7Ch (2+7)Cy 7Ch Cu
10 Il R e Loy T, ol Ly S R
7*Cp 7*Cp 2+ )7Cp 4

it it
(1+ 27)d207d;0d20 7
Letting €;(t) = €;(0) exp(—iwt)+c.c. and solv-
ing the above equation, we obtain the eigenvalues
wny = 2a and

e, = 5y (20 + 2 +)+ (247)
. (’yc + 74(; I i’Y)> + \/E}, (10)

where we have defined a = D = C,/(d>*d},), ¢ =
Dd2,/d2, (dro = do = dyo), and R = {2a(1+29)(1+
7) — (24 7)[ye +4(1+27)/(2+ 7))} +89°0% (1 +27)
with b = Dd,9/d.o. The normalized eigenvectors
corresponding to the eigenvalues are given respec-
tively by (—1,1,0) and (1,1,Vyk4+), where Vogy =

1
_%[Qa(l +7) — w?/Ki].

From these results we see that the three eigen-
modes display different properties. The first eigen-

(1+29)d}ody " dog”

(1+ QV)d;od;/odz(—)M d?O

mode with oscillation frequency wyx corresponds to
m = 2 mode and has oscillation in z and y direc-
tions only. The other two eigenmodes with frequencies
wyk, correspond to m = 0 mode and have oscillation
mainly along the z direction (for the mode wyx, ) or
mainly in the 2 and y directions (for the mode wyg ).

In Fig.2 we have shown the eigenfrequencies and
the eigenvectors for the mode wy, in the BCS-BEC
crossover. The trapping parameters are chosen as
w, = 27 X 2200Hz and A\ = 7/2200 (solid line) and
w, = 271 X 700 Hz and A = 1/100 (dotted line). Shown
in Figs. 2(a) and 2(b) (Figs. 2(c) and 2(d)) are respec-
tively the eigenfrequency and the z component of the
eigenvector in the presence (absence) of quantum pres-
sure. From the figure we see that: (i) It is an in-phase
breathing mode, i.e. all three components in the eigen-
vector have the same sign. However, the oscillation is
mainly along z direction because the z component of
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the eigenvector is much larger than the x and y com-
ponents. (ii) The oscillating frequency in the BEC
regime is larger than that in the BCS regime. (iii) The
frequency ratio w, i, /w. increases as A decreases. (iv)
The quantum pressure has a significant contribution
to the oscillation eigenfrequency. Thus a TFA cannot
be used to the Q2D problem in the strong confinement
direction.
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Fig. 2. The relation between the oscillating frequency and
the interaction parameter n = 1/(kpas) of the in-phase
breathing mode w., k. . The oscillation is mainly along z
direction. (a) and (b) The oscillating frequency and the
z-component of the eigenvector. The trapping parame-
ters are w, = 27 X 2200Hz and A = 7/2200 (solid line),
w, = 2w X 700Hz and A = 1/100 (dotted line). (c) and (d)

The same as (a) and (b) but in the absence of quantum

pressure.
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Fig.3. The oscillating frequency of the out-of-phase
breathing mode wyx _ in the BCS-BEC crossover. The
oscillation is mainly in the z — y plane. (a) and (b) The
oscillating frequency and the z-component of the eigenvec-
tor. The trapping parameters are w, = 27 X 2200 Hz and
A = 7/2200 (solid line), w. = 27w X 700 Hz and A = 1/100
(dotted line). (c) and (d) The same as (a) and (b) but in

the absence of quantum pressure.

Figure 3 shows the eigenfrequencies and the eigen-
vectors for the mode wyx_ as a function of interaction

parameter n. The trapping parameters are chosen as
the same as in Fig. 2. Figures 3(a) and 3(b) (Figs. 3(c)
and 3(d)) are respectively the eigenfrequency and the
z component of the eigenvector in the presence (ab-
sence) of quantum pressure.
phase breathing mode shown in Fig. 2, in this case we
have a out-of-phase breathing mode, i.e.
lating direction in the z component has opposite sign
with the oscillating directions in the xy components.
However, we note that the magnitude of the z compo-
nent is very small and hence the oscillation is mainly
in the z and y plane. In addition, for this out-of-phase
mode the frequency ratio wyx /w, is nearly indepen-
dent of the A, which can be seen in Figs. 3(a) and 3(c),
in which the curves for two different A are coincident.

In conclusion, we have investigated the collective
modes in a Q2D superfluid Fermi gas in BCS-BEC
crossover. By taking a hybrid trial wavefunction we
have solved the GGP equation by means of a time-
dependent variational method. We have provided a
Q2D criterion for superfluid Fermi gas that is valid
for various superfluid regimes and displays clearly the
relation between the condensed particle number and
the parameters of trapping potential as well as atom-
atom interaction. We have demonstrated that, be-
cause of the small particle number in the Q2D con-
densate, the contribution to oscillating frequencies by
the quantum pressure in the strong confinement direc-
tion is significant and hence a TFA cannot be used.
To obtain a Q2D superfluid Fermi gas, one can use
the method by continuously removing atoms from a

Different from the in-

the oscil-

highly anisotropic trap or to increase gradually the
trap anisotropy from moderate to very large values
whilst keeping the atom number fixed. The results
presented in this work may be useful for understand-
ing the physical properties of low-dimensional super-
fluid Fermi gases in BCS-BEC crossover and guide
new experimental findings in future.
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