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High-Dimensional Nonlinear Envelope Equations and Nonlinear Localized Excitations
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Abstract We investigate the nonlinear localized structures of optical pulses propagating in a one-dimensional photonic
crystal with a quadratic nonlinearity. Using a method of multiple scales we show that the nonlinear evolution of a wave
packet, formed by the superposition of short-wavelength excitations, and long-wavelength mean fields, generated by the
self-interaction of the wave packet, are governed by a set of coupled high-dimensional nonlinear envelope equations, which
can be reduced to Davey–Stewartson equations and thus support dromionlike high-dimensional nonlinear excitations in
the system.
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1 Introduction
In recent years, considerable progress has been made

on the study of electromagnetic wave propagation in pho-
tonic crystals (PCs). Since the periodic variation of refrac-
tive index of PCs can be controlled and even engineered,
such systems have many important applications in the de-
sign of new optical materials and optical-device.[1] PCs
have also opened a new chapter of nonlinear optics. Be-
cause of their remarkable capacities of localizing and guid-
ing electromagnetic waves, together with local field en-
hancement and dispersion tunability, PCs provide a con-
ceptually new architecture for nonlinear optical materials
with enhanced nonlinearities, extended phase matching
abilities, artificial anisotropy, etc.[2,3] In particular, PCs
support nonlinear localized structures called optical soli-
tons, which form due to the balance between dispersion
(or diffraction) and nonlinearity, near photonic band edge
and even within a band gap. However, most studies up to
now have been concentrated on one-dimensional (1D) op-
tical solitons in PCs with cubic (i.e. χ(3)) nonlinearity.[3]

Although there appeared a lot of work for second har-
monic generation and three-wave interactions in PCs with
quadratic (i.e. χ(2)) nonlinearity,[4] to the best of our
knowledge, up to now there is no report on possible high-
dimensional nonlinear localized excitations in such sys-
tems.

In the present work, we investigate the nonlinear lo-
calized structures of optical pulses propagating in a 1D
photonic crystal with a quadratic nonlinearity. Different
from most of the previous studies, in our approach we
allow a transverse variation of the envelopes of the op-
tical pulses and hence the evolution of these envelopes
is (3+1)-dimensional. Using a method of multiple-scales
we obtain scalar and vector coupled envelope equations,
which can be reduced to Davey–Stewartson (DS) equa-
tions and hence dromionlike (2+1)-dimensional nonlinear
localized excitations are shown to be possible. The paper
is arranged as follows. In Sec. 2 we derive a set of non-

linear scalar envelope equations. An extension to a vector
case is given in Appendix. In Sec. 3 we discuss the reduc-
tion of these equations to the DS equations and present
dromionlike solutions. The last section is a summary of
our results.

2 Asymptotic Expansion and Derivation of
Scalar Envelope Equations
In nonmagnetic materials, and in the absence of

sources, Maxwell equations yield the vector nonlinear
wave equation for the electric field E as

∇2E −∇(∇ · E) − 1
c2

∂2

∂t2

(
E +

P

ε0

)
= 0 , (1)

where ε0 and c are the permittivity and speed of light in
vacuum, respectively. The polarization of the material,
P , can be expressed in terms of the electric field by the
expansion

1
ε0

P = χ(1) ∗ E + χ(2) ∗ EE + χ(3) ∗ EEE + · · · , (2)

where χ(n) = χ(n)(r, t) is the n-th order susceptibility
of the material and asterisk denotes an n-dimensional
convolution integral. For simplicity we neglect material
dispersion[5] and thus the above expression reads

Pj

ε0
= χ

(1)
jk Ek + χ

(2)
jklEkEl + χ

(3)
jklmEkElEm + · · · ,

j = 1, 2, 3 .

The system we are going to study is a 1D PC whose di-
electric function is a constant in transverse (x and y) di-
rections but a periodic function along z direction. Thus
we have χ(1)(z + d) = χ(1)(z), where d is lattice constant.
The system has been sketched in Fig. 1. Although not
independent from the nonlinear wave equation (1), it is
useful to use the divergence law

∇ ·
(
E+

P

ε0

)
= 0 . (3)

We note that, as a consequence of Eq. (3), ∇·E 6= 0. The
term ∇ · E is a small perturbation and its contribution
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to the nonlinear wave equation (1) is usually neglected
(the so-called transverse wave approximation). However,
its presence is crucial in the following derivation as we are
going to see.

Fig. 1 The schematic illustration of a one-dimensional
(1D) PC whose dielectric function is a constant in trans-
verse (x and y) directions but a periodic function along
z direction. Here, A and B denote two different kinds of
material and d is lattice constant.

We are interested in the weak nonlinear excitations
of the system. We introduce the asymptotic expansion
E =

∑∞
j=1 εjE(j) = εE(1) + ε2E(2) + ε3E(3) + · · ·, where

ε is a small parameter characterizing the relative ampli-
tude of the electric field. To obtain a divergence-free ex-
pansion, E(j) are considered as the functions of the multi-
scale variables rj = εjr and tj = εjt (j = 0, 1, 2, . . .). We
assume the susceptibility has a periodic variation only on
fast spatial scale, i.e., χ(j)(z) = χ(j)(z0). The vector P
can be also expanded in powers of ε.

Using the above expansion and collecting the terms
with equal powers of ε, equation (1) can be reduced into
(j = 1 to 4)

∇2
0E

(j) −∇0(∇0 · E(j)) − 1
c2

∂2

∂t20
E(j)

− 1
c2

χ(1)(z0)
∂2

∂t20
E(j) = M (j) . (4)

The explicit expressions of M (j) can be obtained analyt-
ically but their explicit expressions are omitted here.

We consider first the propagation of an optical pulse
in a uniaxial 4 mm materials (for example BaTiO3). This
particular choice of symmetry class guarantees that only
few components of the nonlinear susceptibility tensors
play an active role in the vector wave Eq. (1).[6] For conve-
nience we take (x, y, z) axes as the crystallographic z, x, y
axes. The non-zero components are then given by

χ(1) : χ(1)
xx = χ(1)

yy 6= χ(1)
zz ,

χ(2) : χ(2)
xxx, χ(2)

xyy = χ(2)
xzz, χ

(2)
yxy = χ(2)

zxz, χ
(2)
yyx = χ(2)

zzx .

For χ(3), there are 21 nonzero elements, among which
eleven are independent. We assume that input electric
field of the system is polarized along one of the principal
axes of crystal. The field propagating along the z axis and
polarized along x axis, i.e. E(1) = (E(1)

x , 0, 0) (see Fig. 1).
The x component of Eq. (4) at leading order (j = 1) reads

∂2

∂z2
0

E(1)
x − 1

c2

∂2

∂t20
E(1)

x − 1
c2

χ(1)
xx (z0)

∂2

∂t20
E(1)

x = 0 . (5)

We assume that input field is a wavepacket, i.e. we take
E

(1)
x = Aφm(z0) e−iωmt0 + c.c., where A is an envelope

function of slow variables rj and tj (j = 1, 2, . . .), which
is yet to be determined, and c.c. denotes complex conju-
gate. Substituting this solution into Eq. (5) we get

−c2 ∂2

∂z2
0

φm(z0) = ω2
mε(z0)φm(z0) , (6)

where ε(z0) = 1 + χ
(1)
xx (z0). Equation (6) is an eigenvalue

problem of Sturm–Liouville type. Its solutions constitute
a complete set of eigenfunctions, called the Bloch states.
The eigenfunctions satisfy the following orthonormalized
relation:

〈m′|ε(z0)|m〉 =
∫ L

0

dz0φ
∗
m′(z0)ε(z0)φm(z0) = δm′m , (7)

where L = nd is the length over which the function φm

must be periodic, with d being the period of the PC.
Since the dielectric function ε(z0) is periodic, the

Floquet–Bloch theorem applies. Thus one has
φm(z0) = φn,k(z0) = Γn,k(z0) e ikz0 , (8)

where Γn,k(z0) is a periodic function of periodicity d, i.e.
Γn,k(z0) = Γn,k(z0 + d). The subscripts n and k are the
band index and crystal momentum, respectively.

At the second order (j = 2), the x component of
Eq. (4) gives

∂2

∂z2
0

E(2)
x − 1

c2
ε(z0)

∂2

∂t20
E(2)

x

= −
[
2

∂A

∂z1

∂φm

∂z0
+

2
c2

iωmε(z0)
∂A

∂t1
φm

]
e−iωmt0

− 4ω2
m

c2
χ(2)

xxx(z0)A2φ2
m e−i2ωmt0 + c.c. (9)

In order to solve this equation, we use the completeness
of the linear eigenfunctions. We make the expansion

E(2)
x = E(2,0)

x +
∑

l

E
(2,1)
x,l φl(z0) e−iωmt0

+
∑

l

E
(2,2)
x,l φl(z0) e−i2ωmt0 + c.c. , (10)

where E(2,0), E(2,1), E(2,2) are new envelope functions of
slow variables. Substituting the expansion into Eq. (9),
we find

∑
l

E
(2,1)
x,l [ω2

l − ω2
m]ε(z0)φl e−iωmt0 + c.c. = 2i

[
cΩ̂φm

∂A

∂z1
+ ωmε(z0)φm

∂A

∂t1

]
e−iωmt0 + c.c. , (11a)
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∑
l

E
(2,2)
x,l [ω2

l − 4ω2
m]ε(z0)φl e−i2ωmt0 + c.c. = 4ω2

mχ(2)
xxx(z0)φ2

mA2 e−i2ωmt0 + c.c., (11b)

where Ω̂ = −ic∂/∂z0.
We analyze Eq. (11a) with two steps. In the first step

we project it onto the eigenvector φm. The left-hand side
of Eq. (11a) then vanishes and the following condition for
envelope function A is thus found

c〈m|Ω̂|m〉 ∂A

∂z1
+ ωm

∂A

∂t1
= 0 , (12)

where 〈m|Ω̂|m〉 =
∫ L

0
dz0φ

∗
mΩ̂φm and the orthonormal-

ized relation (7) has been used. We see that the envelope
A propagates with the (group) velocity

cg =
dωm

dk
=

c

ωm
〈m|Ω̂|m〉 .

In the second step we project Eq. (11a) onto the space
spanned by the remaining eigenfunction vectors {φl} (l 6=
m). Then we have

E
(2,1)
x,l =

∂A

∂z1
Λl,md , (13)

where the coupling coefficient Λl,m is defined as

Λl,m =
2ic
d

〈l|Ω̂|m〉
ω2

l − ω2
m

. (14)

Similarly from Eq. (11b) we also get E
(2,2)
x,l = A2Γx

l,m

with

Γx
l,m =

4ω2
m〈l|χ(2)

xxx(z0)|m,m〉
ω2

l − 4ω2
m

,

〈l|χ(2)
xxx(z0)|m,m〉 =

∫ L

0

dz0φ
∗
l χ

(2)
xxx(z0)φmφm .

Thus we obtain

E(2)
x = Φx +

∑
l 6=m

∂A

∂z1
Λl,mdφl(z0) e−iωmt0

+
∑

l 6=2m

A2Γx
l,mφl(z0) e−i2ωmt0 + c.c. (15)

Following a similar procedure, we find E
(2,1)
y,l = 0,

E
(2,2)
y,l = A2Γy

l,m, E
(2,1)
z,l = Vl,md ∂A/∂x1, and E

(2,2)
z,l =

A2Γz
l,m, where

Γy
l,m =

4ω2
m〈l|χ(2)

yxx(z0)|m,m〉
ω2

l − 4ω2
m

,

Vl,m =
ic〈l|η(z0)Ω̂|m〉

ω2
md

,

Γz
l,m = −〈l|η(z0)χ(2)

zxx(z0)|m,m〉

with η(z0) = ε(z0)/ε̄(z0) and ε̄(z0) = 1 + χ
(1)
zz (z0). Note

that for normal uniaxial crystal η(z0) 6= 1. Thus we get

E(2)
y = Φy +

∑
l 6=2m

A2Γy
l,mφl(z0) e−i2ωmt0 + c.c. , (16a)

E(2)
z = Φz +

∑
l

∂A

∂x1
Vl,mdφl(z0) e−iωmt0

+
∑

l

A2Γz
l,mφl(z0) e−i2ωmt0 + c.c. (16b)

The dc electric fields Φi (i = 1, 2, 3) in Eqs. (15) and (16)
at this order are still undetermined functions. These dc
fields are generated by self-excitation of the wavepacket
and play an important role, as shown below.

At third-order approximation (j = 3), a solvability
condition of Eq. (4) gives rise to

iκ1
∂A

∂z2
+ iκ2

∂A

∂t2
+ κ3

∂2A

∂x2
1

+ κ4
∂2A

∂y2
1

+ κ5
∂2A

∂ξ2

+ κ6ΦxA + κ7|A|2A = 0 , (17)
where ξ = z1 − cgt1, and

κ1 =
2
c
〈m|Ω̂|m〉 , (18a)

κ2 =
2ωm

c2
, (18b)

κ3 = − i
c

∑
l

Vl,md〈m|Ω̂|l〉 , (18c)

κ4 = 〈m|m〉 , (18d)

κ5 = 〈m|m〉 −
c2
g

c2
+

2i
c

∑
l 6=m

Λl,md〈m|Ω̂|l〉 ,

(18e)

κ6 =
2ω2

m

c2
〈m|χ(2)

xxx(z0)|m〉 , (18f)

κ7 =
ω2

m

c2

[
2

∑
l 6=2m

Γx
l,m〈m,m|χ(2)

xxx(z0)|l〉

+ 3〈m,m|χ(3)
xxxx(z0)|m,m〉

]
. (18g)

It is easy to show the relations κ1/κ2 = cg = ∂ωm/∂k and
2κ5/κ2 = ∂2ωm/∂k2 = ∂cg/∂k.

Note that the divergence law (3) for dc terms at order
j = 3 yields the explicit relation among Φx, Φy, Φz and A.
Substituting this relation into the x-component of Eq. (4)
for dc terms at the fourth order (j = 4), we obtain

λ1
∂2Φx

∂x2
1

+
∂2Φx

∂y2
1

+ λ2
∂2Φx

∂ξ2
+ (λ1 − 1)

∂2Φy

∂x1∂y1

= λ3
∂2

∂x2
1

|A|2 + λ4
∂2

∂ξ2
|A|2 (19)

with

λ1 =
1
L

∫ L

0

η(z0)dz0 , (20a)

λ2 = 1 −
c2
g

Lc2

∫ L

0

ε(z0)dz0 , (20b)

λ3 = − 2
L
〈m|χ

(2)
xxx(z0)
ε̄(z0)

|m〉 , (20c)

λ4 =
2c2

g

Lc2
〈m|χ(2)

xxx(z0)|m〉 . (20d)

For getting a close system we need an additional equation,
which can be obtained from the y-component of Eq. (4)
for dc terms at the fourth order. It reads

∂2Φy

∂x2
1

+ λ1
∂2Φy

∂y2
1

+ λ2
∂2Φy

∂ξ2
+ (λ1 − 1)

∂2Φx

∂x1∂y1
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= λ3
∂2

∂x1∂y1
|A|2 . (21)

Equations (17), (19), and (21) describe the nonlinear evo-
lution of the envelopes A, Φx, and Φy. Similar equations
have been obtained by Ablowitz et al. in different optical
systems.[7]

The above results can be generalized to a vector case,
that is, when the input electric field at the leading-order
is within xy plane, i.e. E(1) = (E(1)

x , E
(1)
y , 0). A de-

tailed derivation for vector envelope equations has been
presented in Appendix.

3 Davey Stewartson Equations and
(2+1)-Dimensional Localized Solutions
We now discuss the solutions of the nonlinear envelope

equations obtained in the last section. For simplicity we
assume A, Φx, and Φy are only dependent on ξ, y1, and
t2. Taking Φx = ∂A0/∂ξ, from Eqs. (17) and (19) we get

α1
∂2A0

∂ξ2
− ∂2A0

∂y2
1

= α2
∂

∂ξ
|A|2 , (22a)

i
∂A

∂t2
+ β1

∂2A

∂ξ2
+ β2

∂2A

∂y2
1

+ β3|A|2A

− β4A
∂A0

∂ξ
= 0 (22b)

with α1 = −λ2, α2 = −λ4, β1 = κ5/κ2, β2 = κ4/κ2,
β3 = κ7/κ2 and β4 = −κ6/κ2.

Defining ∂A0/∂ξ = −[β1/(ε2α1β4)]s and A =
[4β1/(ε2α2β4)]1/2u, equations (22a) and (22b) can be
rewritten as

∂2s

∂z′2
− ∂2s

∂y′2
+ 4

∂2

∂z′2
(|u|2) = 0 , (23a)

i
∂u

∂t′
+

∂2u

∂z′2
+

α1β2

β1

∂2u

∂y′2
+ 4

α1β3

α2β4
|u|2u

+ su = 0 , (23b)

where z′ =
√

1/α1(z − cgt), y′ = y, t′ = (β1/α1)t.
When αi and βi satisfy the conditions α1β2/β1 = 1 and
2α1β3/(α2β4) = 1, equation (23b) takes the form

i
∂u

∂t′
+

∂2u

∂z′2
+

∂2u

∂y′2
+ 2|u|2u + su = 0 . (24)

Equations (23a) and (24) are standard DS-I equations,
which are completely integrable and can be solved exactly
by inverse scattering method.[8] One of the remarkable
properties of the DS-I equations is that they allow a local-
ized envelope solution decaying exponentially in all spatial
directions.[8] The key for the fact that equations (22a) and
(22b) can be simplified into the DS-I equations depends
on the fact that both αi and βi are positive.

A single dromion solution of the DS-I Eqs. (23a) and
(23b) is[9]

u =
G

F
, s = 4

∂2

∂z′2
lnF , (25a)

F = 1 + exp(η1 + η∗1) + exp(η2 + η∗2)

+ γ exp(η1 + η∗1 + η2 + η∗2) , (25b)

G = ρ exp(η1 + η2) (25c)

with η1 = (kr+iki)z′′+(Ωr+iΩi)t′, η2 = (lr+ili)z′′+(ωr+
iωi)t′, Ωr = −2krki, ωr = −2lrli, Ωi+ωi = k2

r+l2r−k2
i −l2i ,

ρ = |ρ| exp(iϕρ), |ρ| = 2
√

2krlr(γ − 1), z′′ = (y′+z′)/
√

2,
and y′′ = (y′−z′)/

√
2. The constants kr, ki, lr, li, |ρ|, ϕρ,

and γ are real integration constants. If we choose krlr > 0
we obtain γ = exp(2ϕγ) with ϕγ > 0.

By taking kr =
√

2µ, ki =
√

2a, lr =
√

2λ, li =
√

2p

(λµ ≥ 0), Ωi = 2(µ2 − a2), ωi = 2(λ2 − p2), Ωr = −4aµ,
and ωr = −4λp we obtain

u =
2µ exp(ih)

m cosh f1 + n cosh f2
, (26a)

s =
4(m2 + n2)(µ2 + λ2) − 8µ2

(m cosh f1 + n cosh f2)2
+

8mn[(µ2 + λ2) cosh f1 cosh f2 − (µ2 − λ2) sinh f1 sinh f2]
(m cosh f1 + n cosh f2)2

, (26b)

where m = (µ/[λ(γ − 1)])1/2, n = (µγ/[λ(γ − 1)])1/2, and

h =
√

2az′′ +
√

2py′′ + 2(µ2 + λ2 − a2 − p2)t′ + ϕρ , (27a)

f1 =
√

2µz′′ −
√

2λy′′ − 4(aµ − λp)t′ , (27b)

f2 =
√

2µz′′ +
√

2λy′′ − 4(aµ + λp)t′ + ϕγ . (27c)

Obviously, the expression of u in Eq. (26a) denotes a localized envelope function decaying exponentially in all spatial
directions, called dromion.[8,9] The mean-field component s consists of two interacting plane solitons with each plane
soliton decaying in its travelling direction. These features are shown in Fig. 2.

In the case of the dromion excitation, the explicit expression in the leading-order approximation for the x component
of optical pulse takes the following form:

Ex = 4µ

√
4β1

α2β4

cos Φ
m cosh f1 + n cosh f2

φm(z) cos(ωmt) (28)

with

Φ = (a + p)y +
a − p
√

α1
z +

[
2(µ2 + λ2 − a2 − p2)

β1

α1
− a − p

√
α1

cg − ωm

]
t + ϕρ . (29)
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The results show that the electric field E is a high-dimensional localized function in space.

Fig. 2 (a) The modulus of short-wavelength input field component u in the case of a dromion excitation. The parameters
are chosen as µ = 1.0, λ = 1.0, a = 1.0, p = 1.0, ϕρ = 0, ϕγ = 1.0 at t = 0. (b) The long wavelength mean-field component
s in the case of a dromion excitation. The parameters are the same as in (a).

4 Conclusion
We have investigated the nonlinear dynamics of a mul-

tidimensional quasi-monochromatic optical pulse in a 1D
photonic crystal with quadratic nonlinearity. By employ-
ing a method of multiple-scales and allowing a variation
in the transverse directions for the electromagnetic field,
we have derived the nonlinear envelope equations with
scalar and vector forms for biaxial and uniaxial crystals,
describing the interaction between the wavepacket of short
waves and long wavelength mean fields generated by the
self-interaction of the short waves. We have shown that
these envelope equations can be reduced to well-known
DS-I equations and hence dromionlike (2+1)-dimensional
nonlinear localized excitations are possible. Such high-
dimensional nonlinear localized excitations, although pre-
dicted in water waves,[7] plasma physics,[10] and Bose–
Einstein condensates,[11] have never been reported in pho-
tonic crystals up to now. Because of their robust na-
ture, the high-dimensional localized excitations in nonlin-
ear photonic crystals have potential applications in optical
information processing and engineering.

Appendix: Vector Envelope Equations
In this appendix we give a detailed derivation of non-

linear envelope equations for the case in which the in-
put electric field has nonzero components along both the
transverse principal axes of the material, i.e., E(1) =
(E(1)

x , E
(1)
y , 0). The derivation follows closely the method

developed for the scalar case presented in Sec. 2. For con-
creteness, we consider a (uniaxial) hexagonal 6m2 crystal
and we take (x, y, z) axes to coincide with the crystallo-
graphic axes.

Note that the χ(1)-tensor of 6m2 symmetry class has
three nonzero elements (diagonal elements), among which
two are independent: χ

(1)
xx = χ

(1)
yy and χ

(1)
zz . The χ(2)-

tensor of 6m2 symmetry class is
χ(2)

yyy = −χ(2)
yxx = −χ(2)

xxy = −χ(2)
xyx. (A1)

The χ(3)-tensor of 6m2 symmetry class has 21 nonzero
elements, among which 10 are independent

χ(3)
xxxx = χ(3)

yyyy = χ(3)
xxyy + χ(3)

xyyx + χ(3)
xyxy ,

χ(3)
xxyy = χ(3)

yyxx, χ(3)
xyyx = χ(3)

yxxy, χ(3)
xyxy = χ(3)

yxyx , (A2)

Components containing z indices are omitted here since
they have no active role in the following calculation.

The electric field is expanded as in Sec. 2. Although
the calculation here is more involved, the perturbation ex-
pansion and the analysis proceed almost exactly as in the
scalar case. So in what follows, we are only concentrated
on the differences between the two cases.

At the leading-order approximation (j = 1), since
χ

(1)
yy (z0) = χ

(1)
xx (z0), eigenvalue equations of x-component

and y-component are identical. That means we can con-
veniently reserve one set of eigenfunctions to expand the
space polarized in either direction. We still choose the
eigenfunctions satisfying Eq. (6) as in Sec. 2.

At the second-order approximation (j = 2), we obtain
(α = x, y)

E
(2,1)
α,l =

∂Aα

∂z1
Λl,md , (A3)

where Aα is undetermined envelope function (Aα =
E

(1,1)
α ), Λl,m is defined by Eq. (14). The other envelope

functions read

E
(2,2)
x,l = AxAy∆x

l,m , (A4a)

E
(2,2)
y,l = (A2

y − A2
x)∆y

l,m , (A4b)

E(2,1)
z =

(∂Ax

∂x1
+

∂Ay

∂y1

)
Vl,md , (A4c)

E(2,2)
z = 0 , (A4d)

where

∆x
l,m = 8ω2

m

〈l|χ(2)
xxy(z0)|m,m〉
ω2

l − 4ω2
m
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= −8ω2
m

〈l|χ(2)
yyy(z0)|m,m〉
ω2

l − 4ω2
m

, (A5a)

∆y
l,m = 4ω2

m

〈l|χ(2)
yyy(z0)|m,m〉
ω2

l − 4ω2
m

. (A5b)

At the third-order approximation (j = 3), we find the
evolution of the transverse components of the optical field.
By defining Φα = E

(2,0)
α , we obtain

iκ1
∂Aα

∂z2
+ iκ2

∂Aα

∂t2
+ κ3

(∂2Aα

∂α2
1

+
∂2Aᾱ

∂α1∂ᾱ1

)
+ κ4

(∂2Aα

∂ᾱ2
1

− ∂2Aᾱ

∂α1∂ᾱ1

)
+ κ5

∂2Aα

∂ξ2
+ κ6Θα

+ κ7Aα|Aᾱ|2 + κ8A
∗
α(A2

ᾱ − A2
α) + κ9[2Aα|Aᾱ|2 + A∗

αA2
ᾱ] + κ10Aα|Aα|2 = 0 , (A6)

with

κ1 =
2
c
〈m|Ω̂|m〉 , (A7a)

κ2 =
2ωm

c2
, (A7b)

κ3 = − i
c

∑
l

Vl,md〈m|Ω̂|l〉 , (A7c)

κ4 = 〈m|m〉 , (A7d)

κ5 = 〈m|m〉 −
c2
g

c2
+

2i
c

∑
l 6=m

Λl,md〈m|Ω̂|l〉 , (A7e)

κ6 = −2ω2
m

c2
〈m|χ(2)

yyy(z0)|m〉 , (A7f)

κ7 = −2ω2
m

c2

∑
l 6=2m

∆x
l,m〈m,m|χ(2)

yyy(z0)|l〉 , (A7g)

κ8 = −2ω2
m

c2

∑
l 6=2m

∆y
l,m〈m,m|χ(2)

yyy(z0)|l〉 , (A7h)

κ9 =
ω2

m

c2
〈m,m|(χ(3)

xxyy(z0) + χ(3)
xyyx(z0)

+ χ(3)
xyxy(z0))|m,m〉 , (A7i)

κ10 = 3
ω2

m

c2
〈m,m|χ(3)

xxxx|m,m〉 , (A7j)

Θx = AxΦy + AyΦx , (A7k)
Θy = AxΦx − AyΦy , (A7l)
where α denotes either x or y, and ᾱ is the other trans-

verse coordinate. As in the scalar case, the evolution of
the fields Φx and Φy is captured at O(ε4), which reads

λ1
∂2Φα

∂α2
1

+
∂2Φα

∂ᾱ2
1

+ λ2
∂2Φα

∂ξ2
+ (λ1 − 1)

∂2Φᾱ

∂α1∂ᾱ1

= λ3

[ ∂2

∂α2
1

Mα +
∂2

∂α1∂ᾱ1
Mᾱ

]
+ λ4

∂2

∂ξ2
Mα , (A8)

with

λ1 =
1
L

∫ L

0

η(z0)dz0 , (A9a)

λ2 = 1 −
c2
g

Lc2

∫ L

0

ε(z0)dz0 , (A9b)

λ3 =
2
L
〈m|χ

(2)
yyy(z0)
ε̄(z0)

|m〉 , (A9c)

λ4 = −
2c2

g

Lc2
〈m|χ(2)

yyy(z0)|m〉 , (A9d)

Mx = AxA∗
y + A∗

xAy , (A9e)

My = |Ax|2 − |Ay|2 . (A9f)
We observe that, the vector equations contain more cou-
pling terms, especially the direct coupling between the
two optical fields and the coupling of either optical fields
to the dc field in the other transverse coordinate. Again,
we note that, the vector envelope (A6) and (A8) are only
valid for materials belonging to 6m2 symmetry class. The
materials with other symmetry classes will result in simi-
lar vector equations.
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