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We study electromagnetically induced transparency (EIT) and nonlinear pulse propagation in a resonant atomic
gas confined in a microwaveguide. We find that the quantum-interference effect in this system can be greatly
enhanced due to the reduction of the mode volume of the optical field. In particular, compared with atomic gases
in free space, the EIT transparency window in the present confined system can be much wider and deeper,
the group velocity of the probe field can be much slower, and the Kerr nonlinearity of the system can be much
stronger. We show that a more efficient production of ultraslow optical solitons in the present system may be
achieved with much slower propagating velocity and lower generation power. Features of EIT and pulse
propagation in the present system are very promising for practical applications in optical information processing
and transmission. © 2012 Optical Society of America
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1. INTRODUCTION
In recent years, optical wave propagation in coherent media
has attracted much attention due to the finding of electromag-
netically induced transparency (EIT) [1]. It has been shown
that EIT can be used not only for suppression of optical
absorption but also for reduction of group velocity and
enhancement of Kerr nonlinearity, and so on [2]. These
features of EIT may lead to many applications, such as
slow light [3], quantum memory [4], highly entangled photons
[5], quantum phase gates [6,7], efficient multiwave mixing
[8–10], weak-light ultraslow solitons [11,12], and optical
clocks [13].

Because of their sharp energy levels and excellent quantum
coherence, atomic gaseous phase media are very attractive
candidates for high-precision manipulation of single quantum
states. For practical applications, solid-state setups have the
advantages of scalability and integrability, benefiting directly
from the development of micro- and nanotechnologies. Com-
pared with gaseous phase media, however, solid-state media
usually have large decoherence, a challenging problem for
quantum information processing at single quantum level.
One of methods to solve this problem is to use quantum hybrid
systems, which can combine the advantages of atomic gases
and solid-state elements via a quantum interface in compatible
experimental setups [14].

Most previous works on EIT have been performed with
bulk atomic samples. Recently, there have been some efforts
made on EIT study in gaseous phase media confined in micro-
structures, such as hollow-core photonic-crystal fibers [15,16],
antiresonant reflecting optical waveguides [17], and nanofi-
bers [18], etc. However, confinement-enhanced quantum-
interference effect and EIT-related, ultraslow temporal optical

soliton propagation in such confined systems have not been
reported up to now.

In this article, we investigate the quantum-interference ef-
fect and nonlinear pulse propagation in a resonant atomic gas
confined in a microwaveguide. We find that EIT effect in this
confined system can be greatly enhanced due to the reduction
of the mode volume of optical field. Particularly, in compar-
ison with atomic gases in free space, the EIT transparency
window in the present system is much wider and deeper,
the group velocity of the probe field is much slower, and
the Kerr nonlinearity of the system is much stronger. We find
also that an efficient production of ultraslow optical solitons
in the present confined system may be achieved with much
slower propagating velocity and lower generation power than
that needed in unconfined systems adopted in [11,12]. Novel
features of EIT and pulse propagation in the present system
are very promising for practical applications in optical infor-
mation processing and transmission. We note that in [19,20],
solitonlike nonlinear pulse propagations in gas-filled hollow-
core photonic-crystal fibers are studied [19,20]. However, in
these studies, no resonant interaction between the optical
field and atoms and the EIT are considered. In [21] and [22],
spatial solitons in a planar hollow-core waveguide and in
arrayed and checkerboard optical waveguides via EIT are
studied respectively, but no confinement-enhanced quantum-
interference effect and ultraslow temporal optical solitons are
considered.

The paper is arranged as follows. Section 2 describes
our waveguide model. Section 3 studies the linear propagation
of the probe field and analyzes the EIT characters of the
system in detail. In Section 4, a weak-nonlinear perturb-
ation theory is employed to study the nonlinear pulse
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propagation. Finally, Section 5 summarizes the main results of
our work.

2. MODEL
We consider an atomic gas that is filled in the space between
two identical, parallel perfect metal plates with separation L,
which is the order of magnitude of optical wave length; see
Fig. 1(a). The lower plate of the structure is chosen as the z �
0 plane of the coordinate system shown in Fig. 1(b). We as-
sume that the linear dimension of the metal plates is much
larger than L and consider the light propagation in this wave-
guide system.

Electric field vector E≡ �Ex; Ey; Ez� in the absence of the
atomic gas can be obtained by solving Maxwell equations un-
der the boundary conditions Ex � Ey � 0 and ∂Ez∕∂z � 0 on
the surfaces z � 0 and L, which in general consist of many
different dispersion branches, with dispersion relations ωn ≡

ωn�k∥� � c
�����������������������������
k2∥ � n2π2∕L2

q
(n � 0; 1; 2;…). Assuming the

modes excited in the waveguide belong to the TE component
with a given mode index n, one has ETE�r; t� �P

kx;ky

�
ℏωn
ε0V

�
1∕2

aTEn sin
�
nπz
L

�
�k̂∥ × ez�eiθn � h:c: Here V � SL is

the mode volume (S is the area of the plates),
θn ≡ k∥ · r − ωnt, k∥ ≡ �kx; ky; 0�, k̂∥ ≡ k∥∕jk∥j, ez � �0; 0; 1�,
and h.c. represents Hermitian conjugate. In the quantized
form of the optical field, aTEn is the annihilation operator of
photons.

Note that kx and ky can take any continuous values but n is
a nonnegative integer, which means that the optical field can
propagate in the xy-plane but is confined between the two
plates of the waveguide. Choosing the optical field being po-
larized in the x-direction and propagating in the y-direction,
we have

ETE�r; t� � ex
X
k

Ek sin
�
nπz
L

�
exp�i�ky − ω̄t�� � h:c:; (1)

where k≡ ky, ω̄≡ ωn�k� � c�k2 � �nπ∕L�2�1∕2, and
Ek ≡ �ℏω̄∕ε0V�1∕2aTEn �k�. We see that the optical field is

inversely proportional to
����
V

p
; thus it is enhanced if L becomes

small.
For convenience, we take k as a function of ω. Then Eq. (1)

can be expressed as

E�r; t� � ex
X
ω̄

Eω̄ sin
�
nπz
L

�
expfi�k�ω̄�y − ω̄t��g � h:c: (2)

with

k�ω̄� �
��

ω̄

c

�
2
−

�
nπ
L

�
2
�
1∕2

: (3)

To excite a wavemode with the given index n, the frequency ω̄
must be large than nπc∕L. Notice that in Eq. (2) the symbol
“TE” has been omitted.

We assume the filled atoms have three-level configuration
[Fig. 1(c)], where two lower states j1i and j2i belong to the
same ground-state hyperfine manifold whereas state j3i is
an excited state. A weak (strong) probe (control) field of cen-
tral angular frequency ωp (ωc) is injected in the y-direction
[see Fig. 1(a)]. The probe field couples to the j1i⇔j2i transi-
tion and the control field couples the j2i⇔j3i transition.
One- and two-photon detunings are respectively Δ3 �
ωp − �ω3 − ω1� and Δ2 � ωp − ωc − �ω2 − ω1�, with ℏωj being
the eigen energy of the state jji. Γ13 and Γ23 represent the
spontaneous decay rate from j3i to j1i and j3i to j2i, respec-
tively. The hyperfine ground states j1i and j2i are electric
dipole forbidden, but between them there is an incoherent
population exchange with rates Γ12 and Γ21, describing the
transit-time effect due to the entering and leaving of atoms
in the interaction region.

Assume the probe and control fields are the modes belong-
ing to those given by Eq. (2). The existence of atoms will mod-
ulate the electric-field envelope; i.e., E becomes a function of
x, y, and t. Thus Eq. (2) is changed into

E�r; t� � ex
X
l�p;c

El�x;y; t�sin
�
nπz
L

�
exp�i�kly −ωlt�� � h:c. (4)

with kl ≡ k�ωl� (l � p; c) [23].
Under electric-dipole and rotating-wave approximations,

the Hamiltonian of the system in interaction picture is
given by

ĤI � −ℏ�ζ�z�Ω�
pe−i�kpy−ωpt�j1ih3j

� ζ�z�Ω�
c e−i�kcy−ωct�j2ih3j� � h:c:; (5)

where ζ�z�≡ sin��nπ∕L�z� is the mode function in the z-
direction, and Ωp ≡ �ex · p31�Ep∕ℏ (Ωc ≡ �ex · p32�Ec∕ℏ) is the
half Rabi frequency of the probe (control) field, with
pjl � hjjpjli. The equations of motion of the density matrix
~σ in the interaction picture are

i
∂

∂t
~σ11 � iΓ21 ~σ11 − iΓ12 ~σ22 − iΓ13 ~σ33

� ζ��z�Ω�
p ~σ31 − ζ�z�Ωp ~σ�31 � 0; (6a)

i
∂

∂t
~σ22 − iΓ21 ~σ11 � iΓ12 ~σ22 − iΓ23 ~σ33

� ζ��z�Ω�
c ~σ32 − ζ�z�Ωc ~σ�32 � 0; (6b)

Fig. 1. (Color online) (a) Waveguide consisting of two parallel
perfect metal plates and filled with the atomic gas. (b) Specified coor-
dinate system. (c) Energy-level diagram and excitation scheme of
three-level Λ system, in which a weak (strong) probe (control) field
of central angular frequency ωp (ωc) and half Rabi frequency Ωp
(Ωc) couples to the atomic states j1i, (j2i), and j3i. Γ13 and Γ23 are
spontaneous-emission decay rates from j3i to j1i and j3i to j2i, respec-
tively;Γ12 andΓ21 denote incoherent population exchange between j1i
and j2i. Δ2 and Δ3 are two- and one-photon detunings, respectively.

198 J. Opt. Soc. Am. B / Vol. 30, No. 1 / January 2013 Li et al.



i
∂

∂t
~σ33 � iΓ3 ~σ33 − ζ��z�Ω�

p ~σ31

� ζ�z�Ωp ~σ�31 − ζ��z�Ω�
c ~σ32 � ζ�z�Ωc ~σ�32 � 0; (6c)

�
i
∂

∂t
� d21

�
~σ21 − ζ�z�Ωp ~σ�32 � ζ��z�Ω�

c ~σ31 � 0; (6d)

�
i
∂

∂t
� d31

�
~σ31 − ζ�z�Ωp� ~σ33 − ~σ11� � ζ�z�Ωc ~σ21 � 0; (6e)

�
i
∂

∂t
� d32

�
~σ32 − ζ�z�Ωc� ~σ33 − ~σ22� � ζ�z�Ωp ~σ�21 � 0 (6f)

with djl � Δj −Δl � iγjl. Here γjl � �1∕2��Γj � Γl� � γcoljl ,
with Γ1 � Γ21, Γ2 � Γ12, Γ3 � Γ13 � Γ23, and γcoljl are the
dephasing rates caused by collisions.

In the semiclassical framework, the propagation of electro-
magnetic waves is described by the Maxwell equation for the
electric field

∇2E −
1
c2

∂2E
∂t2

� 1
ε0c2

∂2P
∂t2

;

where P � N α�p31σ13ei�kpy−ωpt� � p32σ23ei�kcy−ωct� � c:c:� is the
electric polarization withN α being the density of atoms. Using
the expression (4) and slow-varying envelope approximation,
we obtain

ζ�z�
�
i
�
nWG

∂

∂y
� 1

c
∂

∂t

�
� c

2ωp

∂2

∂x2

�
Ωp�x; y; t�

� κ13 ~σ31�z;x; y; t� � 0:

Note that in deriving the above equation we have assumed
higher-order eigenmodes of the waveguide are not excited.
This is reasonable approximation because the present wave-
guide is a highly confined system with its higher-order eigen-
modes having large excitation energy. The peak power (see
below) of the optical pulse we consider is small and hence
the excitation of the higher-order eigenmodes can be
neglected. In the above equation, (x; y; t) are slow variables.
Multiplying ζ��z� and making the integration from 0 to L on
the fast variable z, one obtains

�
i
�
nWG

∂

∂y
� 1

c
∂

∂t

�
� c

2ωp

∂2

∂x2

�
Ωp�x; y; t�

� κ13h ~σ31�z;x; y; t�i � 0; (7)

where κ13 � N aωpjp13j2∕�2ε0cℏ�,

nWG ≡
k�ωp�c
ωp

�
�
1 −

�
c
ωp

nπ
L

�
2
�
1∕2

(8)

is the effective refraction index of the waveguide in the ab-
sence of atoms, and hf �z�i≡ R

L
0 dzζ��z�f �z�∕ R L

0 dzjζ�z�j2.
Notice that compared with three-level atoms in free space,

there are several interesting features for the present wave-
guide system, which are reflected in the Maxwell–Bloch

(MB) Eqs. (6) and (7): (i) the mode function of the waveguide
in the z-direction, i.e., ζ�z�, appears in the Bloch Eq. (6); (ii) the
effective refraction index of the waveguide, i.e., nWG, appears
in the Maxwell Eq. (7). In particular, from the last term on the
left-hand side of Eq. (7) we see that the confinement effect
may result in a significant increase of the interaction between
the atoms and the optical field because nWG can be much less
than 1.

3. EIT CHARACTERS IN THE WAVEGUIDE
SYSTEM
A. Base State
To analyze EIT characters in the waveguide system and study
nonlinear pulse propagation (see the next section), one
should know the base state of the MB Eqs. (6) and (7). The
base state is the steady state of the MB equations when the
probe field is absent (i.e., ∂∕∂t � 0, Ωp � 0). It is easy to obtain
such a state as

~σ�0�11 � X1Γ12Γ3 � Γ12jζ�z�Ωcj2 � Γ13jζ�z�Ωcj2
X2

; (9a)

~σ�0�22 � X1Γ21Γ3 � Γ21jζ�z�Ωcj2
X2

; (9b)

~σ�0�33 � Γ21jζ�z�Ωcj2
X2

; (9c)

~σ�0�32 � −
ζ�z�Ωc

d32

X1Γ21Γ3

X2
; (9d)

and ~σ�0�21 � ~σ�0�31 � 0, where X1 � ��Δ3 −Δ2�2 � Γ2
32�∕�2Γ32�

and X2 � X1�Γ21 � Γ12�Γ3 � �2Γ21 � Γ12�jζ�z�Ωcj2�
Γ13jζ�z�Ωcj2.

We see that due to the existence of the incoherent popula-
tion exchange from j1i to j2i (i.e., Γ21 ≠ 0), there is population
distributed in the states j2i and j3i. Note that different from
the conventional situation (i.e., Γ21 � 0) [2], we have a non-
vanishing ~σ�0�32 . It should be pointed out that such coherence
is due to the existence of the control field. The role of the in-
coherent population exchange is only to provide a passage of
the atoms from j1i to j2i. Through the control field, the popu-
lation in j2i is transferred into j3i. As a result, a Raman-like
gain will appear for the probe field [see Eq. (11) below].

B. EIT Characters
The linear excitation of the system can be obtained by linear-
izing the Eq. (6) around the based state (9). The solving
process is the same as that in [12]. Assuming the beamwidth
of the probe pulse in the x-direction is large enough (e.g., un-
focused beam), one can disregard the diffraction term in
Eq. (7). Then by taking Ωp and ~σj1 (j � 2; 3) as small quantities
proportional to exp�iθ� with θ � K�ω�y − ωt, we obtain the
linear dispersion relation of the system
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K�ω� � ω

cnWG

� κ13
nWG

��ω� d21��2~σ�0�11 � ~σ�0�22 − 1� � ζ�z�Ωc ~σ
��0�
32

jζ�z�Ωcj2 − �ω� d21��ω� d31�

	
:

(10)

By Taylor expanding K�ω� as K�ω� � K0 � K1ω�
�1∕2�K2ω

2 � �1∕6�K3ω
3 �…, we obtain the dispersion coef-

ficients in different orders, given by Kj � �∂jK�ω�∕∂ωj �jω�0.
The imaginary part of K�ω� evaluated at the center

frequency of the probe field (corresponding to ω � 0) for
Δ2 � Δ3 � 0 reads

Im�K0� �
κ13
nWG

�
γ21

jζ�z�Ωcj2 � γ21Γ31
−

Γ21

jζ�z�Ωcj2 � 2γ21Γ31

	
:

(11)

The average in the second term on the right-hand side (RHS)
of Eqs. (10) and (11) must be evaluated numerically.

Based on Eqs. (10) and (11), we have the following con-
clusions:

(1) The value of Im�K� is not only a function of ω, but also
is strongly L-dependent. Shown in Fig. 2 is the probe-field ab-
sorption profile Im�K� as a function of ω and L. The dot-
dashed, dashed, and solid curves are for L � 4.0, 2.0, and
1.0 μm, respectively. From the figure we see that (i) an EIT
transparency window is opened, which is due to the
quantum-interference effect induced by the control field;
(ii) the EIT transparency window can be enlarged significantly
by decreasing L. The smaller the L, the larger the EIT trans-
parency window. The EIT transparency window for L � 1 μm
is obviously much wider and deeper than that for L � 4 μm.
Hence the confinement effect provided by the waveguide geo-
metry can be used to obtain a more pronounced EIT effect
compared with that in free space. Note that when plotting the
figure, we have chosen the D1 line transitions of the 87Rb
atoms with j1i � j5S1∕2; F � 1i, j2i � 5S1∕2; F � 2i, and
j3i � j5P1∕2; F � 1i. System parameters used here (and also
in the following) are κ13 � 1.0 × 109 cm−1 s−1, γ21 � 10−4γ31.

(2) Using Eq. (10), we obtain the group velocity vg≡ �
�Re�∂K∕∂ω��−1 of the probe field. Shown in Fig. 3(a) is the

result of vg as a function of L evaluated at ω � 0. We see that
at first vg increases as L is reduced from a large value, then it
arrives at maximum, and later it decreases rapidly as L is re-
duced to a small value. The reason is that the effective refrac-
tion index of the waveguide nWG is very sensitive to the
waveguide parameter L, as shown in Fig. 3(b). For a small
L, the confinement is significant and the effective refraction
index nWG → 0, which contributes to a extremely slow group
velocity. On the other hand, for large L one has nWG ≈ 1, and
hence vg will not change greatly. In this case the system is
equivalent to that in free space.

(3) The second term on the RHS of Eq. (11) contributes a
gain induced by the incoherent population exchange (i.e.,
Γ21), which can be used to reduce the absorption coming
mainly from the dephasing γcol21 since γ21 ≈ γcol21 . The physical
reason for such gain is that Γ21 provides a passage of popula-
tion from j1i to j2i, and then to j3i through the action of the
control field, resulting in the Raman-like gain for the probe
field. The gain can also be suppressed greatly when jΩcj
is large.

Shown in Fig. 4 is the result of Im�K0� as a function of
jΩcj. The solid (dashed) curve in the figure is for Γ21 � 0
(Γ21 � γ21).We see that for small jΩcj, Im�K0� is large, butwhen
increasing jΩcj, the value of Im�K0� decreases rapidly. In
addition, the incoherent population exchange (i.e., Γ21 ≠ 0)
can also be used to suppress the absorption, and hence
the dashed curve is lower than the solid curve. The inset in
the figure shows the result of the function “ratio” /100, where
“ratio” ≡Im�K0�Γ21�0∕Im�K0�Γ21�γ21 , which indicates that
Im�K0�Γ21�γ21 is only 1∕200 of Im�K0�Γ21�0 for Ωc �
1.0 × 106 s−1.
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Fig. 2. (Color online) Im�K� as a function of ω and L. The
dot-dashed, dashed, and solid curves are for L � 4.0, 2.0, and
1.0 μm, respectively.
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fective refraction index nWG of the waveguide as a function of L.
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4. NONLINEAR PULSE PROPAGATION
One pronounced effect associated with the optical pulse
propagation in a waveguide system, such as optical fiber, is
the significant increase of power density and suppression
of diffraction in confined directions. In telecommunications,
even a low power injected into a waveguide can generate siz-
able signals via an optical four-wave mixing process, which
necessarily requires a high local power density. Correspond-
ingly, it is easier to form optical solitons in an optical wave-
guide, which also requires a significant power density to
produce a sizable local nonlinearity to balance the dispersion
effect. Thus, the high power density of confined atomic sys-
tems must also be considered in the configuration studied
here. This is of practical interest for applications in optical
information processing and transmission in quantum hybrid
systems when shape-preserving probe pulse propagation with
a low pump power is needed.

A. Nonlinear Envelope Equation
A standard technique for studying weak nonlinear effects
in dispersive systems is the method of multiple scales

[12]. We take the expansion ~σjl � ~σ�0�jl � ϵ ~σ�1�jl � ϵ2 ~σ�2�jl �
ϵ3 ~σ�3�jl �…, Ωp � ϵΩ�1�

p � ϵ2Ω�2�
p � ϵ3Ω�3�

p �…, where ϵ is a
small parameter characterizing the typical amplitude of the

probe field and ~σ�0�jl is the base-state solution given by
Eq. (9). To obtain a divergence-free expansion, all quantities
on the RHS of the expansion are considered as functions of
the multiscale variables ym � ϵmy (m � 0, 1, 2), and tm � ϵmt
(m � 0, 1). Substituting these expansions into Eqs. (6) and

(7), one obtains a series of equations for ~σ�l�ij and Ω�l�
p

(l � 1; 2; 3;…), which can be solved order by order.
At the leading order, we obtain

Ω�1�
p � Feiθ; (12a)

~σ�1�31 � �ω� d21��2~σ�0�11 � ~σ�0�22 − 1� � ζ�z�Ωc ~σ
�0�
32

jζ�z�Ωcj2 − �ω� d21��ω� d̄31�
Feiθ; (12b)

~σ�1�21 � −
�ω� d̄31� ~σ��0�32 � ζ�z�Ω�

c �2~σ�0�11 � ~σ�0�22 − 1�
jζ�z�Ωcj2 − �ω� d21��ω� d̄31�

Feiθ (12b)

with other ~σ�1�jl � 0. Here θ � K�ω�y0 − ωt0 and F is a yet-to-
be-determined envelope function. The linear dispersion rela-
tion K�ω� has been given in Eq. (10).

At the second order, a divergence-free solution for Ω�2�
p

requires i�∂F∕∂y1 � �1∕vg�∂F∕∂t1� � 0. The second-order
solutions, ~σ�2�11 , ~σ

�2�
22 , and ~σ�2�32 , are given by

~σ�2�11 �

�

i�Γ12�Γ23��2jζ�z�Ωcj2
�

1
d�32

−
1
d32

����ω�d�21��2σ�0�11 �σ�0�22 −1��ζ�z�Ω�
c σ

�0�
32

jζ�z�Ωcj2−�ω�d�21��ω�d�31�
−c:c:

�

−i�Γ13−Γ12�
�
ζ�z�Ωc

d�32

ζ�z��ω�d31�σ��0�32 �Ω�
c �2σ�0�11 �σ�0�22 −1�

jζ�z�Ωcj2−�ω�d21��ω�d31�
−c:c:

����
ijζ�z�Ωcj2�2Γ21�Γ12�Γ13�

�
1
d�32

−
1
d32

�
−Γ3�Γ12�Γ21�

�
;

(13a)

~σ�2�22 � −i
Γ13 −Γ12


��ω�d�21��2σ�0�11 � σ�0�22 − 1�� ζ�z�Ω�
c σ

�0�
32

jζ�z�Ωcj2 − �ω� d21��ω�d31�
− c:c

�

− i�Γ21 �Γ13�a�2�11

�
; (13b)

~σ�2�32 � 1
d32

�
ζ�z��ω� d�31�σ�0�32 � Ωc�2σ�0�11 � σ�0�22 − 1�

jζ�z�Ωcj2 − �ω� d�21��ω� d�31�

− Ωc�a�2�11 � 2a�2�22 �
�
: (13c)

At the third order, substituting Eq. (13) into Eq. (7), we obtain
the nonlinear envelope equation for F :

i
∂F
∂y2

� c
2ωpnWG

∂2

∂x21
F −

1
2
∂2K
∂ω2

∂2F
∂t21

−W jF j2Fe−2ᾱy2 � 0 (14)

with

W � −
κ13
nWG

�
1

ζ�z�
ζ�z�Ωc ~σ

��2�
32 � �ω� d21��2~σ�2�11 � ~σ�2�22 �

jζ�z�Ωcj2 − �ω� d21��ω� d̄31�

	
(15)

and ᾱ � ϵ−2 Im�K0�. The nonlinear coefficient W given in
Eq. (15) is due to the Kerr effect, which results in a self-phase
modulation of the probe field and its value is complex gener-
ally. In our model, the imaginary part ofW is much less than its
real part (see the example given below).

We stress that the confinement effect by the waveguide
geometry can enhance the Kerr effect significantly. Illustrated
in Fig. 5(a) is Re�W� as a function of Δ3, evaluated at ω � 0.
The dashed and solid curves in the figure are for L � 0.6 and
0.4 μm, respectively. We see that the Kerr effect for the case
of large confinement (L � 0.4 μm) is much larger than that
for the case of small confinement (L � 0.6 μm). Shown in
the inset is the waveguide-size dependence of Re�W� for
Δ3 � 1.0 × 107 s−1.

Shown in Fig. 5(b) is also Re�W� as a function of Δ3

evaluated at ω � 0, but the dashed and solid curves in panel
(b) are for L � 4.0 and 1.0 μm, respectively. When plotting this
figure, we have adjusted the control-field intensity to make
the dispersion length LDequivτ20∕jK2j in the two cases are
approximately the same (see the inset of this figure).
We see again that Re�W� for the large confinement
(L � 1.0 μm) is much larger than that for the small confine-
ment (L � 4.0 μm).
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B. Ultraslow Solitons at Low-Light Level
When returning to original variables, Eq. (14) becomes

i
�
∂

∂y
� α

�
U � c

2ωpnWG

∂2U

∂x2
−
1
2
∂2K

∂ω2

∂2U

∂τ2
−W jUj2Ue−2αy � 0;

(16)

where τ � t − y∕vg and U � ϵF exp�−iαy�. Near the center
frequency of the probe field (i.e., ω � 0), Eq. (16) can be writ-
ten into the dimensionless form

i
∂u
∂s

� ∂2u

∂σ2
� 2juj2u � id0u� d1

∂2u

∂η2
(17)

with s � −y∕�2LD�, σ � τ∕τ0, η � x∕Rx, and u � U∕U0. Here
Rx is typical beam radius in x-direction, and U0 �
�1∕τ0�

��������������������
jK2j∕jW j

p
is typical Rabi frequency of the probe field.

Dimensionless coefficients on the RHS of Eq. (17) are defined
by d0 � LD∕LA and d1 � LD∕Ldiff , with LA � 1∕�2α� being ty-
pical absorption length and Ldiff � ωpnWGR2

x∕c being typical
diffraction length.

If d0 ≪ 1 and d1 ≪ 1, Eq. (17) reduces to a standard non-
linear Schrödinger equation, which is completely integrable
and allows multisoliton solutions. A single bright soliton
solution reads u � 2 sech�2β�σ − σ0 � 4δs�� exp�−2iδσ − 4i�δ2
−β2�s − iϕ0�, where β, δ, σ0, and ϕ0 are arbitrary real para-
meters. Taking β � 1∕2 and δ � σ0 � ϕ0 � 0, we have
u � sech σ exp�is�. Then we have

Ωp � 1
τ0

���������
jK2j
jW j

s
sech

�
1
τ0

�
t −

y
vg

��
exp



i
�
Re�K0�y� y

2LD

��
;

(18)

which describes a bright soliton traveling with propagating
velocity vg.

We now give a practical numerical example for the forma-
tion of the optical soliton given above. We choose 87Rb D1-line
transitions, with the system parameters given by κ13 �
1.0 × 109 cm−1 s−1, Ωc � 3.0 × 106 s−1, Δ2 � 2.1 × 104 s−1,
Δ3 � 5 × 107 s−1, and L � 1.0 μm. In this case, one has
K2 � �2.15� 0.83i�× 10−11 cm−1 s2 and W � �14.72� 0.94i�×
10−14 cm−1 s2. We see that the imaginary part of these coeffi-
cients is indeed much smaller than their real part, originated

from the quantum destructive interference effect induced by
the control field. When taking τ0 � 5.0 × 10−6 s, Rx � 0.05 cm,
we have the characteristic lengths LD � 1.16 cm, LA �
40.67 cm, and Ldiff � 193.14 cm, which ensure the validity
of the condition d0 ≪ 1 and d1 ≪ 1.

Using the above data it is easy to estimate the propagating
velocity of the soliton, which reads

vg � 2.62 × 10−7c: (19)

Consequently, the optical soliton obtained in the present
confined atomic gas may travel with ultraslow propagating
velocity, which is one order of magnitude slower than that
in free-space EIT schemes [12].

The maximum input power for generating the ultraslow op-
tical soliton can be estimated by calculating Poynting’s vector.
The density of average flux of energy over a carrier-wave per-
iod reads P∕S0 � �Pmax∕S0�sech2��t − z∕vg�∕τ0�. Here S0 �
RxL and Pmax is the maximum input power. Shown in Fig. 6
is the density of maximum input power Pmax∕S0 as a function
of L. From the figure we see that the larger the confinement
effect of the waveguide (i.e., the smaller L), the smaller the
density of maximum input power Pmax∕S0. Using the above
parameters, for L � 1 μm we obtain

Pmax � 2.5 × 10−6 W: (20)
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Fig. 5. (Color online) Nonlinear coefficient Re�W� as a function ofΔ3 evaluated at ω � 0. The dashed and solid curves in panel (a) are for L � 0.6
and 0.4 μm, respectively. The inset shows the profile of Re�W� as a function of L with Δ3 � 1.0 × 107 s−1. The dashed and solid curves in panel
(b) are for L � 4.0 and 1.0 μm, respectively. The inset shows the corresponding dispersion length LD for the two cases.
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Fig. 6. (Color online) Density of maximum input power Pmax∕S0 for
producing the ultraslow optical soliton as a function of L.
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This is in drastic contrast to conventional optical waveguides
such as optical fibers, where usually the input power larger
than 1.0 W is needed to obtain enough nonlinearity required
for the formation of solitons [24].

To make a further confirmation on the soliton solution and
check its stability, a numerical simulation is made directly
from Eqs. (6) and (7). Shown in Fig. 7(a) is the result for u �
jΩp∕U0j2 as a function of t∕τ0 for L � 1.0 μm. The initial con-
dition is chosen as the Gaussian form u � 1.2 exp�−t2∕τ20�.
The curves from left to right in the figure are the waveshapes
for the probe pulse propagating to y � 0.0, 1.0LD, 2.0LD, and
3.0LD, respectively. We see that when propagating to y �
1.0LD the probe pulse becomes higher and sharper due to
the self-phase modulation induced by the Kerr effect. Then
it suffers no significant distortion during the propagation, in-
dicating the formation of an optical soliton in the system.

To confirm the confinement effect that can increase the
generating efficiency of the ultraslow optical soliton, we have
made an additional simulation for the probe-pulse propaga-
tion with the same dispersion as in Fig. 7(a), but for
L � 4.0 μm. The result is shown in Fig. 7(b). We see that
the input pulse suffers a serious distortion during propagation.
The reason is that in this case the confinement effect is weak-
er and hence the Kerr effect of the system is not strong enough
to balance the dispersion; thus a soliton formation is not pos-
sible. However, when decreasing L to 1.0 μm, the soliton
forms, as shown in Fig. 7(a).

5. CONCLUSIONS
We have investigated the linear and nonlinear pulse propaga-
tions in a three-state atoms confined in a microwaveguide.
Based on the MB equations we have obtained the linear dis-
persion relation of the probe field. We have shown that the
quantum-interference effect may be greatly enhanced due
to the optical confinement by the waveguide geometry. In par-
ticular, compared with the atomic gas in free space, the EIT
transparency window in the present waveguide system can be
much wider and deeper, the group velocity of the probe field
can be much slower, and the Kerr nonlinearity of the system
can be much stronger. Based on these results, we have de-
monstrated that ultraslow optical solitons can be more effi-
ciently generated with an extremely low generation power.
The results provided in this work may guide new experimental
findings for atomic coherence and have promising applica-
tions for optical information processing and transmission.
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