
January 10, 2007 / Vol. 5, No. 1 / CHINESE OPTICS LETTERS 1

Faraday rotation in a resonant five-level system via
electromagnetically induced transparency
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We study the Faraday rotation of polarization of a probe field in a cold, coherently driven five-level system
with an M-type configuration. By means of a method of multiple scales we derive two coupled nonlinear
envelope equations, which govern the evolution of two circularly polarized components of the probe field.
It is shown that due to the quantum interference effect induced by two control fields, one can obtain a
large rotation angle with a very low absorption of the probe field. In addition, an efficient control over
the polarization state of the probe field in the system can also be easily realized.
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The Faraday effect, i.e., the rotation of polarization ex-
perienced by light propagating inside a medium along
an applied magnetic field, is a well-known phenomenon
and has been widely studied since the dawn of modern
physics[1]. In recent years, considerable attention has
been paid to the nonlinear Faraday effect in resonant
atomic and molecular systems, which is of much interest
in both fundamental physics and practical applications
in optical information processing and engneering[2]. Due
to the resonance between optical field and matter the
nonlinear Faraday effect is potentially strong. However,
the resonance leads also to a significant optical absorp-
tion, and hence such system is usually less efficient and
produces only small polarization rotation.

A method to solve this problem is to use the effect
of electromagnetically induced transparency (EIT)[3],
which has attracted increased interest because EIT
effect can provide giant Kerr nonlinearity with largely-
suppressed optical absorption even that a probe field is
tuned on to a very strong one-photon transition. The
wave propagation in EIT-based optical media displays
also many other striking features such as significant re-
duction of group velocity[4]. Based on the resonantly
enhanced nonlinearity, the low optical absorption and
the ultraslow propagation property, it has been shown
recently that it is possible to produce a new type of opti-
cal solitons, i.e., ultraslow optical solitons[5−10] in highly
resonant optical media.

In recent years, it has been shown that efficient con-
trol over the polarization states and large nonlinear
Faraday rotation of probe fields can be realized by us-
ing cold EIT-based system with various atomic level
configurations[11−16]. Some related experiments have
also been carried out for measuring the probe transmis-
sion and the rotation angle[17−19].

In the present study, we consider a laser-cooled, co-
herently driven five-level atomic system with an M-type
configuration, which can be easily realized in Zeeman-
split alkali atomic gases by applying an external magnetic
field. The atomic coherence is induced by EIT effect con-
tributed by two strong control fields that manipulate the
optical property of the system, including the significant
changes of linear and nonlinear dispersions and absorp-

tion of weak probe field. A large Faraday rotation of the
probe field can be obtained and an efficient control over
the linear polarization states of the probe field can be
easily realized. Moreover, a circular dichroism significant
in non-symmetric configurations is avoided in the system
due to the symmetry of our scheme. This results may
facilitate potential applications such as optical switching,
logic gates[20], and storage[22].

We consider a lifetime-broadened five-level atomic sys-
tem which interacts with a weak pulsed probe field of cen-
tral frequency ωp/(2π) and two strong, continuous-wave
(CW) control fields of frequencies ωc1/(2π) and ωc2/(2π),
respectively (see Fig. 1). Such level configuration can
be realized in Zeeman-split alkali atoms (e.g., a 87Rb
gas) by applying an external magnetic field B. The
atoms are trapped in a cell with the temperature lowed
to ≤ 0.5 μK to cancel Doppler broadening. The
electric-field vector of the system can be written as
E = (x̂Epx + ŷEpy) exp[i(kpz−ωpt)]+ êc1Ec1 exp[i(kc1r−
ωc1t)] + êc2Ec2 exp[i(kc2r − ωc2t)] + c.c., where x̂, ŷ, êc1

and êc1 are the unit vectors denoting the polarizing direc-
tions of the probe and control fields, with corresponding
envelopes Ep, Ec1, and Ec2, respectively. Based on the re-
lations x̂ = (ε̂++ε̂−)/

√
2 and ŷ = (ε̂+−ε̂−)/(i

√
2), where

ε̂+ and ε̂− are the unit vectors denoting the right-(σ+)

Fig. 1. Energy level diagram and excitation scheme of a sym-
metric lifetime-broadened five-level atomic system interacting
with a weak, pulsed probe field of central frequency ωp/(2π)
and two strong, CW control fields of frequencies ωc1/(2π) and
ωc2/(2π), respectively.
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and left-(σ−) circular polarizations, we can take the
probe pulse as a superposition of the σ+ and σ− po-
larized components, i.e., we have Ep = (ε̂+Ep+ +
ε̂−Ep−) exp[i(kpz − ωpt)] + c.c. with Ep± = (Epx ∓
iEpy)/

√
2. Thus, the σ− (σ+) component of the probe

pulse drives the transition |2〉 ↔ |3〉 (|3〉 ↔ |4〉), while
the control field Ec1 (Ec2) drives the transition |1〉 ↔ |2〉
(|4〉 ↔ |5〉). Thus, both σ− and σ+ components of the
probe field form respectively an EIT Λ-configuration,
and there is no absorption at resonance. The equations
of motion for the slowly varying atomic probability am-
plitude Aj take the following form(

∂

∂t
+ id1

)
A1(t) = −iΩ∗

c1A2(t),

(
∂

∂t
+ id2

)
A2(t) = −iΩc1A1(t) − iΩp1A3(t),

(
∂

∂t
+ id4

)
A4(t) = −iΩp2A3(t) − iΩc2A5(t),

(
∂

∂t
+ id5

)
A5(t) = −iΩ∗

c2A4(t), (1)

together with conservation equation
∑5

j=1 |Aj |2 = 1.
Here, Ωp1 = −(p23 · ε̂−Ep−)/h̄, Ωp2 = −(p43 · ε̂+Ep+)/h̄,
Ωc1 = −(p21 · êc1Ec1)/h̄ and Ωc2 = −(p45 · êc2Ec2)/h̄
are the Rabi frequencies where pij is the electric dipole
matrix element associated with the transition from |j〉
and |i〉. In Eq. (1) we define d1 = (δp − δc1) − iΓ1/2,
d2 = δp − iΓ2/2, d3 = −iΓ3/2, d4 = (δp + Δ) − iΓ4/2,
and d5 = (δp + Δ− δc2)− iΓ5/2 with Γj being the decay
rate of the state |j〉. Δ = (2μB/h̄)gB is the Zeeman shift
of the sublevels in the upper level with μB being the Bohr
magneton and g the gyromagnetic factor.

The equations of motion for Ωpn(z, t) (n = 1, 2) can
be obtained by Maxwell equation under a slowly-varying
envelope approximation, which read

i

(
∂

∂z
+

1
c

∂

∂t

)
Ωpn − κ3lA2nA

∗
3 = 0, (l = 2n), (2)

where κ32 = Na|p32 · ε̂−|2ωp/(2h̄ε0c) and κ34 = Na|p34 ·
ε̂+|2ωp/(2h̄ε0c) with Na being the atomic density, ε0 the
vacuum dieletric constant and c the light speed in vac-
uum.

Before solving the nonlinearly coupled Eqs. (1) and (2),
we examine the linear properties of the system. These
linear properties are the main contributors to pulsed
spreading and attenuation, and they also lead to lin-
ear Faraday effect. To achieve this, we assume that
the probe field is weak so that the atomic ground state
|3〉 is not depleted, i.e., A3 ≈ 1. In this case one can
make a linear analysis on Eqs. (1) and (2). Through tak-
ing Ωpn and Aj (j = 1, 2, 4, 5) as being proportional to
exp[i(k(ω)z−ωt)], one can easily get the linear dispersion
relation of the system, which displays two branches, i.e.,
k(ω) = k1,2(ω) with k1(ω) = ω/c + κ32(ω − d1)/D1(ω)
and k2(ω) = ω/c+κ34(ω− d5)/D2(ω), corresponding re-
spectively to σ− and σ+ components of the probe field.
Here we define D1(ω) = |Ωc1|2 − (ω − d1)(ω − d2) and
D2(ω) = |Ωc2|2 − (ω − d4)(ω − d5).

Fig. 2. (a) Dispersion spectra for Ωp1 (solid line) and Ωp2

(dashed line). The parameters are taken as Γ2 � Γ4 = 0.5 ×
107 s−1, Γ1 � Γ3 � Γ5 = 0.5×103 s−1, Ωc1 = Ωc2 = 1.0×108

s−1, δp = 0.8×108 s−1, Δ = 0.5×107 s−1, and δc1 = δc2 = 0.
(b) Absorption spectra for Ωp1 (solid line) and Ωp2 (dashed
line) under the same conditions. (c) Difference dispersion be-
tween Ωp1 and Ωp2, which corresponds to Faraday rotation
caused by linear effect.

Figures 2(a) and (b) show the dispersion spectra and
absorption spectra of Ωp1 and Ωp2 under a particular set
of parameters (given below Eq. (6)). We see that near the
central frequency of the probe field (i.e., ω = 0), both k1

and k2 modes are transparent, which is due to the quan-
tum coherence effect induced by two control fields. In
linear theory, the two branches of the dispersion rela-
tion are relatively independent. The difference between
Re[k1(ω)] and Re[k2(ω)] as shown in Fig. 2(c) signifies a
difference in phase velocities of the two circular compo-
nents and, as a result, the plane of polarization rotates.
However, such rotation is caused only by linear effect, in
this paper we will discuss the rotation caused by both
linear and nonlinear effects.

If Taylor expanding the linear dispersion relation
around the central frequency of the probe field ωp, we
obtain kn(ω) = K0n + K1nω + O(ω2) (n = 1, 2) with
Kjn = (∂jkn(ω)/∂ωj)|ω=0. Here K01 = φ1 + iα1/2
(K02 = φ2 + iα2/2 ), with φ1 and α1 (φ2 and α2) being
respectively the phase shift per unit length and absorp-
tion coefficient of the σ− (σ+) component of the probe
field, and 1/K11 (1/K12) being the corresponding group
velocity.

We are interested in the nonlinear effect of the system.
To this aim we apply the the method of multiple scales
to derive two nonlinear coupled equations that describe
the evolution and interaction of the envelopes of two po-
larized components of the probe field. We make the fol-
lowing asymptotic expansion Aj =

∑∞
l=0 μ

lA
(l)
j (j = 1 to

5) and Ωpn =
∑∞

l=1 μ
lΩ(l)

pn (n = 1, 2), where μ is a small
parameter characterizing the small population depletion
of the ground state. From the conservation equation one
has A(0)

3 = 1 and A(1)
3 = A

(0)
1 = A

(0)
2 = A

(0)
4 = A

(0)
5 = 0.

To obtain a divergence-free solution in high-order approx-
imations, all quantities on the right hand side of asymp-
totic expansion must be considered as functions of the
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multi-scale variables zl = μlz (l = 0 and 2) and tl = μlt
(l = 0 and 2). Substituting these expansions into Eqs.
(1) and (2), we obtain a chain of linear, but inhomoge-
neous equations on A

(l)
j and Ω(l)

pn, which can be solved
order by order.

To the leading order, O(μ), the solution of Eqs. (1) and
(2) is just that obtained in the linear regime described
above. The polarized components of the probe field take
the form as Ω(1)

pn = Fn exp(iθn) where θn = kn(ω)z0−ωt0
and Fn is a yet to be determined envelope function de-
pending on the slow variables t2 and z2.

To the next order, O(μ3), a solvability condition yields
the nonlinearly coupled envelope equation

i

(
∂Fn

∂z2
+

1
Vgn

∂Fn

∂t2

)
− (Wnn|Fn|2 +Wnm|Fm|2)Fn = 0

(m,n = 1, 2;m �= n), (3)

where Vgn = 1/K1n is the group velocity of the respective
component and

Wnm =
κ3l(ω − d4n−3)(|ω − d4m−3|2 + |Ωcm|2)

Dn|Dm|2

(l = 2n) (4)

is nonlinear coefficients characterizing the self-phase
(Wnn) and cross-phase (Wnm, n �= m) modulations of
the σ− and σ+ polarized components. Returning to orig-
inal variables, Eq. (3) can be written as

i
∂Un

∂z
+ (−1)n−1iδ

∂Un

∂τ
− (Wnn|Un|2 +Wnm|Um|2)Un = 0,

(5)

where Un = Ωpn exp (−iK0nz) (when taking ω = 0),
τ = t − z/Vg, and δ = (1/Vg1 − 1/Vg2)/2, with Vg =
2Vg1Vg2/(Vg1 + Vg2). The coefficient δ is a quantity
characterizing the group-velocity match of two envelopes.
Note that the signs of δ and Wnm depend on the signs of
detunings, which is easy to control and give rich dynam-
ics for the interaction of two polarized components.

To make the following physical discussion more trans-
parent and numerical calculation more convenient, Eq.
(5) is written as the following dimensionless form

i
∂un

∂s
+ (−1)n−1igδ

∂un

∂σ
− (gnn|un|2 + gnm|um|2)un = 0,

(6)

where we have scaled the variables by using s = z/LNL,
σ = τ/τ0, un = Un/U0, gδ = sign(δ)(LNL/Lδ), and
gnm = (Wnm/|W22|). Here, Lδ = τ0/|δ| is group veloc-
ity mismatch length and LNL = 1/(|W22|U2

0 ) is nonlinear
length with U0 being typical Rabi frequency of the probe
field.

We consider a set of realistic parameters to demon-
strate the control over the polarization of the probe
pulse. Our system can be experimentally realized by
choosing a vapor cell of cold alkali atoms, with Γ2 	

Γ4 = Γ = 0.5 × 107 s−1, Γ1 	 Γ3 	 Γ5 = 10−4Γ, and
κ32 	 κ34 = 1.0 × 109 cm−1·s−1. We take Ωc1 = Ωc2 =
1.0 × 108 s−1, δp = 0.8 × 108 s−1, Δ = 0.5 × 107 s−1,
and δc1 = δc2 = 0. With these parameters, we obtain
K01 = −22.15+1.23i cm−1, K02 = −30.45+2.33i cm−1,
K11 = (1.25−0.14i)×10−6 cm−1·s, K12 = (2.20−0.34i)×
10−6 cm−1·s, W11 = (−2.80 + 0.15) × 10−14 cm−1·s2,
W12 = (−4.93 + 0.27)× 10−14 cm−1·s2, W21 = (−3.84 +
0.29)×10−14 cm−1·s2, and W22 = (−6.77+0.53)×10−14

cm−1·s2. The group velocities of the two polarized com-
ponents are respectively Re(Vg1) = 2.6 × 10−5 c and
Re(Vg2) = 1.5 × 10−5 c, which means that the probe
pulse indeed propagates with ultraslow group velocities in
both polarized components in comparison with the light
speed in vacuum. Note that the imaginary parts of these
quantities are much less than their relevant real parts.
The physical reason resulting in so small imaginary parts
is due to quantum destructive interference induced by
two CW control fields. With the choice of our param-
eters, the group velocity mismatch length Lδ = 10.6
cm, pulse duration of the probe field τ0 = 5.0 × 10−6

s, and the nonlinear length LNL = 0.2 × 10−1 cm are
given with U0 = 3.0 × 107 s−1. Due to the condition
that Lδ 
 LNL, which can be easily realized under the
requirement τ0U2

0 
 |δ/W22|, we obtain gδ � 1 and
the terms associated with the group-velocity match can
be safely neglected. Thus Eq. (6) can be reduced into
i∂un/∂s− (gnn|un|2 + gnm|um|2)un = 0.

The reduced equations admit solutions un =
exp(−iφns) with φn = gnn + gnm. The phase shift φn

is contributed by both self-Kerr and cross-Kerr nonlin-
earities. The two output polarized components of the
probe field take the form Ωpn = U0 exp{i[K0n − (gnn +
gnm)/LNL]L}, where L is length of atomic cell. For char-
acterizing the Faraday effect in the system, we introduce
the following parameters associated with the output state
of the probe field: T for fractional transmission, ψ for the
rotation angle of the polarization, and S for the degree of
circular polarization, which results from circular dichro-
ism of the atomic gas. Since the imaginary parts of the
coefficient gnm are very small, we can neglect them in
leading-order approximation. Based on such considera-
tion we obtain

T =
1
2

(
e−α1L + e−α2L

)
, (7a)

ψ =
L

2

(
φ1 − φ2 − g11 + g12 − g21 − g22

LNL

)
, (7b)

S =
e−α1L − e−α2L

e−α1L + e−α2L
, (7c)

where ψ is contributed by both linear and nonlinear re-
sponses, while T and S are only contributed by the linear
response. With the choice of our parameters, we obtain
T = 0.7, ψ = −0.9 rad (	 51.6◦), and S = 0.1 when we
take L = 0.1 cm. We also note that a circular dichroism
being significant in non-symmetric level configurations
is avoided due to the symmetry of our system.

For an injected linearly polarized probe field, its (el-
liptic) polarization state in the system can be efficiently
controlled by adjusting the external magnitude. We
have made a calculation on T , ψ, and S as functions of Δ
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Fig. 3. Curves of T (dashed line), ψ (solid line), ψL (dotted
line), and S (dot-dashed line) versus Δ with L = 0.1 cm.
The nonlinear effect enhanced by EIT exerts a significant
modification on ψL, which can be characterized by ψ − ψL.

(proportion to B). Figure 3 is the T , ψ, and S ver-
sus Δ for L = 0.1 cm. In order to make a compari-
son, we also plot the curve of ψL, which characterizes
the rotation caused only by linear effect, defined by
ψL = (φ1 − φ2)L/2. The nonlinear effect enhanced by
EIT exerts a significant modification on ψL, which can
be characterized by ψ − ψL. From it we can see that
with increasing Δ, a larger Faraday rotation is obtained.
However, the absorption and circular dichroism also in-
crease.

In conclusion, we have investigated the Faraday effect
in a cold, coherently driven five-level system with an M-
type configuration. From the equations of motion de-
scribing the evolution of atomic amplitudes and the probe
field, we have derived two nonlinearly coupled envelope
equations governing the dynamics of two polarized com-
ponents of the probe field by means of the method of
multiple-scales. We have given the slow-light solutions of
the nonlinear envelope equations and discussed the Fara-
day effect caused by the linear and nonlinear response
of the system. The system proposed can be used to ob-
tain a large Faraday rotation angle and to implement an
efficient control over the polarization state of the probe
field in the system. The results we obtained may be used
to construct optical switching and logic gates and hence
facilitate practical applications in future optical informa-
tion processing and engineering.
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