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Abstract

The Maxwell–Schrödinger equations for a generalized V-type system with N + 1 atomic levels are solved exactly. Three types of coupled
soliton solutions are given explicitly. These optical solitons can have a propagating velocity much less than the light speed in vacuum.
© 2006 Elsevier B.V. All rights reserved.

PACS: 42.50.Md; 42.50.Gy
Solitons have been observed in many states of matter rang-
ing from solid, such as optical fiber (optical soliton [1]), to
Bose–Einstein condensed atomic vapor (matter wave solitons
[2–4]). In recent years, much work has been done on the study
of soliton excitations in resonant optical media, including the
self-induced transparency (SIT) [5] in two-level atoms, optical
simultons in three- [6–9], four- [10], and five-level [7] media,
lasing without inversion [11], phaseonium [12], electromagnet-
ically induced transparency (EIT) [13], and ultraslow optical
solitons [14,15]. A constant focus of interest is to obtain analyt-
ical soliton solutions of Maxwell–Schrödinger (MS) equations
that control the evolution of optical pulses and atomic-state
probability amplitudes.

Recently, optical pulse propagation in multi-level media has
received considerable attention [16]. Due to the existence of
multiple dark states, such systems can be used to realize many
interesting quantum interference effects, including coherent
population transfer, and multiple EIT. However, many theo-
retical approaches for solving the MS equations of multi-level
systems involve linear, steady-state or adiabatic approximations
and hence exclude the possibility of getting an analytical soliton
solution. In this work, we go beyond these approximations and
show that the propagation of shape-preserving optical pulses in
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the form of coupled optical solitons is possible in a generalized
V-type system with N + 1 levels.

We consider the propagation dynamics of a laser field con-
taining N optical pulses that propagate in z-direction and in-
teract resonantly with a (N + 1)-level atomic medium. The
level configuration of the system takes a form of generalized
V-type, in which the laser pulses couple N upper levels |j〉
(j = 1,2, . . . ,N ) to a single lower level (|0〉), as shown Fig. 1.
Obviously, such model is a direct generalization of a usual
three-level V-type system that has been investigated intensively
in recent years [17,18]. The electric-field vector for the N opti-

Fig. 1. Schematic diagram of the (N + 1)-level system considered. A lower
level is coupled to N upper-levels by N resonant laser fields.
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cal pulses can be written as

(1)E =
N∑

j=1

ejEj (z, t) exp
[
i(kj z − ωj t)

] + c.c.,

where ej is the unit vector representing the polarization of j th
pulse, ωj and Ej are the center frequency and amplitude of the
electric field of the j th optical pulse, respectively. The Hamil-
tonian of the system is Ĥ = Ĥ0 + Ĥ ′, where Ĥ0 describes an
free atom and Ĥ ′ describes the interaction between the atom
and the optical field. In Schrödinger picture, the state vector of
the system is expressed by |Ψ (t)〉 = ∑N

j=0 cj (z, t)|j〉, where

|j〉 is the eigenstate of Ĥ0. In a rotating-wave approximation,
the Hamiltonian takes the form

Ĥ =
N∑

j=0

εj |j〉〈j |

(2)−
[
h̄

N∑
j=1

Ωj(z, t) exp
[
i(kj z − ωj t)

]|j〉〈0| + H.c.

]
,

where εj is the energy of state |j〉, Ωj = ej · pj0Ej /h̄ is the
half Rabi frequency corresponding to j th optical pulse (pj0 is
the electric dipole matrix element associated with the transition
from |0〉 to |j〉), and H.c. represents Hermitian conjugate.

To investigate the time evolution of the system it is more
convenient to employ an interaction picture, which is obtained
by making the transformation cj (z, t) = aj (z, t) exp[i(kj z −
εj t/h̄)], with k0 = 0. The Hamiltonian in the interaction pic-
ture reads

(3)Ĥint = −h̄

[
N∑

j=1

Ωj(z, t)|j〉〈0| + H.c.

]
.

The equations of motion for the atomic probability amplitude
aj is given by

(4a)i
∂

∂t
a0 +

N∑
l=1

Ω∗
l al = 0,

(4b)i
∂

∂t
aj + Ωja0 = 0,

(j = 1,2, . . . ,N) with
∑N

l=0 |al |2 = 1.
Under a slowly-varying envelope approximation the Max-

well equation

∇2E − 1

c2

∂2E
∂t2

= 1

ε0c2

∂2P
∂t2

with

P =Na

N∑
j=1

[
p0j aj a

∗
0 exp

[
i(kj z − ωj t)

] + c.c.
]

yields the equations of motion for the Rabi frequencies (j =
1,2, . . . ,N )

(5)i

(
∂

∂z
+ 1

c

∂

∂t

)
Ωj + κ0a

∗
0aj = 0.
For simplicity the propagation coefficient κ0j = Naωj |p0j |2/
(2εh̄c) (with Na being the atomic density and c being the light
speed in vacuum) has been assumed to be equal [8,9] for all
transitions, i.e., κ0j = κ0. Experimentally, this can be achieved
using an atomic element with ground (excited) state having
large angular momenta J or F .

Note that a damping term iγj aj representing the dissipation
contributed by spontaneous emission and dephasing should be
added into Eq. (4b).1 However, such term can be neglected for
pulse propagation in a coherent transient regime that we are in-
terested in here. This can be explained easily as follows. Taking
t = t ′τ0, where t ′ is dimensionless time and τ0 is the character-
istic temporal width of the optical pulses, Eq. (4b) is transferred
into the dimensionless form i(∂/∂t ′ + γj τ0)aj + Ωjτ0 a0 = 0.
Consider, for example, a cold atom system having decay rate
γj less than 10 MHz. If τ0 is around one nanosecond, then one
has γj τ0 < 10−2 and hence the damping term in the equation
plays no significant role. Thus in this coherent transient regime
pulses can propagate for a long distance with negligible energy
loss [19]. In the following, we shall disregard such damping
term in our calculation.

Note that Eqs. (4a) and (4b) admit N(N −1)/2 conservation
laws

(6)ajΩl − alΩj = A
trap
j l

(j = 1,2, . . . ,N and l = j + 1, j + 2, . . . ,N ) if all Ωj can be
taken as constants. The quantities A

trap
j l are called trapping am-

plitudes [8], which means that whatever population is initially
in Ajl will remain there.

Eqs. (4) and (5) are coupled partial differential equations
with dispersion and nonlinearity. A general exact solution for
such equations is not available yet. Here we try to get some
coupled soliton solutions by employing some special ansatz
[20]. For this aim we assume aj = aj (ζ ) and Ωj = Ωj(ζ ) with
ζ = Kz − τ/τ0 and τ = t − z/c. Three types of coupled soliton
solutions are obtained, which are given as follows.

(I) By assuming a0 = A0 tanh ζ , aj = Aj sech ζ , Ωj =
Bj sech ζ (j = 2,3, . . . ,N ), where Aj and Bj are constants
yet to be determined. Substitution of these expressions into the
Eqs. (4) and (5) yields a series of algebraic equations of Aj

and Bj . Solving this equations we get A0 = i, Aj = −τ0Bj ,
K = κ0τ0, with τ0 = (

∑N
l=1 B2

l )−1/2. Thus we obtain the exact
coupled soliton solution (j = 1,2, . . . ,N )

(7a)a0 = i tanh(Kz − τ/τ0),

(7b)aj = −τ0Bj sech(Kz − τ/τ0),

(7c)Ωj = Bj sech(Kz − τ/τ0),

where Bj (pulse amplitudes) remain as arbitrary, real con-
stants. The physical process described by the solution (7) can
be understood as follows. Initially (ζ = −∞), light fields Ωj

(j = 1,2,3, . . . ,N ) are not established and population is in
the atomic ground state |0〉. At ζ = 0, all light fields are in

1 Because the ground state |0〉 has no decay thus it is not necessary to add a
damping term to Eq. (4a) (i.e., γ0 = 0).
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their maximum intensity and population is transferred from the
ground state to the excited states. At ζ = ∞, particles return
back into the ground state from the excited states. As a result,
the atomic medium is transparent for all optical pulses. Such
transparency for N optical pulses in the (N + 1)-level system
is obviously a direct generalization of the SIT for one opti-
cal pulse in a two-level system proposed first by MacCall and
Hahn [5]. Note that during propagation N optical pulses are au-
tomatically matched, i.e., they have the same waveform (i.e.,
sech-shaped envelope) with common propagating velocity V ,
which satisfies

(8)
1

V
= 1

c
+ κ0∑N

l=1 B2
l

.

Note that the value of V can be manipulated by changing the
atomic density of the medium and intensity of optical pulses. It
can be much less c for higher atomic density Na (thus larger
κ0) and smaller pulse amplitudes Bj . For example, for a typ-
ical alkali system one take N = 5, κ0 = 1.0 × 109 cm−1 s−1,
and Bj ≈ 1.0 × 108 s−1. Using these parameters we get V =
4.0 × 10−2c. Thus slow-light solitons can be realized in such
multi-level system. The formation of the slow-light solitons of
multiple components (i.e., coupled solitons) is due to the exact
balance between nonlinear and dispersive effects of the system.

Remarkably, the coupled soliton solution given by Eq. (7)
satisfies the following relations:

A
trap
j l = ajΩl − alΩj = 0

(9)(j = 1,2,3, . . . ,N, l = j + 1, . . . ,N),

which means that trapping amplitudes A
trap
j l can be constant in

more general conditions than that for which they were defined,
i.e., constant trapping field states can be obtained even if the
laser fields are time-dependent. These soliton-related trapping
states were first noticed by Eberly for a three-level system [8].
They have a deep relation to the multiple dark states of the sys-
tem [16].

(II) By assuming a1 = A1 tanh ζ , aj = Aj sech ζ (j =
0,2,3, . . . ,N ), Ω1 = B1 sech ζ and Ωl = Bl sech ζ (l = 2,3,

. . . ,N ), and substituting these expressions into MS equation (4)
yield a set of algebraic equations on the undetermined coeffi-
cients Aj and Bj . Solving these equations one gets A0 = τ0B1,
A1 = 1 and aj = −Bj/B1 (j = 2,3, . . . ,N ). Thus we have an-
other type of coupled soliton solution:

(10a)a0 = τ0B1 sech(Kz − τ/τ0),

(10b)a1 = tanh(Kz − τ/τ0),

(10c)aj = −Bj

B1
sech(Kz − τ/τ0),

(10d)Ω1 = B1 sech(Kz − τ/τ0),

(10e)Ωj = Bj tanh(Kz − τ/τ0),

where K = −κ0τ0 with τ0 = (1 − ∑N
l=2 B2

l /B2
1 )1/2/B1. Here

the pump field amplitudes Bj (j = 1,2, . . . ,N ) are arbitrary
real constants except for the constraint

∑N
l=2 B2 � B2. The
l 1
propagating velocity V of the coupled soliton is given by

(11)
1

V
= 1

c
− κ0

B2
1

.

Hence one can get superluminal solitons by increasing N0 and
decreasing B1.

The physical process described by the coupled soliton solu-
tion (10) for pulse propagation and population distribution of
the system are the following. Initially (ζ = −∞), fields Ωj

(j = 2,3, . . . ,N ) are established and population is in the ex-
cited state |1〉. At ζ = 0 all particles are pumped into the ground
state |0〉 and the excited states |j〉 (j = 2,3, . . . ,N ). The field
Ω1 is established and the fields Ωj (j = 2,3, . . . ,N ) vanish. At
ζ = ∞, the fields Ωj (j = 2,3, . . . ,N ) recover to their initial
values, Ω1 vanishes and all particles redistribute in the excited
state |1〉. Thus the system is transparent for the N optical pulses.
The solution expressed by Eq. (10) can be taken as a multi-level
generalization of a three-level EIT in a V-type system [18]. Ω1
corresponds to a probe field and Ωj (j = 2,3, . . . ,N ) corre-
spond to control fields. Note the counter-intuitive character of
the pulses, i.e., the probe field Ω1 does not turn on until after
the control fields Ωj (j = 2,3, . . . ,N ) are fully established.

It is easy to show that above coupled soliton solution (10)
satisfies the following relations:

(12)A
trap
1l = a1Ωl − alΩ1 = Bl (l = 2,3, . . . ,N),

(13)ajΩl − alΩj = 0 (j = 2,3, . . . ,N, l = j + 1, . . . ,N).

(III) In addition to the coupled soliton solutions given above,
we have also found the following solution

(14a)a0 = i sech(Kz − τ/τ0),

(14b)aj = τ0Bj tanh(Kz − τ/τ0),

(14c)Ωj = Bj sech(Kz − τ/τ0),

j = 1,2, . . . ,N , where K = −τ0κ0 with τ0 = (
∑N

l=1 B2
l )−1/2.

Bj (j = 1,2, . . . ,N) remain arbitrary real constants. The prop-
agating velocity V of the coupled soliton in this case is still
given by Eq. (8) and thus a new type of coupled slow-light
soliton is possible. The solution (14) describes the following
physical process: all particles are initially populated in all up-
per levels; then all light fields are established and the particles
are transferred into the ground state |0〉; at last all particles re-
turn into upper levels and hence the medium is transparent for
N optical pulses. It can be easily shown that the trapping am-
plitudes A

trap
j l are also constants.

Now we study, by a numerical simulation, the stability of
the soliton solutions obtained above. In our simulation the
space and time derivatives in Eq. (4) are performed by using
a pseudo-spectral method (as used in Ref. [21]) and a fourth-
order Runge–Kutta method for superior conservation of energy
and other invariants, respectively. In the simulation the ana-
lytical soliton solutions obtained are naturally taken as initial
conditions of Eqs. (4) and (5). Shown in Fig. 2 is the pulse prop-
agation when taking the coupled soliton solution (7) as an initial
condition. Here, for illustration we select N = 5 (i.e., we simu-
late a 6-level V-type system) and the parameters of the system
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Fig. 2. Propagation of the coupled soliton (7). From left to right, the curves cor-
respond to z = 1.0, 2.0, 3.0, 4.0, 5.0 cm. The soliton exhibits great robustness
during the propagation.

are chosen as κ0 = 1.0×109 cm−1 s−1, and Bj ≈ 1.0×108 s−1

(j = 1–5). Thus, one has τ0 ≈ 4.47×10−9 s. From left to right,
the curves in Fig. 2 correspond to z = 1.0, 2.0, 3.0, 4.0, and
5.0 cm, respectively. We see that the soliton exhibits great ro-
bustness during propagation even for a long distance.

In conclusion, we have solved the Maxwell–Schrödinger
equations for a (N + 1)-level system exactly by using some
special ansatz. We have provided several types of coupled soli-
ton solutions explicitly and showed that the N optical pulses
in the system can be automatically matched and have a very
slow propagating velocity. The stability of the coupled solitons
has also been studied by using numerical simulations. These
interesting properties of the coupled optical solitons may have
promising application in optical information processing and en-
gineering.
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