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The coupled soliton excitations in an alternating Heisenberg ferromagnetic chain with a small magnon band

gap are considered. Based on a quasi-discrete multiple scale approach, a set of coupled mode equations is derived

which describes the dynamics of strongly coupled acoustic upper cut-o� and optical lower cut-o� modes. Coupled

magnetic band gap soliton solutions are explicitly provided and their frequency properties are discussed.

PACS: 05. 45. Yv, 75. 30. Ds

In recent years, much e�ort has been devoted
to the experimental and theoretical investigations of
nonlinear localized excitations in magnetic systems.[1]

Because the earlier research on soliton-like excita-
tions in Heisenberg chains involved a continuum
approximation,[2] valid only for long wavelength exci-
tations, many important nonlinear modes with rather
short wavelengths were lost.[3] Note that the Heisen-
berg model describing magnetic phenomena is inher-

ently discrete, with lattice spacing being a fundamen-
tal physical parameter. An accurate microscopic de-
scription for such discrete systems involves a set of
di�erence-di�erential equations and the intrinsic dis-
creteness may drastically modify the nonlinear dy-
namics of the systems. The discreteness makes the
properties of the system periodic, thus due to the
interplay between the discreteness and nonlinearity
some new types of intrinsic localized magnon modes,
absent in the continuum approximation, may exist.[4]

Recently, such nonlinear localized modes have been
observed experimentally in (C2H5NH3)2CuCl4.

[5]

In recent years, an increased interest has also been
shown in studying the linear and nonlinear excitations
in alternating Heisenberg chains (AHCs). Here, an
AHC means that the exchange interaction constant
(or spin length) in the chain is changed alternatively
as � � � J1�J2�J1�J2 � � � (or � � �S1�S2�S1�S2 � � �).
The AHCs may be realized in many physical systems
such as, for example, the layered materials grown by
molecular beam epitaxy,[6] dimerized atomic chains
through the spin-Peierls e�ect,[7] and some molecu-
lar magnets.[8] Due to the alternation and the dis-
creteness, the magnon frequency spectrum of the sys-
tem splits into two bands, i.e. the acoustical and the
optical bands. In the linear approach, no spin wave
can propagate in the gap between the two bands and
hence the band gap is also called a stop (or forbidden)
band. The situation is, however, changed drastically

when the amplitude of a spin excitation is signi�cant.
Some new types of nonlinear localized magnon modes,
e.g. magnetic gap solitons, can appear in the magnon
band gap.[4]

In a recent work the coupling of two magnetic gap
solitons was considered in an alternating Heisenberg
ferromagnetic chain (AHFC) with a wide band gap.[9]

In that case, however, the interaction between two
gap solitons is mainly due to the cross-phase modu-
lation and hence the coupling belongs to a weak one.
Thus a question arises: what will happen if the band
gap width becomes small? It is just this problem
that will be addressed here. Note that small band
gap AHCs are more realistic for most materials (see
Ref. [7]). Since in the case of a small gap the acous-
tic upper cut-o� and the optical lower cut-o� modes
have almost the same (i.e. degenerate) frequency, the
coupling between the two modes is very strong so that
new types of coupled gap solitons are expected.

The system we study is the one-dimensional AHFC
with a Hamiltonian

H = �
X
i

JiSi � Si+1 �
X
i

Di(S
z
i )

2 � g�BB
X
i

Sz
i ;

(1)
where Si = (Sx

i ; S
y
i ; S

z
i ) is the spin operator on

the site i with spin length independent of i, Ji =
J1Æi;2j + J2Æi;2j+1(J2 > J1 > 0) are (alternating)
exchange constants where j is an integer. Di =
D1Æi;2j + D2Æi;2j+1(D2 > D1 > 0) is the uniaxial
crystal-�eld anisotropy parameter and B is the ex-
ternal magnetic �eld applied in the z-direction. (Note
that, in the case of an alternating spin length, the
Hamiltonian can also be written in the form (1) by a
suitable transformation.) The ground-state con�gura-
tion of the system corresponds to all spins aligned in
the z-direction.

We assume that jS;Mi is the common eigenstate
of the operators S2

i and Sz
i , where S is the spin
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magnitude and M (= �S;�S + 1; � � � ; S � 1; S) is
the eigenvalue of Sz

i . Thus the ground state of the
spin at site i is j0ii = jS; Sii. The SU(2) coher-
ent state j�ii associated with the spin Si is given by
j�ii = (1+j�ij2)�S exp(�iS�i )j0ii, where S�i = Sx

i �iSy
i

and �i is a complex spin deviation. The SU(2) co-
herent state of the system can be constructed by
j	i = �ij�ii. Applying the path-integral theory com-
bined with a stationary phase approximation,[4] the
Heisenberg equation of motion for spin Si is trans-
ferred into

i
d

dt
�i = �i�i�S(Ji�i+1+Ji�1�i�1)+U(�i; �i�1); (2)

with �i = S(J1 + J2) + (2S � 1)Di + g�BB. Here,
for simplicity, we have taken ~ = 1. U is a nonlin-
ear function of �i and �i�1 which is not written down
explicitly here.

Because of the alternation, the system splits into
two sublattices A and B with

A = f� � � ;S2i�2;S2i;S2i+2; � � �g
= f� � � ;Sa;n�1;Sa;n;Sa;n+1; � � �g;

B = f� � � ;S2i�1;S2i+1;S2i+3; � � �g
= f� � � ;Sb;n�1;Sb;n;Sb;n+1; � � �g;

where n is the index of nth unit cell with lattice con-
stant a = 2a0, and a0 is the spacing between two
nearest-neighbour spins. Hence Eq. (2) reads

i
d

dt
�n =�1�n � S(J1 n + J2 n�1)

+ U1(J1; J2;D1; �n;  n;  n�1); (3)

i
d

dt
 n =�2 n � S(J1�n + J2�n+1)

+ U2(J1; J2;D2; �n;  n; �n+1); (4)

where �n = �2i,  n = �2i+1 and U1 and U2 are the
two nonlinear functions.

Assuming that

�
�n
 n

�
= �

�
�0
 0

�
exp[i(qna� !t)]

where �0 and  0 are constants and � is a small param-
eter, one obtains the linear dispersion relation of the
system:

!�(q) =
1

2
f�1 + �2 � [(�2 � �1)

2

+ 4S2[J21 + J22 + 2J1J2 cos(qa)] ]
1=2g:

(5)

We see that the magnon frequency spectrum of the
AHFC displays two branches. One is the acoustic
band !�(q) and the other is the optical band !+(q).
At q = �=a a frequency band gap exists between the
upper cut-o� of the acoustic band !1, and the lower
cut-o� of the optical band !2, with !1 � !�(�=a) =

f�1+�2� [(�2��1)2+4S2(J2�J1)2]1=2g=2 and !2 �
!+(�=a) = f�1+�2+[(�2��1)2+4S2(J2�J1)2]1=2g=2.
The band gap width is

!2�!1 = [(2S�1)2(D2�D1)
2+4S2(J2�J1)2]1=2: (6)

In linear theory, the propagation of a spin wave in the
band gap (i.e. stop band) is forbidden. The situation
is, however, changed drastically when the nonlinear
e�ect is signi�cant. Some nonlinear localized modes
may appear in the band gap.[4] Here our main interest
is in strong nonlinear coupling between the acoustic
upper cut-o� and the optical lower cut-o� modes. To
this end we �rst make the asymptotic expansion[10]

un(t) = �u(1)(�n; � ; �n) + �2u(2)(�n; � ; �n) + � � � =P1
�=1 �

�u
(�)
n;n, where un(t) represents �n(t) or  n(t)

and u
(�)
n;n represents u(�)(�n; � ; �n) with �n = �2na and

� = �2t (slow variables) and �n = qna� !t (fast vari-
able). For a small gap we assume J1 = J � �2�1,
J2 = J + �2�1, D1 = D � �2�2 and D2 = D + �2�2
with �j(j = 1; 2) of the order of unity. The gap
width (Eq.(6)) is now given by

!2 � !1 = 2�[4S2�21 + (2S � 1)2�22]
1=2: (7)

Thus we have the small gap with its width character-
ized by the small parameter �. With these consider-
ations, Eqs. (2) and (3) are transformed into a hier-

archy of equations for �
(�)
n;n and  

(�)
n;n by equating the

coeÆcients of the same powers of �.
In the leading order (� = 1), the solution repre-

senting the excitation of the acoustic upper cut-o� and
the optical lower cut-o� modes reads

�(1)n;n = A�(�n; �)(�1)n exp(�i!0t);
 (1)
n;n = A+(�n; �)(�1)n exp(�i!0t); (8)

where !0 = 2JS + (2S � 1)D + g�BB. Keeping the
perturbation expansion to the third order (� = 3) the
solvability conditions yield the equations controlling
the envelopes A�:

i
@A1

@t
+ JSa

@A2

@xn
+ 2D(2S � 1)jA1j2A1

+ 4JSjA2j2A1 + (2S � 1) ~�2A1 � 2S ~�1A2 = 0;
(9)

i
@A2

@t
� JSa

@A1

@xn
+ 4JSjA1j2A2 + 2D(2S � 1)

� jA2j2A2 � 2S ~�1A1 � (2S � 1) ~�2A2 = 0;
(10)

when returning to the original variables, where A1 =
�A�, A2 = �A+ and ~�j = �2�j(j = 1; 2). Note that
the self-phase modulation terms (jAj j2Aj ; j = 1; 2)
result from the uniaxial anisotropy while the cross-
phase modulation terms (jAj j2A3�j) come from the
exchange interaction.

Next we consider possible coupled soliton solu-
tions of the coupled-mode Eqs. (9) and (10). We take



1318 ZHU Shan-Hua et al. Vol. 18

Aj(xn; t) = fj(xn) exp(�i
t)(j = 1; 2) where fj is the
real function and 
 is a real constant. Then Eqs. (9)
and (10) become

df1
dz

= ��f1 � �1f2 + �3f
2
1 f2 + �4f

3
2 ; (11)

df2
dz

= �f2 � �2f1 � �3f
2
2 f1 � �4f

3
1 ; (12)

with z = xn=(JSa), � = 2S ~�1, �1 = �
+(2S�1) ~�2,
�2 = �
�(2S�1) ~�2, �3 = 4JS and �4 = 2(2S�1)D.
Equations (11) and (12) form a dynamical system with
the Hamiltonian H=�(1=2)(�2f21 + �1f

2
2 + 2�f1f2) +

(1=2)�3f
2
1 f

2
2 + (1=4)�4(f

4
1 + f42 ). By introducing the

function h(z) = f1(z)=f2(z), Eqs. (11) and (12) can
be solved exactly by integrating the equation dh=dz =
�[(�1 + 2�h + �2h

2)1=2, where E is the value of the
\energy" corresponding to the particular orbit in the
phase space (f1; f2) associated with H. The solu-
tions for f1 and f2 can be found through the relation
f1 = hf2, f

2
2 = f�1+2�h+�2h

2�[(�1+2�h+�2h
2)2+

4E(�4 + 2�3h
2 + �4h

4)]1=2=(�4 + 2�3h
2 + �4h

4). We
�nd that 
 is an important detuning (bifurcation)
parameter controlling the type of coupled soliton solu-

tions. Two types of solution corresponding to E = 0
are found for di�erent values of 
.

(1) In the region �
1 < 
 < �
0, where 
0 =
(2S � 1) ~�2 and 
1 = f[2S � 1) ~�2]

2 + 4S2 ~�1
2g1=2,

one has �2 > 0 and �2 � �1�2 > 0. We obtain
h = Æ1r1 coth y � �=�2 and hence

f1 = Æ1Æ2
p
2r1cschy(Æ1r1 coth y � �=�2)

� f[�4 + 2�3(Æ1r1 coth y � �=�2)
2

+ �4(Æ1r1 coth y � �=�2)
4]1=2g�1; (13)

f2 = Æ1Æ2
p
2r1cschyf[�4 + 2�3(Æ1r1 coth y � �=�2)

2

+ �4(Æ1r1 coth y � �=�2)
4]1=2g�1; (14)

where y = r(z � z0), r1 = r=
p
�2 and Æj � 1(j = 1; 2)

with r = (�2 � �1�2)
1=2 and z0 an arbitrary constant.

We see that both envelopes are bright solitons. How-
ever, they are di�erent kinds of bright solitons since
the soliton f1 (the envelope of the acoustic upper cut-
o� mode) is symmetric with only one maximum but
the soliton f2 (the envelope of the optical lower cut-o�
mode) is asymmetric and there are two extrema.

(2) In the region �
0 < 
 < 
1, we have
�2 � �1�2 > 0 but �2 < 0. In this case we �nd
h = Æ1r2 tanh y � �=�2 and hence

f1 = Æ2
p
2r2sechy(Æ1r2 tanh y � �=�2)

� f[�4 + 2�3(Æ1r2 tanh y � �=�2)
2

+ �4(Æ1r2 tanh y � �=�2)
4]1=2g�1; (15)

f2 = Æ2
p
2r2sechyf[�4 + 2�3(Æ1r2 tanh y � �=�2)

2

+ �4(Æ1r2 tanh y � �=�2)
4]1=2g�1; (16)

with r2 = r=
p��2. Again, both f1 and f2 are bright

solitons but in this circumstance f1 is asymmetric with
two extrema while f2 is symmetric with only one max-
imum.

Finally, we discuss the frequency property of
the coupled solitons obtained above. From Eq. (8),
in the leading-order approximation we have �n =
f1 exp[�i(!0 + 
)t] and  n = f2 exp[�i(!0 + 
)t].
Thus both solitons vibrate with the frequency ! =
!0 + 
. The existence region of the coupled soli-
tons Eqs. (13) and (14), �
1 < 
 < 
0, means
that !0 � 
1(= !1) < ! < !c(� !0 � 
0). Thus
the vibrating frequency of these coupled solitons is
within the lower part of the magnon band gap. On
the other hand, the existence region of the coupled
solitons Eqs. (15) and (16), �
0 < 
 < 
1, yields
!c < ! < !2(= !0 + 
1). Hence the vibrating fre-
quency of the coupled solitons Eqs. (15) and (16) is
within the upper part of the band gap.

In conclusion, based on a quasi-discrete multiple
scale approach[10] we have investigated the strong cou-

pling of the acoustic upper cut-o� and the optical
lower cut-o� modes in an AHFC. New types of cou-
pled solitons with their vibrating frequency within
the magnon band gap have been presented explic-
itly. We found that in the band gap, there exists a
\critical frequency" !c. In the lower part of the gap
(i.e. !1 < ! < !c) the coupled solitons provided by
Eqs. (13) and (14) are possible; while in the upper part
of the gap (i.e. !c < ! < !2) the other type of coupled
solitons, given by Eqs. (15) and (16), can appear. Note
that band gap solitons have been observed experimen-
tally in one-dimensional photonic crystals[11] and in
the pendulum lattices.[12] Our results presented above
may be useful for further understanding of the excita-
tion spectrum in magnetic systems and as a guide for
new experimental �ndings.

The author (GXH) wishes to express his appreci-
ation to Professor M. G. Velarde for his warm hospi-
tality at Universidad Complutense de Madrid where
part of this work was carried out.
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