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Second-Harmonic Generation in Optical Fibres Induced by a Cross-Phase
Modulation Effect *
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When two optical pulses copropagate inside a single-mode fibre, intensity-dependent refractive index couples
the pulses through a cross-phase modulation (XPM). We show that a second-harmonic generation (SHG) on a
continuous-wave background is possible in the optical fibre induced by the XPM effect. By means of a multi-
scale method the nonlinearly coupled envelope equations for the SHG are derived and their explicit solutions are

provided and discussed.
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Second-harmonic generation (SHG) has been ex-
tensively studied in nonlinear optics because of
its fundamental interest as well as technological
applications.[!l An SHG in glass fibres is unexpected
since second-order processes are normally forbidden
in materials such as silica with a centre of inversion.!?!
Several early experiments showed that the SHG as
well as other second-order parametric processes can be
generated when an intense 1.06 um pump pulse from
a mode-locked, @-switched, Nd:YAG laser propagates
through optical fibres.[’l Up to now SHG conversion
efficiency as high as 10% was achieved in a Ge-doped
silica optical fibre after irradiation by a laser beam
for several hours.l*) Most theoretical explanations fo-
cused on quadrupole interaction or the processes near
the surface where a centro-symmetry is broken. How-
ever, up to now a satisfactory theoretical explanation
on the SHG in optical fibres remains lacking.[’]

In a recent work, it was proposed that a new
type of SHG in an optical fibre can be realized with-
out need of any breaking of the centro-symmetry.[6:7]
Such SHG is for optical excitations created from a cw
background and, for fulfilling related phase-matching
conditions, the fibre must work near zero-dispersion
point and hence third-order dispersion must be taken
into account. Note that without high-order disper-
sion the SHG is not possible because its excitation
spectrum cannot satisfy the phase-matching condition
for SHG.[®7] Thus we consider the case of two opti-
cal fields co-propagating in optical fibres, whose cross-
phase modulation (XPM) effect provides us a novel
physical mechanism to fulfill the SHG phase-matching
condition even without third-order dispersion.

The XPM effect in optical fibres and its various
applications for pulse compression, optical switching,
etc. have been intensively investigated.[>%° When
two optical pulses copropagate inside a single-mode
fibre, the intensity-dependent refractive index couples
the two pulses through a nonlinear phenomenon, i.e.

XPM. A steady state (i.e. cw background) can be
modulationally stable or unstable, depending on the
parameters of the system. Most studies on the XPM
concentrate on the unstable regime, where coupled op-
tical soliton pairs appear.l®) Here we are interested in
the stable regime and show that an SHG is possible
for the excitations on the cw background through the
XPM effect.

Consider two optical pulses copropagating in a
single-mode, polarization-preserving fibre. Under a
slowly varying envelope approximation, the ampli-
tudes of electric field pulse A; and A, can be described
by the following coupled nonlinear Schrodinger (NLS)

equations:[®!
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where A; (j = 1,2) is the pulse envelope assumed to
be slowly Varying with both distance z and time t;

= (dk;/dw)3L,,. is the group velocity with respect
to the central frequency wj, B; = (d%k;/dw?)u—.,
is the group-velocity dispersion coefficient, and v; =
now;/(cAesr) accounts for the fibre nonlinearity with
the Kerr coefficient ns and the effective core area Aog
of the fibre. The two terms on the right-hand side of
Egs. (1) and (2) are responsible for SPM (self-phase
modulation) and XPM, respectively.

wW=wj

Expressing the field amplitude in terms of their
modulus and phase, ie., A; = a; exp’®, we obtain
a set of coupled nonlinear equations for a; and ¢;
(.7 =1, 2):
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Theses equations are readily solved for obtaining a
steady-state cw solution, i.e. Aj(z) = ajoexp(ig;o),
where the phase ¢;, = v;(a, +2a(3 o )z and a,o be-
ing the amplitude. Based on Egs. (3) and (4), we in-
vestigate the linear stability of the cw solution against
a small perturbation (i.e. excitation). To do so, we
follow the standard procedure and look for solutions
describing small variations around the exact solution
with the form A;(z) = (ajo+¢;) exp(idjo+1i1;), where
the functions ¢; and derivative of the phase 1); are as-
sumed to be small. If the excitation varies with the
form ¢;,1; ~ exp(iwt — ikz) and the group-velocity
mismatch of the two optical fields can be neglected,

we obtain the linear dispersion relation!®!
w 1
k=—+—=[(fi+ f2) £[(L + f2)*
oo ﬂ[(fl f2) £ [(fr + f2)
+4(c] = fuf)]V?)M, (5)

where ¢2 = 4w*a? a2, v17261 32 and fi = ,B;w4/4 +
ﬂjyja?0w2 (j = 1,2); k and w are the wave vector
and frequency of the excitation, respectively. From
Eq. (5) we can find that when ¢? < f;fs, one has
w? > {2[(B172030+Bam1a3y)*+127172 61 B2a3ga3o] /2 —
(B17203, + B2v1039)}/(B1B2)- The cw background
is stable against the excitation (perturbation) when-
ever the fibre works in normal or anormal dispersion
regime. Equation (5) gives two branches of linear
dispersion curves for the excitation, i.e. ki(w) and
k_(w), which are shown in Fig. 1.

Our interest here is a possible SHG for the exci-
tation created on the cw background. To realize the
SHG a phase-matching condition is necessary, which
reads

k2 = 2k17 (6)

w2 = 2&)1,

where wy and ki (we and k3) are the frequency and
wave vector of fundamental (second-harmonic) wave,
respectively. By choosing k1 = ki(w1) and ke =
k_(w2) = k_(2wy), the phase-matching condition (6)
can indeed be fulfilled, as shown in Fig.1. Note that
Eq. (6) is equivalent to k_(2w;) = 2k4 (w1 ), which re-
sults in the solution

w1 ={[(20g3g4(g7 — g3))* — 16(9g; + 25g3 — 34gig3)

(9393 — 9193 — 4eg?)]M/? + 209394 (g7 — g3)}'/*
-{2(9g1 + 253 — 34g393)} 1/ (7)
with g1 = (67 + 683)/4, 95 = (BF — 63)/4, g2 =
Bivial, + Bav2a3y, g4 = Limai, — Bayeady, ¢ =

4a? a3 17281 82. As we see in Eq.(7) the frequency
of fundamental wave depends on input optical power
. If only optical field 1 or field 2 is incident, another

Vanlshes one has g1 = g3 = 51 /4, g2 = g4 = ﬁlfylaw
or g1 = —g3 = (3/4, g2 = —gs = PB2y2a3, and ¢ = 0,

and hence Eq. (7) has no solution. From Eq.(7), we
also see in the absence of XPM, ¢; = 0 and the so-
lution is k = w/vg1 + \/E for 7 = 1,2 which means
condition (6) can not be satisfied and SHG does not
occur for the case of a single field. It is the XPM ef-
fect that makes the phase-matching condition (6) be
satisfied and hence the SHG possible. The parameters
of standard single-mode optical fibre can be chosen as

=32 x 107 cm?/W, B = B, = 0.06x ps?/m,
Y1 =72 = 0.015W1/m, vy = vy = 2 x 10°ms™*
and the power of the optical field background is taken
as a3, = 2KW, a2, = 4.9KW, we obtain w; =
0.63 x 10571, k; =6.26 x 10°m™!
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Fig.1. The linear dispersion relation and phase match-
ing of an SHG for the excitation on a cw background.
The phase-matching condition can be satisfied if (w1, k1)
and (wa, k2) are chosen from different dispersion branches
k+(w) and k—_(w), respectively. The parameters used in
the figure are 81 = B2 = 0.06x ps?/m, ’Yl = v =
0.015W~1/m, vg1 = vgz = 2 x 108ms™1, a2 = 2kW,
aZ, =4.9kW.

We now derive the nonlinear envelope (or ampli-
tude) equations controlling the SHG. By introduc-
ing the asymptotic expansion a; = aj, + ajo(sag-l) +

2(2) _ (1) 2 4(2)
e?a;” + ) and ¢; = djo + Pjo(ed; + %P + )
with ¢ being a small ordering parameter and a; and
¢; being the functions of the fast variables (z,t)
and the slow variables (ez,et), Egs. (3) and (4) are

transformed into a set of equations for ajl) and ¢§l)

(1=1,2,1=1,2,3)
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The explicit expressions of m{) and n() (G =
1,2,---) are omitted here. In the leading order
(I = 1), Equations (8) and (10) admit the solu-
tion in a linear approximation. For the SHG we
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take the leading solution as a superposition of two
ag-l) = (6j1 + jo0L1)Ur exp(if1) +

((5j1+6j2L2)U2 exp(i92)+c.c., ¢§1) = ileUl exp(i01)+
iLj2Us exp(ifs)+c.c., where L; = [(k; — wj/vg1)? —
(BTw] /4 + mpPraf,wi)l/(2B1ima3,w}), Lij = —2(k; —
wj/vg1)/(Brw]), and La; = —2(k; — wj/vg2)/(Bow?)
(j = 1,2). Uy and U, are respectively the envelope
functions of the fundamental wave (with the phase
01 = k1z — wit) and the second-harmonic wave (with
the phase 0y = koz—wat); k1, k2, w1 and wy are chosen
according to the SHG phase-matching condition (6),
ie., k1 = ki (w1) and ky = k_(w2) with we = 2wy.

components, i.e.

In the next order (I = 2), solvability conditions
give closed equations for U; and Us. After making
the transformation eU; = uq,eUs = usy, the equations
governing the envelopes of the fundamental and sec-
ond harmonic waves read

Ouy/0z 4 (1/V41)0uy /0t + iAjujug exp(—iAkz) =0,
(10)
Oug )0z + (1/Vya)Oug /Ot + iAau? exp(—iAkz) = 0,
(11)

where V; is the group velocity of the jth excited wave,
Ak = 2kq — ko is a possible phase mismatch. The non-
linear coefficients appearing in Egs. (10) and (11) read
A= {Llﬁf'ylagowﬂ—ksz —k1L1;
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We now consider the solution of Egs.(10) and
(11) corresponding to the SHG. For a stationary case
(8/dt = 0), Egs. (10) and (11) can be solved exactly.[!]
Let u1 = fexp(ipy) and us = hexp(ips) with f
and h being two real functions, Eqgs. (10) and (11)

become 0f/0z = —\;fhsin®, 0h/0z = Ay f?sin®,
(0pf/02)f = A fhcosB and (O¢p,/dz)h = Aaf? cosf
with the relative phase angle defined by 6 = ¢ —
2¢5 + Akz. One of the conservative quantities for
these equations reads f2/\; + h?/\y = m, where m is
the integration constant. We can see A; and Ay deter-
mine the rate of energy transfer between fundamental
wave and the second harmonic wave. Another conser-
vative quantity is given by I'y, = Akh?/2+ Xz f2h cos 6.
With these relations we obtain

z 1 H(z) by
/ dz = —/ [A2(m — Z2h%)%R?
= 2 JH (=) Az

— (I, — AkR2/2)2)7/2dh?, (14)

where H(z) = h%(z). The integral equation (14) gives
the general solution H(z) at the distance z for arbi-
trary inputs F(z1) (F(z) = f%(2)), H(z1) at z;. If
the power of the initial second-harmonic wave is zero,
i.e. H(z1) = 0 and hence leading to I';, = 0, the in-
tegral (14) is simplified as fzzl dz = (1/2) fOH(Z) dh?
A2(F(z1) — Ah%/X2)?h? — (AkR?/2)?]"Y/2) where
F(z1) = m is the initial power of the fundamental
wave. When A; and A\ have the same sign, the general
expression for the magnitude of the second harmonic
wave reads

H(z) = Ay /M1 F(21)B2 sn?[(M Ao F(21)A222)1/2 4],
(15)
where v, is the modulus of the elliptic function sn,
given by v, = A2_/A2 with A2, =[2+0)£[2+
0)? — 4]'/?]/2, where 0 = (Ak/2)%/(F(z1)M\1)2) is
responsible for the properties of the fibre. The result
for the energy conversion efficiency of the second-
harmonic wave, ng = H(z)/F(z1), and the funda-
mental wave, np = F(z)/F(z1), have been plotted in
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Fig. 2. The energy conversion efficiency between the fun-
damental and second-harmonic waves with the parame-
ters f1 = B2 = 0.06x ps?/m, 71 = 72 = 0.015W~1/m,
Vgl = Vg2 = 2 X 108 ms—1, a%o = 2kW, ago = 4.9kW,
and phase mismatch Ak =5 x 102 m™1! (solid lines). The
dotted cures show the effect of increasing phase mismatch
Ak=9x10°m~1.

Fig. 2, from which we can see there is a periodic en-
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ergy conversion between two wave modes. The bold
curves in the figure show the generation of ny with
phase mismatch Ak =5 x 103m™! from initial value
of H(0) = 0 and F(0) = 10W. The dashed curves
show the effect of the increment of Ak = 9 x 103m™!.
It is clear the energy conversion efficiency decreases
with increasing phase mismatch Ak.

In the ideal case of a perfect phase
matching Ak = 0, Eq.(15) become H =
(A2/A1)F(z1) tanh®[(A Ao F(21)22)1/?], just as seen
in Fig. 3. In this case there is no back-conversion, and

the maximal conversion efficiency 7y can approach
97.5%.
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Fig. 3.
Ak = 0, the conversion efficiency approaches the maxi-

In the ideal case of perfect phase matching
mum with the parameters given as in Fig. 2.

For very short-pulse excitations the walk-off effect
due to different group velocity velocities between the
fundamental and the second-harmonic waves must be
taken into account. The group velocity mismatch in
the SHG will reduce the conversion efficiency. Con-
sidering a travelling-wave solution, i.e., taking u; (j =
1,2) as a function of z and n =t — z/V4, and under
phase-matching condition Ak = 0, the coupled ampli-
tude Egs. (10) and (11) are transferred as

ou s

8—21 + iAujug =0, (16)
8u2 8UQ .

B TV TP =0 an

with v = 1/Vy2 —1/Vy1. The walk-off parameter
v indicates the separation between the two pulses.
If at z = 0, the fundamental wave and the second-
harmonic wave take the form wuq(t) = Ao/(1 + t2/78)
and uz(0,t) = 0, where 7y is the initial pulse width and
A is a constant representing the initial amplitude of

the fundamental wave, the solutions of Egs. (16) and
(17) have the form!!]

1 A
D= Pt G- 2

- {coshf—i— ?Sinhf},

ATter
i+ G-
FECNENR LR E
cosh& + (77/f) sinh ¢ ’ (19)

with 7 = n/7, 2 = z/l,, 7er = v/A, f = (72/72. —
1)'/2, ¢ = fltanh™ ! fj—tanh™ ! (77—2)], where I, = 7/v
is the propagating distance over which the overlapping
fundamental and second-harmonic pulses of width 7
are clearly separated. This situation corresponds to a
quasistationary SHG.

In conclusion, we have predicted a new type of
SHG in nonlinear optical fibres based on the XPM
effect of two copropagating optical pulses. We have
shown that since the linear dispersion curve of the ex-
citation created from the cw background displays two
branches, the phase-matching condition of the SHG
can be fulfilled if the wave vectors and frequencies of

fundamental and second harmonic waves are selected
suitably from different branches. By means of a multi-
scale method we have derived the nonlinearly coupled
envelope equations for the SHG and presented their
explicit solutions. The SHG proposed here is sim-
ilar to that of the elementary excitation in a two-
component Bose-Einstein condensate, which the in-
teraction between different components of the conden-
sates provides the possibility to fulfill the SHG phase-
matching condition.'!] To observe experimentally the
SHG predicted here one should note that an infinite
extended cw background is practically not realizable,
so one realistic way is to consider the excitations cre-
ated on the background with a large but finite extend,
as in the case of the observation for the dark solitons
in optical fibres.1!
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