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Abstract. We study stable propagation of multiple shape-preserving optical pulses in an inhomogeneously
broadened multi-level atomic medium. By analytically solving the Maxwell-Schrödinger equations govern-
ing the evolution of N coupled optical fields and atomic amplitudes we show that N pulsed optical waves
coupling to (N + 1)-levels can be automatically matched with the same soliton waveform and identical
yet very slow propagation velocity. Several sets of coupled soliton solutions for two different (N + 1)-level
models are given and their stability is studied by using a numerical simulation.

PACS. 42.50.Md Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephas-
ings and revivals, optical nutation, and self-induced transparency – 42.50.Gy Effects of atomic coherence
on propagation, absorption, and amplification of light; electromagnetically induced transparency and ab-
sorption

1 Introduction

Solitons are intriguing nonlinear localization phenomena
occurring in many branches of physics. Solitons have been
discovered in many states of matter ranging from solid
medium, such as optical fiber (optical soliton [1,2]), to
Bose-Einstein condensed atomic vapor (matter wave soli-
tons [3,4]). In recent years, there has been intensive in-
terest in the study of solitons in resonant optical me-
dia, including the self-induced transparency (SIT) [5,6]
in two-level atoms, normal-mode [7] and optical simultons
in three- [8–11], four- [12], and five-level [9] media, lasing
without inversion [13], phaseonium [14], electromagneti-
cally induced transparency (EIT) [15], and ultra slow op-
tical solitons [16,17]. A constant focus of interest is to
obtain analytical coupled soliton solutions of Maxwell-
Schrödinger (MS) equations governing the evolution of
optical pulses and atomic-state probability amplitudes.

Recently, much attention has been paid to the pulse
propagation in coherently prepared multi-level systems
[18–22,24,25]. It has been shown that a multi-level sys-
tem may posses multiple dark states, and therefore can be
used to realize many interesting quantum interference ef-
fects including coherent population trapping and transfer,
multiple channel EIT processes, and dynamic group ve-
locity control. Many theoretical approaches for solving the
coupled MS equations of multi-level systems involve lin-
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earization method in conjunction with steady-state or adi-
abatic approximations [18–22,24,25]. However, such tech-
niques exclude the possibility of shape-preserving soliton
solutions which are resulted from inherently nonlinear pro-
cesses.

In this work, we investigate stable propagation of N (N
may be larger than 4) optical pulses in (N+1)-level atomic
systems. We go beyond the linearization and steady state
approximations and show analytically that a stable prop-
agation of N well-matched optical pulses with a form of
coupled optical solitons is possible. These analytical re-
sults for nonlinear propagation in multi-level systems, to
the best of our knowledge, are not available in the litera-
ture. We also show that similar to the case of SIT of two-
level atoms, exact coupled soliton solutions still exist even
when inhomogeneous broadening such as Doppler effect is
taken into account. The propagation velocity of the cou-
pled optical solitons may be controlled by manipulating
the intensity of pump fields and atomic density, and can
be made much less than the speed of light in vacuum. We
further show that the N coupled optical solitons, within
our (N + 1)-level models, can be well matched, resulting
in N matched and coupled solitons of the same waveform
and group velocity. The paper is arranged as follows. In
Section 2 we describe two different (N + 1)-level models
and present the equations of motion governing the evolu-
tion of atomic amplitudes and laser fields. In Sections 3
and 4 we provide analytical solutions of N coupled solitons
for a generalized Λ-type and a V -type system subject to
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Fig. 1. Schematic energy-level diagram of the generalized
Λ-type system, in which an upper-level is coupled to N lower-
levels by N nearly resonant laser fields.

inhomogeneous broadening, respectively. In particular, we
show analytically the possibility of superluminal N cou-
pled and matched optical solitons in a V -type (N+1)-level
system. We note that there has been no report in literature
on multiple well-matched and coupled superluminal opti-
cal solitons. In addition, we also discuss pulse propagation
and population transfer described by the coupled soliton
solutions. In Section 5, we perform a numerical simulation
to study the stability of the coupled soliton solutions. The
last section (Sect. 6) contains discussion and conclusion of
our results.

2 Models and nonlinear evolution equations

We consider the propagation of N optical pulses that are
simultaneously propagating in z-direction and are inter-
acting resonantly with an emsamble of (N+1)-level atomic
systems. For simplicity we neglect the inhomogeneity of
the medium. The electric-field vector for the N optical
pulses can be written as

E =
N∑

j=1

ejEj(z, t) exp[i(kjz − ωjt)] + c.c., (1)

where kj , ωj , Ej and ej are the wavevector, frequency,
amplitude and polarization direction of the jth optical
pulse, respectively. We consider two different (N + 1)-
level models. One is a generalized multi-channel Λ-type
system where N laser pulses couple N lower levels |j〉
(j = 1, 2, ..., N) to a single excited upper-level |0〉 (see
Fig. 1). Such a model, here called N -pod system, was
first mentioned by Morris and Shore [23] when studying
coherent excitations in multi-state systems. Since these
lower levels have different energy and hence, generally,
N optical pulses with different frequency should be ap-
plied in order to excite all possible transitions in the sys-
tem. The N lower levels in such system can be obtained
from Zeeman or hyperfine split of atomic ground state.
The N -pod system is a natural and direct generalization

Fig. 2. Schematic energy-level diagram of the generalized
V-type system, in which a lower-level is coupled to N upper-
levels by N nearly resonant laser fields.

of a tripod system [22] and has been widely studied re-
cently in relation to multiple dark states, coherent popu-
lation transfer and multi-channel EIT. For pulse propaga-
tion in tri- and N -pod systems, the reader is referred to
references [18–22,24,25]. The other model we study is a
generalized multi-channel V -type system, where N laser
pulses couple N upper-levels |j〉 (j = 1, 2, ..., N) to a single
ground level |0〉 (see Fig. 2) [26].

The Hamiltonian of both systems has the form Ĥ =
Ĥ0+Ĥ ′, where Ĥ0 describes an free atom and Ĥ ′ describes
the interaction between the atom and the optical field.
In Schrödinger picture, the state vector of the systems is
expressed by |Ψ(t)〉 =

∑N
j=0 cj(z, t)|j〉, where |j〉 is the

eigenstate of Ĥ0. Under electric-dipole and rotating-wave
approximations [27], the Hamiltonian takes the form

Ĥ =
N∑

j=0

εj |j〉〈j| − �

⎡

⎣
N∑

j=1

Ωj(z, t)

× exp[i(kjz − ωjt)]|0〉〈j| + H.c.] , (Λ−type) (2a)

Ĥ =
N∑

j=0

εj |j〉〈j| − �

⎡

⎣
N∑

j=1

Ωj(z, t)

× exp[i(kjz − ωjt)]|j〉〈0| + H.c.] , (V −type) (2b)

where εj is the energy of state |j〉, Ωj = ej · p0jEj/�

(Ωj = ej ·pj0Ej/�) is the half Rabi frequency correspond-
ing to jth optical pulse for the Λ-type (V -type) system,
p0j is the electric dipole matrix element associated with
the transition from |0〉 to |j〉, and H.c. represents Hermi-
tian conjugate.

To investigate the time evolution of the system it
is more convenient to employ an interaction picture,
which is obtained by making the transformation cj(z, t) =
aj(z, t) exp{i[(k1 − kj)z − (εj/� + ∆j)t)]} and cj(z, t) =
aj(z, t) exp{i[kjz − (εj/� + ∆j)t]} (with k0 = 0) for the
Λ-type and V -type system, respectively. The Hamiltonian
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in the interaction picture reads

Ĥint = − �

N∑

j=0

∆j |j〉〈j|

− �

⎡

⎣
N∑

j=1

Ωj(z, t)|0〉〈j| + H.c.

⎤

⎦ , (Λ−type) (3a)

Ĥint = − �

N∑

j=0

∆j |j〉〈j|

− �

⎡

⎣
N∑

j=1

Ωj(z, t)|j〉〈0| + H.c.

⎤

⎦ , (V −type). (3b)

Using the Schrödinger equation i�∂|Ψ(t)〉int/∂t =
Hint|Ψ(t)〉int and the Maxwell equation ∇2E −
(1/c2)∂2E/∂t2=[1/(ε0c2)]∂2P/∂t2[28] one can read-
ily obtain the MS equations describing the evolution of
aj and Ωj (j = 1, 2, ..., N)

i

(
∂

∂t
+ ∆0

)
a0 +

N∑

l=1

Rlal = 0, (4a)

i

(
∂

∂t
+ ∆j

)
aj + R∗

ja0 = 0, (4b)

i

(
∂

∂z
+

1
c

∂

∂t

)
Ωj + κ0

∫
d∆g(∆)P0P

∗
j = 0, (4c)

with the normalization condition
∑N

l=0 |al|2 = 1. In equa-
tion (4c), g(∆) is the distribution function of detuning
resulted from an inhomogeneous (Doppler-type) broad-
ening. Propagation coefficients are defined by κ0j =
Naωj |pj0|/(2ε0c�) with Na being atomic density and c
being the light speed in vacuum. For simplicity all prop-
agation coefficients are assumed to be equal [10,11] (i.e.,
κ0j = κ0). Experimentally, this can be achieved using an
atomic element with ground (excited) state having large
angular momenta J or F . Parameters ∆0 and ∆j are re-
lated to the detuning ∆ and functions Rj , P0 and Pj are
related to the atomic amplitudes a0 and aj , and Rabi fre-
quency Ωj . Table 1 shows the correspondence of these
symbols and quantities for the generalized Λ-type and the
V-type systems. Since we are interested in the pulse prop-
agation in coherent transient regime, the damping in equa-
tion (4) due to the finite lifetime of the excited-state lev-
els have been neglected. Such approximation is valid for
pulses having the temporal width short enough so that re-
laxation terms related to homogeneous broadening in the
MS equations take no significant role.

Equations (4a–4c) are nonlinearly coupled wave equa-
tions with dispersion and inhomogeneous broadening ef-
fects included. In general, a laser field tuned close to an
atomic line or on the wing of the Doppler broadened profile
will experience increased loss and distortion as it is tuned
closer to the line center [29]. However, under suitable con-
ditions such losses and distortions can be compensated by
certain nonlinearity of the system, resulting in a lossless
soliton-like wave propagation, as will be shown below.

Table 1. Physical quantities used in equation (4) for different
types of medium.

Symbols in Eq. (4) Λ-type system V-type system
Rj Ωj Ω∗

j

P0 a0 a∗
0

Pj aj a∗
j

∆0 ∆ 0
∆j 0 ∆

3 Coupled solitons for a generalized
multi-channel Λ-type system

Since in general there is no known method to solve
the coupled equations (4a–4c), we turn to find some of
their particular solutions using the standard trial solution
method [11]. For the coupled soliton solution of a gener-
alized Λ-type system shown in Figure 1 we assume that
aj = aj(ζ) and Ωj = Ωj(ζ) with ζ = Kz − τ/τ0. Here
τ = t − z/c and K and τ0 are two real parameters to be
determined.

We first assume the following trial solutions: a0 =
iA0sechζ exp[iφ(z)], a1 = A10 + A11 tanh ζ, aj =
Ajsechζ exp[iφ(z)], Ω1 = B1sechζ exp[iφ(z)], and Ωj =
Bjtanhζ (j = 2, 3, ..., N) [30]. Physically, these trial
solutions describe matched propagations (in the sense
of the same group velocity) of one bright soliton and
N−1 dark solitons, and the corresponding evolution of the
atomic population distribution. In the atom rest frame, an
atom with all population initially in the ground state |1〉
will first see the arrival of N − 1 strong fields Ωj (corre-
sponding to the ζ = −∞ limit). As the intensity of the
N − 1 fields decrease, indicating the arrival of matched
N−1 dark solitons, the atom also sees the increase of field
Ω1, signaling the arrival of the bright soliton which reaches
the peak intensity at ζ = 0 where the intensities of the
dark solitons become zero. Beyond ζ = 0, the atom sees
the decrease of the intensity of Ω1 and the increase of the
intensities of Ωj , indicating the passing of the bright and
dark solitons. During the transient period of bright and
dark solitons, the population of the atom changes from all
in the ground state |1〉, to shared by lower states, and then
back to the ground state |1〉. In regions where |ζ| > 0 and
|Ωj | > |Ω1|, the system is generally in a conventional sin-
gle channel EIT regime where the fields Ωj drive the upper
state |2〉 transparent for the weaker field Ω1. In the region
where |ζ| ≥ 0 but |Ωj | < |Ω1| the conventional EIT can
still become operative with the role of field transparency
switched. It is in this region the N −1 transparency chan-
nels may be established by a single driving field Ω1 (see
Fig. 3).

Substituting the above trial solutions into equation (4),
we get a set of nonlinear algebraic equations for the param-
eters A0, A10, A11, Aj and Bj (see Appendix A). Solving
these algebraic equations we obtain A0 = B1τ0/(1−i∆τ0),
A10 = i∆τ0/(1 − i∆τ0), A11 = 1/(1 − i∆τ0), Aj =
−Bj/[B1(1 − i∆τ0)] (j = 2, 3, ..., N). Thus, we have the
following N coupled and group velocity matched soliton
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Fig. 3. Schematic drawing of intensity distributions for the
N fields and the regions corresponding to single channel and
(N −1) channels EIT that may be achieved with a generalized
Λ-type system that admits N coupled optical solitons. Atoms
are assumed to be initially in the state |1〉. Similar plots can
be made for other sets of solutions described in the the text.

solution:

a0 =
iτ0B1

1 − i∆τ0
sechζ eiφ(z), (5a)

a1 =
1

1 − i∆τ0
(i∆τ0 + tanhζ) , (5b)

aj = − Bj

B1(1 − i∆τ0)
sechζ eiφ(z), (5c)

Ω1 = B1sechζ eiφ(z), (5d)
Ωj = Bjtanhζ, (j = 2, 3, ..., N) (5e)

where τ0 = (B2
1 − ∑N

l=2 B2
l )1/2/B2

1 , and

K =
κ0

τ0

∫
d∆

g(∆)
∆2 + (1/τ0)2

, (6a)

dφ

dz
= κ0

∫
d∆

∆g(∆)
∆2 + (1/τ0)2

. (6b)

Here Bj (j = 1, 2, ..., N) are N arbitrary constants subject
to the constraint B2

1 ≥ ∑N
l=2 B2

l , i.e., the peak intensity
of the field Ω1 must be greater than the peak intensities
of all N − 1 fields Ωj (j = 2, 3, ..., N) combined.

With the assumption of homogeneously distributed
medium, K is a z-independent real constant. Thus,
from equation (6b) one gets φ(z) = K ′z with K ′ =
κ0

∫
d∆g(∆)∆/[∆2 + (1/τ0)2] being a constant [31]. This

indicates that for an (N +1)-level system even in the pres-
ence of inhomogeneous broadening, non-distorted propa-
gation of shape-preserving optical pulses of soliton type
is indeed possible. The inhomogeneous broadening, how-
ever, will affect the propagation velocity of the N coupled
solitons through the constant K. The matched group ve-
locity V for the N coupled solitons in the presence of the

inhomogeneous broadening is determined by

1
V

=
1
c

+
κ0

B2
1τ2

0

∫
d∆

g(∆)
∆2 + (1/τ0)2

. (7)

With sufficiently high atomic number density, the second
term can dominate the group velocity even with modest
field intensity, i.e., B2

1 . When this occurs the propaga-
tion velocity V becomes much less the speed of light in
vacuum and one obtains slow propagation of N coupled
optical solitons. To demonstrate this effect, we assume the
medium has a Gaussian line-shape function [11]

g(∆) =
T ∗

2√
2π

exp
{
− [(∆ − ∆0)T ∗

2 ]2

2

}
, (8)

where ∆0 is the detuning from line center and
T ∗

2 is inhomogeneous lifetime. For simplicity, we
assume ∆0 = 0 and hence

∫
d∆g(∆)/(∆2 + 1/τ2

0 ) =√
π/2T ∗

2 τ0 exp[T ∗2
2 /(2τ2

0 )]. If we take T ∗
2 = τ0, κ0 =

1.0× 1014 cm−1 s−1 and B1 = 2.0× 1010 s−1, using equa-
tion (7) we get V = 1.75 × 10−4c. This is a very slow
propagation velocity. Thus, the solution equation (5) de-
scribe N coupled slow-optical solitons [32] in an (N + 1)-
level system. The stable propagation of such N coupled
optical solitons in an inhomogeneously broadened (N +1)-
level system is the result of exact balance between non-
linearity and dispersion of the system [33]. Obviously, the
two-coupled-soliton solution of a three-level Λ-type sys-
tem obtained by Rahman and Eberly [11] is a special case
of our result (Eq. (5)) for N = 2.

Using a similar procedure we can also get a different
type of N coupled and matched soliton solution of a gen-
eralized Λ-type system:

a0 =
i

1 − i∆τ0
sechζ eiφ(z), (9a)

aj =
Bjτ0

1 − i∆τ0
(−i∆τ0 + tanh ζ) , (9b)

Ωj = Bj sechζ eiφ(z), (j = 1, 2, ..., N), (9c)

where τ0 = (
∑N

l=1 B2
l )−1/2. The expressions of K and

dφ/dz are still given by equations (6a) and (6b).
Equations (9a–9c) describe a process that all light

fields are not established initially (i.e., at ζ = −∞) and
particles are populated in N lower-levels. An experimen-
tal correspondence of this initial condition is an atomic
system that has a ground state with large total angular
momenta, providing a large Zeeman sub-level family in the
presence of a magnetic field. The population probability in
the jth level is nj = B2

j /
∑N

l=1 B2
l . At ζ = 0 all light fields

have reached maximum intensity and all particles are in an
N -states superposition state. At ζ = ∞, all particles re-
turn back into the N lower levels. This final system state,
however, can be fundamentally different from the initial
system state even though it appeared that the popula-
tion is shared by all N lower levels. The key difference is
that if all N lower states belong to the same hyperfine
manifold with long coherence time, one essentially has a
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phase-correlated medium as the result of coherent popu-
lation transfer [14]. We note that the N coupled optical
solitons given in equation (9) are well matched, i.e., they
have identical temporal-spatial intensity profile and group
velocity [34]. The matched group velocity is given by

1
V

=
1
c

+ κ0

∫
d∆

g(∆)
∆2 + (1/τ0)2

. (10)

Note again that this group velocity can be made very small
using large atomic density Na and small optical pulse am-
plitudes Bj . Equation (9) demonstrates N well-matched
optical solitons in an (N + 1)-level Λ-type of system. To
the best of our knowledge, no such results are available in
literature.

4 Coupled solitons for a multi-channel V-type
system

We now consider a generalized V -type system, shown in
Figure 2, and seek exact solutions of equations (4a–4c) (see
Tab. 1 for parameters and quantities). We assume trial
solutions a0 = i(A00 + A01 tanh ζ), aj = Ajsechζ eiφ(z),
Ωj = Bjsechζ eiφ(z) (j = 1, 2, ..., N). The physical con-
sideration to get these trial solutions is that initially (i.e.,
ζ = −∞), the population is in the ground state |0〉 and no
field is present. At ζ = 0, all light fields have reached their
maximum intensities and significant fraction (theoretically
speaking, 100%) of population has been transferred and
disbursed from the ground state |0〉 to the excited state |j〉
(j = 1, 2, ..., N). At ζ = ∞, particles return back into the
ground state |0〉.

Substituting the above trial solutions into equa-
tions (4a–4c) we obtain a set of algebraic equations for
the parameters A00, A01, Aj and Bj . Solving these al-
gebraic equations we obtain A00 = −i∆τ0/(1 − i∆τ0),
A01 = 1/(1 − i∆τ0), Aj = −Bjτ0/(1 − i∆τ0). Thus, we
have the following N coupled and matched solitons solu-
tion:

a0 =
1

1 − i∆τ0
(−i∆τ0 + tanh ζ) , (11a)

aj = − Bjτ0

1 − i∆τ0
sechζ eiφ(z), (11b)

Ωj = Bj sechζ eiφ(z), (j = 1, 2, ..., N), (11c)

where τ0 =
(∑N

l=1 B2
l

)−1/2

and Bj are arbitrary con-
stants. The expression of K takes the same form as equa-
tion (6a) but now one has

dφ

dz
= −κ0

∫
d∆

∆g(∆)
∆2 + (1/τ0)2

. (12)

Note that during propagation the N optical pulses are well
matched. We further note that the coupled two-solitons-
solution of a three-level V -type system [11] is a special
case of equation (11) for N = 2.

To find some additional N coupled solutions solutions
for the generalized V -type system we make the following
transformation for atomic amplitudes:

a0 = ib̄0(z, τ)ei∆τ , (13a)

aj = āj(z, τ)ei∆τ . (13b)

Then the MS equations become

−∂b̄0

∂τ
− i∆b̄0 +

N∑

l=1

ālΩ
∗
l = 0, (14a)

∂āj

∂τ
+ Ωj b̄0 = 0, (14b)

|b̄0|2 +
N∑

l=1

|āl|2 = 1, (14c)

∂Ωj

∂z
− κ0

∫
d∆g(∆) āj b̄

∗
0 = 0. (14d)

To solve equations (14a–14d) we take the following trial
solutions b̄0 = A0sechζ exp[iφ(z)], ā1 = A10 + A11 tanh ζ,
Ω1 = B1sechζ exp[−iφ(z)], āj = Ajsechζ exp[iφ(z)], and
Ωj = Bjtanhζ (j = 2, 3, ..., N). Substituting these trial
solutions into equations (14a–14d) we get A0 = B1τ0/(1+
i∆τ0), A10 = i∆τ0/(1 + i∆τ0), A11 = 1/(1 + i∆τ0), and
Aj = −Bj/[B1(1+i∆τ0)] (j = 2, 3, ..., N). We then obtain
a different set of N coupled and group velocity matched
solitons solution:

a0 = i
B1τ0

1 + i∆τ0
sechζ ei[φ(z)+∆τ ], (15a)

a1 =
1

1 + i∆τ0
(i∆τ0 + tanh ζ) ei∆τ , (15b)

aj = − Bj

B1(1 + i∆τ0)
sechζ ei[φ(z)+∆τ ], (15c)

Ω1 = B1 sechζ e−iφ(z), (15d)
Ωj = Bj tanh ζ, (j = 2, 3, ..., N) (15e)

where τ0 = B−1
1

(
1 − ∑N

l=2 B2
l /B2

1

)1/2

, and

K = −κ0

τ0

∫
d∆

g(∆)
∆2 + (1/τ0)2

. (16)

The expression of dφ/dz is still given by equation (12).
The common propagation velocity of the N coupled and
group velocity matched solitons (15) is given by

1
V

=
1
c
− κ0

B2
1τ2

0

∫
d∆

g(∆)
∆2 + (1/τ0)2

. (17)

Notice the negative sign in equation (17). This is the con-
sequence of initial condition. From equations (13a–13c) it
is seen that initially, i.e., when ζ = −∞, the population is
in the state |1〉. This corresponds to an inverted popula-
tion and will lead to gain that is responsible for stimulated
process and waveform reshaping. This waveform reshap-
ing leads to apparent superluminal propagation, reflected
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Fig. 4. The propagation of τ0|Ω1| (panel (a)), τ0|Ω2| (panel (b)) and τ0|Ω3| (panel (c)) when taking the matched soliton
solution (5) as an initial condition. The dot, dash and solid lines correspond to the propagating distance z = 0, 1.5 and 3.0 cm,
respectively.
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Fig. 5. The propagation of τ0|Ω1| (panel (a)), τ0|Ω2| (panel (b)) and τ0|Ω3| (panel (c)) when taking the matched soliton
solution (11) as an initial condition. The dot, dash and solid lines correspond to the propagating distance z = 0.0, 3.0 and
6.0 cm in each panel, respectively.

by the negative sign in equation (15). Indeed, with suffi-
ciently high atomic density the second term can dominate
even for modest intensity of the field Ω1. Consequently, V
can be negative and hence one obtains a stable superlumi-
nal propagation of N coupled and group velocity matched
optical optical solitons in a (N + 1)-level V-type medium.

With transformation (13b), we can get yet another set
of N coupled and well-matched soliton solutions that sat-
isfy equations (14a–14d). Indeed, it is readily shown that

a0 =
i

1 + i∆τ0
sechζ ei[φ(z)+∆τ ], (18a)

aj =
Bjτ0

1 + i∆τ0
(i∆τ0 + tanh ζ) ei∆τ , (18b)

Ωj = Bj sechζ eiφ(z), (j = 1, 2, ..., N) (18c)

is the exact solution of equations (14a–14d), where τ0 =
(
∑N

l=1 B2
l )−1/2 and K and dφ/dz have the same form

given by (6a) and (6b), respectively. With the similar tech-
nique it will not be surprised that other type of analytical
solutions describing N coupled solitons can be found.

5 Numerical simulations

We now study, by using a numerical simulation, the sta-
bility of the coupled soliton solutions provided in the last
two sections. In our computation, equations (4a–4c) are

solved by using a fourth-order Runge-Kutta method (for
Eqs. (4a) and (4b)) and a finite difference method (for
Eq. (4c)). To test the stability of the soliton solutions,
in the simulation the analytical results given above are
naturally taken as initial conditions of equations (4a–4c).

Shown Figure 4 is the simulating result for the opti-
cal soliton propagation when taking the matched soliton
solution (5) as an initial condition. Here, for illustration
we select N = 3 (i.e. we simulate a 4-level Λ-type sys-
tem) and the parameters of the system are chosen as κ0 =
1.0×108 cm−1 s−1, ∆ = 2.0×108 s−1, B1 = 2.0×109 s−1,
B2 = 1.0 × 109 s−1 and B3 = 1.7 × 109 s−1. Thus, in this
case one has τ0 ≈ 8.3 × 10−9 s. The evolution of the di-
mensionless Rabi frequencies τ0|Ω1|, τ0|Ω2| and τ0|Ω3| has
been plotted in panel (a) to panel (c), respectively. In each
panel, the dot, dash and solid lines correspond respectively
to z = 0, 1.5 and 3.0 cm. From panel (a) we see that the
bright soliton component (i.e. τ0|Ω1|) undergoes a slight
deformation during propagation. At a large propagating
distance some radiations (i.e. the waves with a very small
amplitude) appear on the tail of the bright soliton. How-
ever, the dark soliton components (i.e. τ0|Ω2| and τ0|Ω3|)
show a very stable propagation.

Shown in Figure 5 is the simulating result for the
propagation of optical pulses when the coupled optical
soliton solution (11) is considered as an initial condi-
tion. In this case all Rabi frequencies τ0|Ω1|, τ0|Ω2| and
τ0|Ω3| are bright solitons. In the simulation, we have taken
B1 = 1.6×109 s−1, B2 = 1.8×109 s−1, B3 = 2.0×109 s−1
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and hence τ0 ≈ 3.2 × 10−8 s. Other parameters are cho-
sen the same as those used in Figure 4. In each panel we
have plotted the waveform of τ0|Ω1| (panel (a)), τ0|Ω2|
(panel (b)), and τ0|Ω3| (panel (c)) at z = 0, 3.0 and 6.0 cm,
respectively. We see that all bright solitons exhibit great
robustness during their propagation even at a quite long
distance.

6 Discussion and summary

In conclusion, we have investigated the stable propaga-
tion of shape-preserving optical pulses in two inhomoge-
neously broadened multi-level media. Using a trial so-
lution method we have solved analytically the coupled
Maxwell-Schrödinger equations governing the evolution of
optical fields and atomic amplitudes. We have given an-
alytical expressions of several sets of N coupled and well
matched optical soliton solutions and tested their stabil-
ity by using a numerical simulation. To the best of our
knowledge, there has been no study in literature that re-
ports N (N > 4) coupled optical solitons. In addition,
we have shown that with suitable choice of atomic num-
ber density and optical field strengths, it is possible to
significantly reduce the group velocity of large number of
well-matched optical solitons even in the presence of inho-
mogeneous broadening effect. Finally, we have shown, in
the case of a V -type (N + 1)-level system, the possibility
of superluminal N coupled and matched optical solitons,
for which there has been also no report in literature up to
now. The well-matched stable propagation of large num-
ber of optical solitons reported in this study may have
applications in optical information processing and trans-
mission.
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der Grant Nos. 10274021, 90403008 and 10434060, and State
Key Development Program for Basic Research of China under
Grant No. 2005CB724508.

Appendix A: Equations of the parameters
A0, A10, A11, Aj and Bj

The algebraic equations for determining the parame-
ters A0, A10, A11, Aj and Bj for the soliton solution of
the form (5) are given by

−i∆A0 + B1A10 = 0, (A.1)

−A0/τ0 + B1A11 +
N∑

l=2

BjAj = 0, (A.2)

−A11/τ0 + B1A0 = 0, (A.3)
Aj/τ0 + BjA0 = 0, (j = 2, 3, ..., N) (A.4)

|A0|2 + |A10|2 +
N∑

l=2

|Aj |2 = 1, (A.5)

A∗
10A11 + A10A

∗
11 = 0, (A.6)

|A0|2 +
N∑

l=2

|Aj |2 = |A11|2, (A.7)

K =
κ0

B1

∫
d∆g(∆)A0A

∗
11, (A.8)

K = − κ0

Bj

∫
d∆g(∆)A0A

∗
j , (j = 2, 3, ..., N) (A.9)

dφ

dz
= − κ0

B1

∫
d∆g(∆)A0A

∗
10. (A.10)

The parameters Bj (j = 1, 2, ..., N) have been taken as
real numbers.
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