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PACS. 72.20.Ht – High-field and nonlinear effects.
PACS. 72.50.+b – Acoustoelectric effects.
PACS. 85.30.Fg – Bulk semiconductor and conductivity oscillation devices (including Hall ef-

fect devices, space-charge-limited devices, and Gunn effect devices).

Abstract. – Negative differential conductivity stemming from piezoelectric coupling in semi-
conductors is shown to arouse a mm wide, high-amplitude acoustoelectric microwave packet
moving at sound velocity. Because the electric permittivity is inferred to be renormalized to
zero, all properties of this solution (but its width), including its vibrational frequency and am-
plitude, are shown to be shaped by the nonlinear piezoelectric interaction. An experiment is
proposed to check the validity of this analysis. Possible implementation of an acoustoelectric
generator is mentioned.

Introduction. – Four decades ago, in the wake of extensive studies of ultrasound am-
plification [1–4] and related effects [5–7], low-frequency (� 300 kHz) current oscillations were
observed [8–10] in piezoelectric semiconductors (CdS, GaAs, GaSb), undergoing a moderate
static electric field (> 700V/cm). This effect was characterized by a high-field (� 3500V/cm)
domain, building up over a low-field (� 60V/cm) background and moving throughout the sam-
ple at sound velocity. Besides, giant Brillouin scattering [11–13] was reported, which has been
accounted for by invoking thermal transverse phonon amplification mediated by the steady
current. The frequency associated with the maximum Brillouin scattering cross-section turned
out to be smaller than that one corresponding to the largest amplification as inferred from a
linear treatment [14]. This discrepancy has been ascribed to the combined effect of phonon ab-
sorption and nonlinear parametric processes [13,15,16]. However despite some attempt [9], the
high-field domain has remained so far unexplained because the most interesting feature, i.e. a
large-amplitude (� 5000V/cm peak to peak) microwave field carried along within the solitary
domain, has been overlooked due to the low-frequency nature of the detection procedure.
In this letter we explain how the microwave instability ensues from piezoelectricity-induced

negative conductivity. The thermal transverse phonons give rise to a direct current flowing
in the direction opposed to the Ohmic one, provided the electron drift velocity is larger than
the sound velocity [7, 9, 16]. This results into decreased conductivity so that eventually the
differential conductivity becomes negative [3,9,16], which arouses the solitary wave. We then
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Fig. 1 Fig. 2

Fig. 1 – Drift velocity v(E) sketched as a solid curve.

Fig. 2 – Dotted and solid lines refer to the undamped oscillator and solitary wave, respectively. The
represented solitary-wave pattern comprises 3 oscillations of E(z).

work out a new master equation by emphasizing the crucial role of the nonlinear piezoelectric
coupling (because the linear terms are inferred to lead to a vanishing effective permittivity)
and show that this equation does sustain a novel type of solution of spatial extension 1000
times larger than the Gunn oscillation [16, 17, 19], accounting for all observed properties. In
particular, the acoustoelectric instability and Brillouin scattering will prove to be unrelated.

Themaster equation. – In keeping with the observed phenomena [9,16], a one-dimensional
sample is considered. An applied static voltage induces the current density J(x, t) (the space
coordinate x is such that 0 ≤ x ≤ L, where L is the sample length and t stands for time):

J = Qv(E)−Dn
∂Q

∂x
, (1)

where Q, v(E), E represent, respectively, the density of conduction electrons, their drift ve-
locity and the electric field. The charge density reads Q = Q0 + ∂D

∂x while Q0,D,
∂D
∂x refer to

the equilibrium concentration of conduction electrons, the electric displacement and the space
charge density, respectively. The term in eq. (1), proportional to the diffusion constant Dn,
is the diffusion current. v(E) is sketched in fig. 1 as linear piecewise for simplicity. In the
Ohmic regime (0 ≤ E ≤ Et), v(E) is equal to µE where µ stands for the electron mobility.
v(E) rises to a maximum at the threshold Et beyond which negative differential conductivity
(⇒ dv(E)

dE = −µ1 < 0) sets in over the range E ∈ [Et, E1]. Actually, we have checked that ther-
mal transverse acoustic phonons of low frequency (ωϕ < 10GHz) induce via linear piezoelectric
coupling [14] E and D components ∝ cos(ωϕt) so that the nonlinear term ∂D

∂x µE in eq. (1)
gives rise to a negative direct current, growing with the local electric field and acoustic power
and strong enough to bring about dv(E)

dE < 0. As the ratio of the acoustoelectric current to
the Ohmic one Q0µE is found to decrease with E > Et, v(E) eventually increases for E > E1

(⇒ dv(E)
dE = µ2 > 0). An accurate calculation of v(E) in fig. 1 is beyond the purview of this

work because it involves a score of complicated nonlinear effects [15]. All solitary-wave patterns
presented below have been worked out with Q0 = 1.28× 10−4 C/cm3, µ = 6000 cm2/(V × s),
which corresponds to a GaAs sample wherein acoustoelectric oscillations were observed [10].
Taking advantage of the charge conservation identity ∂J

∂x +
∂Q
∂t = 0 in eq. (1) yields

∂

∂x

((
Q0 +

∂D

∂x

)
v(E)−Dn

∂2D

∂x2
+
∂D

∂t

)
= 0. (2)
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As the oscillating wave packet has been seen to travel at constant velocity without undergoing
any deformation, a solitary solution of eq. (2) should be sought. Thus we replace (x, t) by
z = x− vst, where vs refers to the propagation velocity of the solitary wave. Equation (2) is
recast as

DnD
′′ = Q0 (v(E)− v0) +D′ (v(E)− vs) , (3)

where D′ = dD
dz ,D

′′ = d2D
dz2 and the integration constant v0 has the dimension of a velocity.

The elastic strain S = ∂u
∂x and the electric field E are coupled together via piezoelectricity,

T = cS − eE + fT (S,E), D = eS + εE + fD(S,E), (4)

where T , c, e, ε refer [14] to the stress field, elastic, piezoelectric constants and electric
permittivity, respectively. fT (S,E), fD(S,E) represent the second-order contributions [4,
13, 15] to the Taylor expansions of T , D with respect to S, E which will prove uttermost
instrumental in shaping all features of the acoustoelectric solitary wave.
Using Newton’s law, ρ∂

2u
∂t2 =

∂T
∂x (ρ stands for the specific mass), yields T −ρv2

sS = 0 after
replacing (x, t) by z = x− vst and integrating over z. Taking advantage of eqs. (4) leads to

S =
e

c− ρv2
s

E + αSE
2, D = ε�E + αDE

2, ε� = ε+
e2

c− ρv2
s

,

where ε� is an effective electric permittivity. The explicit dependence of αS , αD upon ∂2fX

∂E2 ,
∂2fX

∂S∂E ,
∂2fX

∂S2 where X = T, D is of little interest because those partial second derivatives are
not known. Therefore αS , αD will be rather dealt with as disposable parameters hereafter.
The solitary wave was observed [8–10] to travel at the transverse sound velocity vs =√
c
ρ (1 +

e2

εc ). The latter has been obtained as a by-product of the dispersion ωϕ(k) of acous-
toelectric plane waves, worked out by linearizing eq. (2) as done elsewhere [14]. Consequently,
it comes ε� = 0. Likewise all our attempts to find a wide (≈ 1mm) solitary solution of eq. (3)
with ε�

ε > 10−9 have failed. Thus, thanks to ε� = 0, eq. (3) is recast as

E′′ = Q1
v(E)− v0

E
+

E′

Dn
(v(E)− vs)− (E

′)2

E
, (5)

where E′ = dE
dz , E

′′ = d2E
dz2 , Q1 = Q0

2αDDn
. The nonlinear second-order differential equation in

eq. (5) is the master equation describing the motion of the solitary wave.

The solitary wave. – In the (E,E′) representation depicted in fig. 2, eq. (5) has three
fixed points at (E = Fi=1,2,3, E

′ = 0) as due to v(Fi) = v0 (see fig. 1) E(z) = Fi=1,2,3,∀z
are solutions of eq. (5). F1, F3 are stable because of dv

dE (Fi=1,3) > 0 and pertain to a sample
flowed through by a constant current (= Q0v0).
Conversely, an oscillatory solution of eq. (5) may arise around F2 thanks to negative

differential conductivity [17] ( dv
dE (F2) < 0). In principle, were it not for the terms including

E′ in eq. (5), the corresponding trajectory would be closed (see the dotted curve in fig. 2)
as expected for an undamped oscillator. Therefore integrating eq. (5) with initial conditions
E(z = 0) > F1, E

′(0) = 0 should yield E(z) periodic all over the range z ∈ [−∞,+∞] and
oscillating between a minimum value E(0) and a maximum one EM (F1 is never reached)
such that F2 < EM ≤ F3, related by

∫ EM

E(0)
v(E)−v0

E dE = 0. As a consequence of the equal area
rule [18], a net restoring force is secured only if the characteristic curve in fig. 1 comprises a
dv
dE < 0 section and the dashed area in fig. 1 is sufficiently large with respect to the dotted
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one, which sets a lower bound vm for v0 (in case v0 = vm, it comes EM = F3). Assigning
EM ≈ 5000V/cm as inferred from experiments [10] and fulfilling the existence condition for
the restoring force has enabled us to ascribe to µ1, µ2 the values used in our calculations. The
frequency is obtained through a double integration to read

ωu = πvs


∫ EM

E(0)

dE√
2Q1

∫ E
E(0)

v(y)−v0
y dy




−1

.

The term ∝ (E′)2 in eq. (5) acts as an additional restoring force for E near EM , whence EM is
decreased and the frequency is shifted up to ω > ωu. However the damping term ∝ E′ causes
the E,E′ trajectory to be no longer closed, thereby allowing for a many-oscillation solitary
wave (see the solid line in fig. 2) with the lowest (largest) E value within each oscillation
decreasing (increasing) from E(0) down to F1 (up to EM ). At last, note that E(0) > F1 is
by all means needed since eq. (5) could sustain only a single-oscillation solution, similar to
the Gunn effect, in case E(0) = F1 (note also v0 �= vs as opposed to v0 = vs required for the
Gunn effect [16,17,19]).
First, eq. (5) has been solved for E(z ∈ [0, l]) > 0 (⇒ S(E) < 0), where l < L is the

width of the high-field domain. Besides, E > 0 entails αD > 0 in order to ensure a restoring
force. Assigning v0

(
⇒ F1 = v0

µ

)
has enabled us to integrate eq. (5) from z = 0 with the

initial conditions E(0) > F1, E
′(0) = 0. The final values E(l), E′(l) at z = l depend then

only on v0, E(0). As we want E(l) close to F1 and E(z → ∞) → F1 because the fixed point
(E = F1, E

′ = 0) in fig. 2 can only be reached asymptotically for z → ∞, it suffices, for z > l,
to integrate eq. (5) linearized [16,17] around F1, which reads

E′′ =
Q1µ

2

v0
E +

v0 − vs
Dn

E′. (6)

Thus it comes

E(z > l) = (E(l)− F1) eκ(z−l) + F1, κ =

v0−vs

Dn
−

√(
v0−vs

Dn

)2

+ 4Q1µ2

v0

2
< 0.

For E(z), E′(z) to remain continuous at z = l, two matching conditions must be satisfied:

E(l)
F1

− 1 = η 
 1,
E′(l)

E(l)− F1
= κ. (7)

Finally, integrating eq. (5) over [0, L] is tantamount to solving eqs. (7) for the unknowns v0,
E(0) (remember that E(l), E′(l) are functions of v0, E(0)). This has been done as follows:
i) integrate eq. (5) from z = 0 up to z = l defined by E(l) = F1; ii) solve eqs. (7) for that l
value kept fixed and η = 0.01 by using Newton’s method to yield the acoustoelectric solitary-
wave patterns pictured in figs. 3, 4. The assignment Dn = 1000 cm2/s has been estimated
from the literature [20], while taking into account the hot-electron temperature induced by
the strong E field. For simplicity, S(z) has been worked out with αS = 0.
The solitary-wave width l is not an intrinsic property of eq. (5). Hence defining the mean

E value within the solitary wave as Eo =
∫ l

0
E(z)dz

l , the time behavior of l is assessed by
requiring that integrating E over the sample length L equal the applied voltage U :

U =
∫ 0

L

E(z)dz = − (E(0)vst+ Eol + F1(L− vst− l)) . (8)
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Fig. 3 – Plots of E(z), S(z) (solid line) and Eo (dashed line) reckoned with Q1 = 109 V2 × s/cm5, l =
60µ ⇒ v0

vs
− 1 = 5× 10−5, E(0)−F1 = 31V/cm, κ−1 = −305 Å, EM = 4957V/cm, Eo = 3555V/cm,

ω = 3.5GHz.

As E(0), Eo, F1 depend on a single parameter l, solving eq. (8) provides indeed l vs. time t
(the small difference (E(z > vst+ l)− F1) < ηF1 has been neglected in eq. (8), which entails
that

∫ L
vst+l

E(z)dz = F1(L− vst− l)).

Discussion. – The observed solitary wave [8–10] consists of a large field domain moving
above a weak-field background, = E(0) or F1 behind and ahead of the solitary wave, re-
spectively. Actually, the low-frequency detection method was bound to miss the momentous
property that the solitary wave carries a high-frequency (= ω) wave packet so that only its
mean value Eo was observed. The applied field Ea =

|U |
L > Et induces an Ohmic current

Fig. 4 – Plots of E(z), S(z) (solid line) and Eo (dashed line) reckoned with Q1 = 1010 V2 × s/cm5,
l = 57µ ⇒ v0

vs
−1 = 5×10−5, E(0)−F1 = 31V/cm, κ−1 = −96 Å, EM = 4957V/cm, Eo = 3556V/cm,

ω = 11GHz.
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which starts amplifying the thermal transverse phonon field. This contributes to reducing the
differential conductivity [9] till it becomes negative, which excites the acoustoelectric solitary
wave to arise. Phonon amplification, enhanced by the high Eo value, saturates [5] eventually
after ≈ 1µs [8] so that v(E) reaches its final shape as sketched in fig. 1. During the solitary-
wave building process, l(t) is given by solving eq. (8), keeping in mind that E(0), Eo, F1 depend
solely on l and are obtained by integrating eq. (5) under the matching conditions in eqs. (7)
while using the characteric curve v(E) available at t.
Given [10] L = 1 cm and F1 
 Ea, a value of l in the mm range is required to satisfy

eq. (8) in keeping with observation. However, the damping term ∝ E′ in eq. (5) limits l
down to much smaller values (≈ 3µ) unless v0 is pinned onto vs. Indeed l decreases very
steeply with v0 drawing apart from vs as δv = v0

vs
− 1 = 3 × 10−6, 8 × 10−5 correspond,

respectively, to l = 948µ, 36µ (l behaves fairly well like δv−1). Thence increasing Ea further
causes the solitary-wave width l to grow while Eo, F1 = vs

µ remain unaltered in agreement
with observation [8–10].
For 0 < t < 1µs, that is until the high-field domain has grown significantly, the cur-

rent keeps its initial Ohmic value = Q0µEa. Thereafter it drops down to the low-field, Ea-
independent value Q0µF1(= Q0vs) and oscillates between these limits with the time period
L
vs
(≈ 3µs) needed for the solitary wave to travel throughout the sample in accordance with

observation [10]. As the time required for the dv(E)
dE < 0 domain to grow must be in any case

shorter than L
vs
, the threshold Et should increase with decreasing L as indeed observed [10]

because phonon amplification increases with Ea, which compensates for shorter L. At last
these current oscillations turn out to be physically unrelated to another kind of low-frequency
plasma-like oscillations [6, 21], the period of which is anyhow �= L

vs
.

The difference E(0)− F1 > 0 has been observed [10]. The solitary-wave width l increases
with E(0) − F1 but it does so stepwise because eqs. (7) can be satisfied only if l = nλ (see
figs. 3, 4), where n is an integer and λ = 2π vs

ω refers to the wavelength of the wave packet.
After the full-fledged solitary wave has grown for t > 1µs, E(0) − F1 is responsible for l
decreasing with t. Equation (8) provides the shrinking rate as l̇ = vs

F1−E(0)
Eo

. Then using the
experimental data for F1, E(0), Eo yields a total decrease dl

l < 5% for L = 1 cm, which lies
within experimental accuracy.
As expected for a nonlinear oscillator, the vibrational pattern bears no resemblance with

a sine wave, which results into Eo �= F1+EM

2 . Unlike l, the frequency ω is an intrinsic prop-
erty of eq. (5) and behaves like

√
Q1 (compare fig. 3 with fig. 4). As a reliable value for

αD entering the definition of Q1 is lacking, the ω value cannot be predicted. To that end
we suggest two independent experiments, which could permit to confirm the existence of the
acoustoelectric solitary wave. The longitudinal electric wave could excite an electromagnetic
field in a microwave cavity tuned at ω and properly coupled to the sample, whereas the trans-
verse strain wave should be all the more prone to detection by Brillouin scattering since its
vibrational amplitude is large (up to 4 × 10−4 in figs. 3, 4). Measuring the same frequency
ω for the electromagnetic wave and the Brillouin scattering signal would bring compelling
evidence for the validity of this analysis. Nevertheless, no narrow signal has been reported
in Brillouin scattering experiments [11–13]. This failure might be due to two reasons. Ei-
ther the narrow peak at ω has been overlooked because it remained buried inside the broad
(≈ 0.5GHz) incoherent contribution of thermal phonons as the outgoing light frequency was
not analysed in the published measurements [11–13], or ω > ωM = 2ωl vs

c where ωM refers
to the largest possible phonon frequency to be detected in a Brillouin scattering experiment
using ingoing light of frequency ωl and velocity c. Performing the experiment with larger ωl,
while analysing the scattered light frequency with high resolution, would then be needed. It
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is also noteworthy that these proposed experiments lay out the principle of a powerful and
versatile acoustoelectric generator in the microwave range.

Conclusion. – The long-standing problem of the high-field domain, travelling at sound
velocity in piezoelectric semiconductors, and low-frequency associated current oscillations has
been settled in terms of an acoustoelectric solitary wave comprising thousands of coherent
microwave oscillations of very large amplitude. All experimental features have been accounted
for. This instability stems from negative differential conductivity showing up in the current-
voltage characteristic. It is entirely governed by nonlinear piezoelectric coupling because the
effective electric permittivity has been shown to vanish. The large field Eo enhances the
Brillouin scattering [11–13] by amplifying the thermal phonons [14] within the solitary wave.
Otherwise the two effects are unrelated even though the nonlinear piezoelectric effect proves
instrumental in both cases. In particular the incoherent phonon frequency corresponding
to maximum Brillouin scattering and the coherent frequency ω of the acoustoelectric solitary
wave should be quite different. Finally, since the microwave frequency ω is an intrinsic property
of the equation of motion whereas the solitary wave width l is not, the whole physical picture
shows up outright opposed to the Gunn effect [16,17,19].

∗ ∗ ∗

We are indebted to E. Bringuier for his critical reading of the manuscript and to
I. Ledoux and J. Zyss for providing encouragement. One of us (GXH) is grateful to Univer-
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