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Simultaneous quantum squeezing of light polarizations and atomic spins in a cold atomic gas
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We present a scheme to realize simultaneous quantum squeezing of light polarizations and atomic spins via a
perturbed double electromagnetically induced transparency (DEIT) in a cold four-level atomic ensemble coupled
with a probe laser pulse of two polarization components. We derive two coupled quantum nonlinear Schrödinger
equations from Maxwell-Heisenberg-Langevin equations describing the quantum dynamics of the atoms and the
probe pulse and develop a quantum theory of vector optical soliton (VOS), which have ultraslow propagation
velocity and extremely low generation power. We solve the non-Hermitian eigenvalue problem describing the
quantum fluctuations on the background of the VOS and rigorously prove that all fluctuation eigenmodes
(including continuous modes and four zero modes) obtained constitute a biorthonormal and complete set. We find
that, due to the giant self- and cross-Kerr nonlinearities contributed by the perturbed DEIT, a large polarization
squeezing of the probe pulse can be realized. We also find that, together with the polarization squeezing of the
probe pulses, a significant squeezing of atomic spins also occurs simultaneously. The results of the simultaneous
squeezing of light polarizations and atomic spins by using only a coherent probe pulse reported here opens a
route for uncovering the unique property of the quantum interface between light and atomic ensembles and also
for applications in quantum information and precision measurement.
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I. INTRODUCTION

Quantum squeezing, by which quantum fluctuations in one
physical observable are reduced below the standard quan-
tum limit, at the expense of increased fluctuations in the
corresponding conjugate observable, belongs to one of the
most prominent nonclassical resources. It has compelling
applications for quantum enhanced metrology (e.g., for the
improvement of the sensitivity of gravitational-wave de-
tectors) and is quite useful for the fundamental study on
the physics of quantum entanglement. In recent years, the
research for seeking efficient methods to create quantum
squeezing has been at heart of the modern development of
quantum optics [1,2].

Among many media for creating light squeezing (including
parametric down-conversion crystals, optical fibers, semicon-
ductor lasers, etc.) [3], atomic gas is the one by which the
squeezed light was first realized experimentally, reported by
Slusher et al. in 1985 [4]. Later on, to overcome detrimental
Raman scattering and fluorescence occurring with the four-
wave-mixing process, a twin beam-squeezing technique was
used to improve light squeezing in double �-shaped atomic
gases [5–7]. Polarization squeezing of light in an atomic vapor
by using Faraday rotation was also considered [8,9].

The study on the generation of light-squeezed states stim-
ulated many efforts to search for similar nonclassical states,
i.e., spin-squeezed states in atomic ensembles [10,11], which
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can be used to suppress uncertainties resulting from quantum
fluctuations in spins associated with atomic states and has
promising practical applications (e.g., improving the long-
term stability of optical atomic clocks [12–14]). Up to now,
spin squeezing has been realized by using direct interaction
between atoms (such as Bose-Einstein condensates of atomic
gases [15–17]), by mapping squeezed light onto atoms and
employing quantum nondemolition measurements, and so on
[18–36].

In recent studies [37,38], it has been shown that light
squeezing can be realized in a three-level atomic gas working
on the condition of a perturbed electromagnetically induced
transparency (EIT) [39]. By introducing a nonzero but small
two-photon detuning (which makes the system to deviate
strict EIT condition slightly), the system supports giant optical
Kerr nonlinearity and displays the second-order dispersion
effect, thereby allowing the formation of (single-component)
ultraslow weak-light solitons with very low loss [40,41]. Due
to the existence of the giant Kerr nonlinearity, the quantum
squeezing of the slow-light solitons can be obtained [37,38].

In this article, we present a scheme to realize simultaneous
quantum squeezing of light polarizations and atomic spins via
a perturbed double EIT (DEIT) in a cold four-level atomic
ensemble coupled with a probe laser pulse with two polar-
ization components. We derive two coupled (two-component)
quantum nonlinear Schrödinger (NLS) equations from the
Maxwell-Heisenberg-Langevin (MHL) equations controlling
the quantum dynamics of the atoms and the probe pulse
and develop a quantum perturbation theory of vector optical
soliton (VOS) [42]. Such a VOS has ultraslow propagation
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velocity and extremely low generation power, contributed by
the DEIT effect.

To investigate the quantum fluctuations on the background
of the VOS, we solve the non-Hermitian eigenvalue problem
describing the quantum fluctuations and present the solution
for all eigenmodes, which include continuous modes and
four zero modes. We prove rigorously that these eigenmodes
constitute a biorthonormal and complete set and hence they
provide an expansion basis for all possible quantum fluctua-
tions. Based on the giant self- and cross-Kerr nonlinearities
resulting from the perturbed DEIT, we demonstrate that a
large polarization squeezing of the probe field can be real-
ized by inputting a coherent probe pulse. Furthermore, we
also demonstrate that, together with the polarization squeez-
ing of the probe pulse, a significant squeezing of atomic
spins can occur simultaneously. We find that the zero modes
of the quantum fluctuations play key roles for the quantum
squeezing of the light polarization and the atomic spins in
the system.

We stress that, although a multitude of researches on po-
larization squeezing of light and spin squeezing of atoms
[15–36,43–52], as well as vector solitons [53–62] in various
systems were studied in the past years, our work is different
from them, including the physical model, squeezing mech-
anism, theoretical method, and research results. Since the
possibility to generate the simultaneous squeezing of light
polarization and atomic spins by using only an input of
coherent-state probe pulse has never been explored before,
the research result reported here paves a way not only for
revealing the unique property of the quantum interface be-
tween light and atomic ensembles, but also for promising
applications in quantum information processing and precision
measurement.

The remainder of the article is organized as follows. In
Sec. II, we present the physical model under study and derive
the coupled quantum NLS equations describing the nonlin-
ear propagation of the two polarization components of the
probe pulse. In Sec. III, we solve the non-Hermitian eigen-
value problem for the quantum fluctuations around the VOS,
provide its solution for the all fluctuation eigenmodes, and
prove their biorthonormality and completeness rigorously. In
Sec. IV, we study the quantum dynamics of the VOS, the po-
larization squeezing of the probe pulse, and the spin squeezing
of the atoms. A summary of the main results obtained in this
work is given in Sec. V. Some calculation details omitted in
the main text are provided in four Appendices.

II. MODEL AND COUPLED QUANTUM NLS EQUATIONS

A. Physical model

We consider a cold atomic gas with a tripod-shaped four-
level configuration [63], interacting with a weak, pulsed probe
laser field Êp (with central angular frequency ωp and wave
number kp = ωp/c) and a strong, continuous-wave control
laser field Ec (with central angular frequency ωc and wave
number kc = ωc/c). Levels |1〉, |2〉, and |3〉 are Zeeman-split
sublevels of the atomic ground state, which are induced by
a weak static magnetic field B applied along the z direction;
level |4〉 is an excited state with spontaneous-emission decay

FIG. 1. (a) Energy-level diagram and DEIT excitation scheme of
the atomic gas with the tripod-type four-level configuration. ωp is
the central angular frequency of the quantized probe pulse, which
can be taken as a linear superposition of the right-circularly (σ+)
and the left-circularly (σ−) polarized components; ωc is the central
angular frequency of the continuous-wave control field. �4 (�3) is
the one-photon (two-photon) detuning; �2 is the Zeeman energy
splitting induced by the applied magnetic field B along z direction.
(b) Possible arrangement of experimental apparatus. For more detail,
see the text.

rate denoted by �4. The input probe field is linearly polar-
ized, which can be regarded as a linear superposition of the
right-circularly (σ+) and the left-circularly (σ−) polarized
components, coupling to the transitions |1〉 ↔ |4〉 and |2〉 ↔
|4〉, respectively; the control field is π polarized, coupling to
the transition |3〉 ↔ |4〉; see Fig. 1(a). The probe (control)
laser field is assumed to propagate along the (perpendicularly
to) z direction [64]; see Fig. 1(b). �2 is the Zeeman energy
splitting due to the externally applied magnetic field; �4 (�3)
is one-photon (two-photon) detuning. Note that the system
consists of two EITs (called DEIT), which involve excitation
channels |1〉 ↔ |4〉 ↔ |3〉 and |2〉 ↔ |4〉 ↔ |3〉, respectively.

For simplicity, we assume the atomic gas is cigar-shaped
(with Fresnel number F ≈ 1) or it is filled into an optical
waveguide with a small transverse size. Therefore, the sys-
tem can be approximately to be a one-dimensional one, as
schematically shown in Fig. 1(b). The total electric field in
the system reads

Ê(z, t ) = Ec(z, t ) + Êp(z, t ), (1a)

Ec(z, t ) = ecEcei(kcz−ωct ) + c.c., (1b)

Êp(z, t ) = Êp1(z, t ) + Êp2(z, t ), (1c)

Êp j (z, t ) = ep jEp0Êp j (z, t )ei(kpz−ωpt ) + H.c., (1d)

with j = 1, 2 and H.c. representing the complex conjugate.
Here ec and Ec are, respectively, the unit polarization vec-
tor and the control-field amplitude; Ep0 ≡ √h̄ωp/(2ε0V ) is
the electric-field amplitude of a single probe photon, with
ep1 = (ex + iey)/

√
2 [ep2 = (ex − iey)/

√
2] the unit polariza-

tion vector of the σ+ (σ−)-polarized component; Êp1(z, t )
[Êp2(z, t )] is the annihilation operator of probe photons in
the σ+ (σ−)-polarized component, obeying the commutation
relation

[Êp j (z, t ), Ê†
p j′ (z

′, t )] = Lδ(z − z′)δ j j′ , ( j, j′ = 1, 2), (2)

where L is the quantization length along the z axis.
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Under electric-dipole, rotating-waving, and paraxial ap-
proximations, the Hamiltonian of the system reads

Ĥ = − h̄c

L

∫ +∞

−∞
dz

[
Ê†

p1

(
i
∂

∂z

)
Êp1 + Ê†

p2

(
i
∂

∂z

)
Êp2

]

− h̄N

L

∫ +∞

−∞
dz

(
4∑

α=1

�α Ŝαα + gp1Ŝ14Êp1

+gp2Ŝ24Êp2 + �cŜ34 + H.c.

)
. (3)

Here, N is the total atomic number in the system; Ŝαβ (z, t ) ≡
(�N )−1∑

l∈�L Ŝl
αβ (t ) (α, β = 1, 2, 3, 4) are slowly-varying

collective atomic transition operators, with the average being
made over �N (
 1) atoms within macroscopically small
length �L; the slowly varying atomic operators related to the
transition |α〉 ↔ |β〉 of the lth atom is defined by

Ŝl
αβ (t ) = σ̂ l

βα (t )ei[(kβ − kα )zl − (ωβ+�β − ωα − �α )t], (4)

with σ̂ l
αβ ≡ |α〉l l〈β|. Ŝαβ (z, t ) obeys the commutation relation

[Ŝαβ (z, t ), Ŝα′β ′ (z′, t )]

= L

N
δ(z − z′)[δαβ ′ Ŝα′β (z, t ) − δα′β Ŝαβ ′ (z, t )]; (5)

gp1 = (ep1 · p41)Ep/h̄ [gp2 = (ep2 · p42)Ep/h̄] is the single-
photon half-Rabi frequency of the σ+ (σ−)-polarized com-
ponent; �c ≡ (ec · p43)Ec/h̄ is the half-Rabi frequency of
the control field, with pαβ the electric-dipole matrix element
associated with the transition |α〉 ↔ |β〉. The applied static
magnetic field B contributes to a Zeeman level shift �EB =
μBgα

F mα
F B, with μB, gα

F , and mα
F being Bohr magneton, gyro-

magnetic factor, and magnetic quantum number of the atomic
state |α〉, respectively. The detunings are given by �2 =
−μ21B, �3 = ωp − ωc − (ω3 − ω1) − μ31B, and �4 = ωp −
(ω4 − ω1) − μ41B, with h̄ωα being the eigenenergy of the
state |α〉 and μαβ = μB(gα

F mα
F − gβ

F mβ
F )/h̄.

The dynamics of the probe pulse and the atoms is con-
trolled by MHL equations

i

(
∂

∂z
+ 1

c

∂

∂t

)
Êp j + g∗

p jN

c
Ŝ4 j = 0, ( j = 1, 2), (6a)

i
∂

∂t
Ŝαβ =

[
Ŝαβ,

Ĥ

h̄

]
+ iL̂(Ŝαβ ) + iF̂αβ. (6b)

Here the term L̂(Ŝαβ ) is contributed to by the dissipation
process (described by spontaneous-emission rates �αβ and
dephasing rates γ

dep
αβ ) in the system and F̂αβ are δ-correlated

Langevin noise operators describing the fluctuations asso-
ciated with dissipations [65]. Explicit expression of the
Heisenberg-Langevin equation [i.e. Eq. (6b)] is given in Ap-
pendix A.

The proposed physical model described above can be
easily realized by realistic experiments. One of the candidates
is the laser-cooled alkali 87Rb atomic gas. The atomic levels
shown in Fig. 1 can be chosen to be |1〉 = |52S1/2, g1

F =
−1/2, m1

F = −1〉, |2〉 = |52S1/2, g2
F = −1/2, m2

F = 1〉,
|3〉 = |52S1/2, g3

F = 1/2, m3
F = 0〉, and |4〉 = |52P1/2, g4

F =

−1/6, m4
F = 0〉. The other system parameters are given by

�4 = 2π × 5.75 MHz, γ
dep
31 = γ

dep
32 ≈ 2π × 1 kHz [66].

The model described above is similar to that employed
in Ref. [67], where the probe field was considered to be at
single-photon level. Differently, here we assume the probe
field is a weakly nonlinear pulse and hence it contains many
photons. Notice that, if the atoms are set to be in an exact
two-photon resonance (i.e., the two-photon detuning �3 = 0),
the system works in a regime of strict DEIT. In such a sit-
uation, the third-order Kerr nonlinearity of the system has a
vanishing real part and a small imaginary part, which makes
the existence of VOS and quantum squeezing impossible. In
the following, we shall assume that �3 takes a nonzero but
small value, which makes the system work in a regime of
perturbed DEIT. Based on such a consideration, the quantum
noise due to the spontaneous emission and dephasing can
be largely suppressed and the system can support very large
real Kerr nonlinearity, and hence the formation of VOS and
quantum squeezing of the probe field and the atomic spins (see
below). In addition, the one-photon detuning �4 is chosen
to be larger than �4, which makes the system work in a
dispersive nonlinear regime. Thereby, the absorption of the
VOS is negligibly small during propagation.

B. Coupled quantum NLS equations for the propagation of the
probe pulse

Based on the basic spirit indicated above, we expect that
an input probe pulse with the form of the plane wave will
be modulated due to the weak nonlinearity and dispersion in
the system. Hence one can investigate the nonlinear dynamics
of the system by adopting the method of amplitude equa-
tions, widely used in nonlinear wave theory [42,68–71]. By
making a perturbation expansion on the MHL equations (6)
[generalizing the technique used in Ref. [37] to the present
two-component case], we can derive the following coupled
quantum NLS equations for the envelope operators of the two
polarization components of the probe pulse, given by

[
i

(
∂

∂z
+ 1

Vgj

∂

∂t

)
+ Im(K0 j )

]
Êp j − K2 j

2

∂2

∂t2
Êp j

+ |gp|2(Wj jÊ
†
p j Êp j + Wj3− j Ê

†
p3− j Êp3− j )Êp j

= iF̂p j, (7)

( j = 1, 2), when exact to cubic nonlinearity and second-order
dispersion of the system. Here, K0 j = Kj (ω)|ω=0, V −1

gj =
K1 j ≡ (∂Kj (ω)/∂ω)|ω=0 is the group velocity of the jth
component of the probe pulse, K2 j ≡ (∂2Kj (ω)/∂ω2)|ω=0

is the coefficient describing second-order dispersion (i.e.
group velocity dispersion), with Kj (ω) being the linear dis-
persion relation of the jth polarization component. Due
to the symmetric configuration between the two EITs [see
Fig. 1(a)], we have gp2 ≈ gp1 ≡ gp. In addition, Wj j ( j =
1, 2) are coefficients of self-phase modulation and Wj3− j

are coefficients of cross-phase modulation, which are pro-
portional to the third-order nonlinear optical susceptibilities
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χ
(3)
jl , i.e.,

χ
(3)
j j = 2c|ep j · p4 j |2

h̄2ωp
Wj j, ( j = 1, 2), (8a)

χ
(3)
jl = 2c|ep j · p3 j |2

h̄2ωp
Wjl , ( j, l = 1, 2; j 
= l ). (8b)

F̂p j (z, t ) ( j = 1, 2) are δ-correlated induced Langevin noise
operators, which are necessary to make Ŝ jl satisfy the Heisen-
berg commutation relations (5). The detailed derivation of
Eq. (7) and the explicit expressions of Kj (ω), Wj j , Wjl , and
F̂p j (z, t ) are presented in Appendix B.

Under condition |�c|2 
 γ4 jγ3 j ( j = 1, 2) and large one-
photon detuning �4, the loss of the probe pulse during
propagation is very small, the Langevin noise plays no sig-
nificant role and hence can be neglected (see the detailed
explanation given at the end of the Appendix B; similar
discussions can also be found in Refs. [67,72,73]). For the
convenience of the following calculations, we write Eqs. (7)
into the dimensionless form

i

(
∂

∂s
+ 2α j

)
Ûj + igδ

∂Û1

∂τ
+ gD j

∂2

∂τ 2
Ûj

+ 2(g j jÛ
†
j Û j + g j3− jÛ

†
3− jÛ3− j )Ûj

= 0, (9)

after neglecting the Langevin noise terms. Here, we
defined the dimensionless quantities Ûj = Êp j/

√
n0, s =

z/(2LD), τ = (t − z/Vg)/t0, δ = (1/Vg1 − 1/Vg2)/2, Vg =
2Vg1Vg2/(Vg1 + Vg2), α j = LD/Lj,A, gδ = sgn(δ)LD/Lδ , gD1 =
K21/|K22|, gD2 = sgn(−K22 · W22), and g j j( jl ) = Wj j( jl )/W22.
In these definitions, n0 (
 1) is the typical mean pho-
ton number in the probe pulse; Lδ = τ0/|δ| is the typical
group velocity mismatch length; t0, LD ≡ t2

0 /|K21|, and LA, j ≡
1/Im(K0 j ) are, respectively, the typical time duration, disper-
sion length, and absorption length of the probe pulse. Since
our main aim is to study the quantum squeezing of VOS, in
the dimensionless NLS equations (9) we assumed LD is equal
to the typical nonlinear length of the system, which is defined
by LNL = [n0|gp|2|W22|]−1.

In general, α1 and α2 are not small and the other coeffi-
cients in Eqs. (9) are complex, which may result in significant
loss of the probe pulse during propagation. However, under
the conditions of the perturbed DEIT and large single-photon
detuning �4, such a loss can be greatly suppressed. This
point can be clearly seen by using realistic physical pa-
rameters, given by �c = 2.2 × 108 Hz, �2 = 2π × 103 Hz
(for B = 1 mG), �3 = 2.91 × 106 Hz, �4 = 2 × 108 Hz, and
Na ≈ 7.33 × 1011 cm−3 (atomic density). Then we can obtain
the values of the coefficients of the second-order dispersion
and the self- and cross-phase modulations, given in Table I.

By setting t0 = 4.3 × 10−8 s, we obtain LD = LNL ≈
1.02 cm, α1 ≈ α2 = 1.3 × 10−3, gδ = 1.89 × 10−4,
gD1 = 1.002 + 1 × 10−6i ≈ 1, gD2 = 1, g11 = 1.0064 +
1 × 10−5i ≈ 1, g22 = 1, g12 = 1.003 + 0.02i ≈ 1,
g21 = 0.995 + 0.02i ≈ 1. We see that, indeed, α1 and α2

are very small and the imaginary parts of all other coefficients
are much smaller than their corresponding real parts. This

TABLE I. Coefficients K2 j ( j = 1, 2) of the second-order disper-
sion and the coefficients Wjl ( j, l = 1, 2) of the self- and cross-phase
modulation for system parameters taking to be �c = 2.2 × 108 Hz,
�2 = 2π × 103 Hz (for B = 1 mG), �3 = 2.91 × 106 Hz, �4 = 2 ×
108 Hz, and Na ≈ 7.33 × 1011 cm−3.

Parameters Value (cm−1s2)

K21 (1.821 + 0.17i) × 10−15

K22 (1.820 + 0.16i) × 10−15

W11 −(2.521 + 0.00143i) × 10−17

W22 −(2.505 + 0.00139i) × 10−17

W12 −(2.507 + 0.0464i) × 10−17

W21 −(2.502 + 0.0461i) × 10−17

means that the loss of the probe pulse is small and can be
taken as a small perturbation.

Based on such consideration, Eqs. (9) can be simplified
into the perturbed quantum Manakov equations

i
∂

∂s
Ûj + ∂2

∂τ 2
Ûj + 2

⎛
⎝∑

l=1,2

Û †
l Ûl

⎞
⎠Ûj = Rj (Û1, Û2), (10)

where Rj (Û1, Û2) ( j = 1, 2) are perturbations. The derivation
of Eqs. (10) from Eqs. (9) is given in Appendix C. In the
following calculations, we assume the system works in the
regime of the perturbed DEIT with a larger �4. For a short
propagation distance (in the order of centimeters), the pertur-
bations Rj play a negligible role and can be neglected safely.

In fact, the existence of nonzero perturbation terms
Rj (Û1, Û2) is mainly due to the existence of the magnetic
field B and the two-photon detuning �3. Shown in Fig. 2 are
g jl ( j, l = 1, 2) and gD1 as functions of B [Fig. 2(a)] and �3

[Fig. 2(b)]. The other system parameters used for plotting the
figure are the same as given above. We see that for small B
and for �3 ≈ 2.9 × 106 Hz, we have g jl ≈ gD1 = 1. In this
situation, Rj (Û1, Û2) can be indeed taken as perturbations.

With the above system parameters, we can estimate values
of the self- and cross-Kerr nonlinear optical susceptibilities of
the system based on the formula (8), given by

χ
(3)
11 ≈ χ

(3)
22 ≈ χ

(3)
12 ≈ χ

(3)
21 = −3.69 × 10−11 m2V−2, (11)

which are ten orders of magnitude larger than that obtained in
comparison with conventional optical media (such as optical
fibers). Physically, such giant Kerr nonlinearities are con-
tributed to by the nearly resonant character and the DEIT in
the system.

III. BIORTHONORMAL AND COMPLETE EIGENMODES
OF QUANTUM FLUCTUATIONS

A. Vector optical solitons

To investigate the quantum fluctuations of VOS, we
first consider the classical limit of the system. In such
a situation the envelope operators Ûj can be replaced
by c-number envelope functions Vj . Then Eqs. (9) are
reduced to i(∂/∂s + 2α j )Vj + igδ∂Vj/∂τ + gD j∂

2Vj/∂τ 2 +
2(g j j |Vj |2 + g j3− j |V3− j |2)Vj = 0, ( j = 1, 2) which are the
classical two-component nonlinear NLS equations. In the past
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FIG. 2. (a) Dimensionless nonlinear coefficients gjl ( j, l = 1, 2)
and the ratio of the second-order dispersion gD1 as functions of the
magnetic field B for the two-photon detuning �3 = 2.9 × 106 Hz.
(b) gjl ( j, l = 1, 2) and gD1 as functions of �3 for B = 5 mG .

decades, there exist a large amount of works paid to the
study on the soliton-pair solutions supported by such equa-
tions [42,69,70,74–78]. Soliton-pair solutions in EIT systems
have also been considered in recent years [79–82].

When neglecting the perturbation terms Rj , Eqs. (10) is
reduced into quantum Manakov equations

i
∂

∂s
Ûj + ∂2

∂τ 2
Ûj + 2

⎛
⎝∑

l=1,2

Û †
l Ûl

⎞
⎠Ûj = 0. (12)

In the classical limit, Eqs. (12) become classical Manakov
equations, which admit the VOS solution [42,69,70]

|V0〉 ≡
(

V1

V2

)
= A0ei�0

(
cos ϑ

sin ϑ

)
sechσ, (13)

with σ = A0(τ − τ0 − 2p0s), �0 = p0(τ − τ0) + (A2
0 −

p2
0)s + θ0. Here A0, p0, τ0, and θ0 are four real parameters,

determining the amplitude (or width), propagating velocity
(or momentum), initial temporal position, and the initial
phase of each component of the VOS, respectively; the real

parameter ϑ represents the ratio between the amplitudes of
the two polarization components.

Using the system parameters given above, we obtain Vg2 ≈
Vg1 ≡ Vg = 1.575 × 10−4c. The propagating velocity Vvos of
the above VOS solution has a small modification from Vg. For
instance, for p0 = 1,

Vvos = Vg

1 + Vgt0
Ldisp

p0

≈ 1.377 × 10−4c, (14)

which means that Vvos ≈ Vg and both of Vg and Vvos are much
smaller than c (the light speed in vacuum). This significant
slowdown of the optical pulse is due to the DEIT effect in-
duced by the control field.

The threshold power for creating the VOS can be estimated
by calculating Poynting’s vector [69]. We obtain

Pmax = 58.1 μW. (15)

Thus very low input power is required for the generation of
the VOS, which is in contrast to the optical solitons generated
in conventional optical media (e.g., optical fibers) [69,70].

B. Non-Hermitian four-component eigenvalue problem
for quantum fluctuations

Now we turn to investigate the quantum correction of
the VOS in the system. Making the transformation Ûj =
Û j exp(iA2

0s), Eqs. (12) become

i
∂

∂s
Û j + ∂2

∂τ 2
Û j − A2

0Û j + 2

⎛
⎝∑

l=1,2

Û†
l Ûl

⎞
⎠Û j = 0. (16)

The effective Hamiltonian described by Eqs. (16) reads

Ĥeff =
∑
j=1,2

∫ +∞

−∞
Û†

j (τ, s)

[
− ∂2

∂τ 2
+ A2

0

−Û†
j (τ, s)Û j (τ, s)

]
Û j (τ, s)dτ

− 2
∫ +∞

−∞
Û†

1 (τ, s)Û†
2 (τ, s)Û1(τ, s)Û2(τ, s)dτ, (17)

by which Eqs. (16) can be written as the Heisenberg equa-
tions of motion i∂Û j/∂s = [Û j, Ĥeff ].

We assume that the mean photon number n0 in the probe
pulse is large, so that the quantum fluctuations are weaker
compared with the VOS. The dimensionless probe field can
be expressed by the Bogoliubov decomposition

(Û1

Û2

)
=
(

V1

V2

)
+
(

v̂1

v̂2

)
, (18)

where (v̂1, v̂2)T (T means transpose) is a vector operator
denoting the quantum fluctuations on the VOS background
(V1,V2)T ; v̂1 and v̂2 satisfy the commutation relations
[v̂ j (τ, s), v̂†

l (τ ′, s)] = δ jlδ(τ − τ ′). Substituting Eq. (18) into
Eq. (17) and neglecting the high-order terms of v̂ j , we obtain
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the quadratic bose Hamiltonian

Ĥeff = H0 + Ĥ2, (19a)

H0 =
∑
j=1,2

∫ +∞

−∞
dτ

[
Vj

(
− ∂2

∂τ 2
+ A2

0 − V 2
j

)
Vj − 2V 2

1 V 2
2

]
,

(19b)

Ĥ2 =
∑
j=1,2

∫ ∞

−∞
dτ

[
v̂

†
j

(
− ∂2

∂τ 2
+ A2

0 − 4V 2
j

)
v̂ j

−V 2
j (v̂ j v̂ j + v̂

†
j v̂

†
j )

]
−
∫ ∞

−∞
dτ2V1V2(v̂†

1 v̂
†
2 + v̂1v̂2

+ v̂
†
1 v̂1 + v̂

†
1 v̂2 + v̂

†
2 v̂1 + v̂

†
2 v̂2). (19c)

With the VOS solution (13), the Bogoliubov decomposition
(18) becomes (Û1

Û2

)
= ei�′

0 T̂ (|V̂0〉 + |V̂1〉), (20)

with

|V̂0〉 = A0sech[A0(τ − τ0 − 2p0s)]

(
1

0

)
, (21a)

|V̂1〉 =
(

û1

û2

)
, (21b)

where T̂ = (
cos ϑ − sin ϑ

sin ϑ cos ϑ
) is a rotation matrix and �′

0 =
p0(τ − τ0) − p2

0s + θ0. Based on the expression (20), the
Heisenberg equations of motion for û j and û†

j can be written
as the form

i
∂

∂s
|Ŵ 〉 + A2

0 L̂ |Ŵ 〉 = 0. (22)

Here |Ŵ 〉 = (ŵ1, ŵ
†
1, ŵ2, ŵ

†
2 )T is a vector operator of four

components, with ŵ j ≡ û j/
√

A0 satisfying the commutation
relations

[ŵ j (s, σ ), ŵ†
l (s, σ ′)] = δ jlδ(σ − σ ′). (23)

Here the definition of σ is given in the classical VOS so-
lution (13). In Eq. (22), L̂ is a block-diagonal 4 × 4 matrix
describing the dynamics of quantum fluctuations on the VOS
background, defined by

L̂ = L̂a ⊕ L̂b =
(

L̂a 0
0 L̂b

)
=

⎛
⎜⎜⎝

M N 0 0
−N −M 0 0

0 0 R 0
0 0 0 −R

⎞
⎟⎟⎠,

(24)

with L̂a ≡ ( M N
−N −M), L̂b ≡ (R 0

0 −R), M ≡ ∂2/∂σ 2 +
4sech2σ − 1, N ≡ 2sech2σ , and R ≡ ∂2/∂σ 2 + 2sech2σ −
1.

To consider all possible quantum fluctuations, one must
solve the dynamical operator equation (22) and seek all pos-
sible eigenmodes of L̂. We require that these eigenmodes can
constitute an eigenmode set that are orthogonal and complete,
so that an arbitrary quantum fluctuation of the system can
be expressed (expanded) by these eigenmodes. The ease of

success for obtaining such an eigenmode set depends on the
property of L̂. On the one hand, from Eq. (24) we see that L̂ is
a direct sum of L̂a and L̂b. On the other hand, L̂b is Hermitian;
however, L̂a is non-Hermitian but pseudo-Hermitian, with the
adjoint operator given by L̂†

a = σ3L̂aσ3 = (M −N
N −M), where

σ3 = (1 0
0 −1) (Pauli matrix). Thus, as a whole, L̂ has the

property

L̂† = σ̂3L̂σ̂3, (25)

where σ̂3 ≡ (σ3 0
0 σ3

). This fact tells us that although L̂ is

not Hermitian, i.e., L̂† 
= L̂, but it is pseudo-Hermitian. In
recent years, it was proved that pseudo-Hermitian operators
possess all-real spectra (eigenvalues). If one is able to find
the all eigenmodes of L̂ and L̂†, complete and biorthonor-
mal eigenemode bases can be constructed in mutually dual
function spaces of L̂ and L̂† [83,84], by which the effective
Hamiltonian (19) can be diagonalized.

To this end, we make the Bogoliubov transformation
[37,38]

ŵ1(σ, s) =
∑

f

[
u(a)

f (σ )â(a)
f (s) + v

(a)∗
f (σ )â(a)†

f (s)
]
, (26a)

ŵ2(σ, s) =
∑

f

[
u(b)

f (σ )â(b)
f (s) + v

(b)∗
f (σ )â(b)†

f (s)
]
. (26b)

Here â(α)
f and â(α)†

f are, respectively, the annihilation and
creation operators of photons for the mode f , satisfying the
commutation relations [â(α)

f (s), â(α′ )†
f ′ (s)] = δαα′δ f f ′ ; u(α)

f (σ )

and v
(α)
f (σ ) are mode functions (α = a, b).

Assuming |Ŵ (σ, s)〉 = |Ŵ (σ )〉 exp(iA2
0λs), substituting it

into Eq. (22), and using the Bogoliubov transformation (26),
we obtain the eigenvalue equations [i.e., Bogoliubov–de
Gennes (BdG) equations] for the non-Hermitian operator L̂:

L̂ |� f (σ )〉 = λ f |� f (σ )〉. (27)

Here, λ f is the eigenvalue; |� f (σ )〉 =
(u(a)

f , v
(a)
f , u(b)

f , v
(b)
f )T is the corresponding eigenvector,

which has four components. Due to the block-diagonal
structure of L̂, we can independently solve the eigenvalue
equations for each of the two diagonal blocks in Eq. (27),
which read

L̂a

∣∣� (a)
f (σ )

〉 = λ
(a)
f

∣∣� (a)
f (σ )

〉
, (28a)

L̂b

∣∣� (b)
f (σ )

〉 = λ
(b)
f

∣∣� (b)
f (σ )

〉
, (28b)

where λ
(a)
f and λ

(b)
f are eigenvalues, |� (a)

f 〉 = (u(a)
f , v

(a)
f )T and

|� (b)
f 〉 = (u(b)

f , v
(b)
f )T are two-component eigenvectors of the

operators L̂a and L̂b, respectively. The four-component vector
|�(σ ) f 〉 can be generally written into the form

|� f (σ )〉 =
(

1

0

)
⊗ ∣∣� (a)

f (σ )
〉

or

(
0

1

)
⊗ ∣∣� (b)

f (σ )
〉
. (29)
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C. Eigenmodes of the quantum fluctuation and their
biorthonormality and completeness

The eigenvalues and eigenmodes of the operator L̂a and
L̂†

a are known in the study on the quantum perturbation the-
ory of bright solitons with a single component [37], which
include continuous and discrete spectra. The eigenequations
and eigenmodes of the continuous spectrum (with eigenvalues
λ

(a)
k = k2 + 1) read

L̂a

∣∣� (a)
k (σ )

〉 = (k2 + 1)|� (a)(σ )〉, (−∞ < k < ∞), (30a)

∣∣� (a)
k (σ )

〉 = (
u(a)

k

v
(a)
k

)
= − eikσ

√
2π (k + 1)2

×
[

sech2σ

(
1

1

)
+ (k2 + 2ik tanh σ − 1

)(1

0

)]
.

(30b)

The discrete spectrum of L̂a contains two zero modes (with the
eigenvalue λ

(a)
1 = λ

(a)
2 = 0). The eigenequations and eigen-

functions are given by

L̂a

∣∣� (a)
n (σ )

〉 = 0, (n = 1, 2), (31a)

∣∣� (a)
1 (σ )

〉 = (
u(a)

1

v
(a)
1

)
= sechσ

2

(
2 − σ tanh σ

−σ tanh σ

)
, (31b)

∣∣� (a)
2 (σ )

〉 = (
u(a)

2

v
(a)
2

)
= sechσ

2

(
tanh σ + σ

tanh σ − σ

)
. (31c)

The eigenvalues and the eigenmodes of L̂†
a are given by

L̂†
a

∣∣�(a)
k (σ )

〉 = (k2 + 1)
∣∣�(a)

k (σ )
〉
, (32a)∣∣�(a)

k (σ )
〉 = σ3

∣∣� (a)
k (σ )

〉
, (32b)

for the continuous spectrum and

L̂†
a

∣∣�(a)
n (σ )

〉 = 0, (n = 1, 2), (33a)∣∣�(a)
n (σ )

〉 = σ3

∣∣� (a)
n (σ )

〉
, (33b)

for the discrete spectrum.
The two eigenmode sets of L̂a and L̂†

a given above con-
stitute two mutually dual function spaces, with the bases
respectively given by {|� f 〉; f = n, k} and {|� f 〉; f = n, k},
which are biorthonormal and complete in the following sense:〈

�
(a)
f (σ )

∣∣� (a)
f ′ (σ )

〉 = δ f f ′ , (34a)

×
∑

n=1,2

∣∣�(a)
n (σ )

〉〈
� (a)

n (σ ′)
∣∣

+
∫ +∞

−∞
dk
∣∣�(a)

k (σ )
〉〈
�

(a)
k (σ ′)

∣∣
= Iδ(σ − σ ′), (34b)

with I is the 2 × 2 identity matrix. Here, the scalar product
between the right vectors {|� (a)

f 〉} and the left vectors {〈�(a)
f ′ |}

is defined by〈
�

(a)
f

∣∣� (a)
f ′
〉 = ∫ ∞

−∞
dσ
〈
�

(a)
f (σ )

∣∣� (a)
f ′ (σ )

〉
. (35)

It is easy to obtain the eigenvalues and eigenmodes of L̂b

because it is a Hermitian operator. L̂b has two branches of

continuous spectra, which satisfy the eigenequations

L̂b

∣∣� (b)
k± (σ )

〉 = ±(k2 + 1)
∣∣� (b)

k± (σ )
〉

(36)

(−∞ < k < ∞). The corresponding eigenmodes are given by∣∣� (b)
k+ (σ )

〉 = (
u(b)

k+
v

(b)
k+

)
= eikσ (−ik + tanh σ )√

2π (−ik + 1)

(
0

1

)
, (37a)

∣∣� (b)
k− (σ )

〉 = (
u(b)

k−
v

(b)
k−

)
= eikσ (−ik + tanh σ )√

2π (−ik + 1)

(
1

0

)
. (37b)

L̂b also has two zero modes (i.e., λ
(b)
1 = λ

(b)
2 = 0), satisfying

L̂b

∣∣� (b)
n (σ )

〉 = 0, (n = 1, 2), (38)

with ∣∣� (b)
1 (σ )

〉 = (
u(b)

1

v
(b)
1

)
= sechσ√

2

(
1

−1

)
, (39a)

∣∣� (b)
2 (σ )

〉 = (
u(b)

2

v
(b)
2

)
= sechσ√

2

(
1

1

)
. (39b)

The eigenmode set of L̂b constitutes a Hilbert space in which
they fulfill the orthonormality and completeness relations〈

�
(b)
f (σ )

∣∣� (b)
f ′ (σ )

〉 = δ f f ′ , (40a)

×
2∑

n=1

∣∣� (b)
n (σ )

〉〈
� (b)

n (σ ′)
∣∣

+
∫ +∞

−∞
dk

∑
α=+,−

∣∣� (b)
kα

(σ )
〉〈
�

(b)
kα

(σ ′)
∣∣

= Iδ(σ − σ ′). (40b)

Based on the orthonormal and complete properties of the
eigenmodes of L̂a and L̂b, respectively, it is easy to prove the
biorthonormality and completeness of the eigenmodes of L̂
due to its block-diagonal structure. They are given by

〈� f (σ )|� f ′ (σ )〉 = δ f f ′ , ( f , f ′ = n, k; n = 1, 2), (41a)

×
∑

n=1,2

|�n(σ )〉〈�n(σ ′)|

+
∫ +∞

−∞
dk|�k (σ )〉〈�k (σ ′)|

= Îδ(σ − σ ′). (41b)

Here Î is the 4 × 4 identity matrix, |� f (σ )〉 =(1
0

)⊗ |� (a)
f (σ )〉 + (01)⊗ |� (b)

f (σ )〉 and 〈� f (σ )| = (10)⊗
〈�(a)

f (σ )| + (01)⊗ 〈� (b)
f (σ )|.

D. Diagonalization of the effective Hamiltonian

Based on the results above, the Bogoliubov transformation
(26) can be written into the form

ŵ1(σ, s) =
2∑

n=1

[
u(a)

n (σ )â(a)
n (s) + v(a)∗

n (σ )â(a)†
n (s)

]

+
∫

dk
[
u(a)

k (σ )â(a)
k (s)+v

(a)∗
k (σ )â(a)†

k (s)
]
, (42a)
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ŵ2(σ, s) =
2∑

n=1

[
u(b)

n (σ )â(b)
n (s) + v(b)∗

n (σ )â(b)†
n (s)

]

+
∫

dk
[
u(b)

k (σ )â(b)
k (s) + v

(b)∗
k (σ )â(b)†

k (s)
]
.

(42b)

Here the indices n and k are quantum numbers denot-
ing, respectively, discrete and continuous modes; â(α)

n (s)
and â(α)

k (s) (α = a, b) are, respectively, the annihila-
tion operators of photons for the discrete and continu-
ous modes, satisfying, respectively, the commutation re-
lations [â(α)

n (s), â(α′ )†
n′ (s)] = δαα′δnn′ and [â(α)

k (s), â(α′ )†
k′ (s)] =

δαα′δ(k − k′); u(α)
n (σ ), v(α)

n (σ ), u(α)
k (σ ), and v

(α)
k (σ ) are mode

functions for the discrete and continuous spectra, respectively.
With these exact results, we can diagonalize the effective

Hamiltonian (19) into the form

Ĥeff = 4

3
A3

0 + A2
0

⎧⎨
⎩[P̂(a)

2 (s)
]2 − [Q̂(a)

1 (s)
]2

+
∑

α=a,b

∫ +∞

−∞
dkλ

(α)
k â(α)†

k (s)â(α)
k (s)

⎫⎬
⎭, (43)

with Q̂(α)
n = (â(α)

n + â(α)†
n )/

√
2, P̂(α)

n = (â(α)
n − â(α)†

n )/(
√

2i)
being, respectively, the “position” operators and “momentum”
operators related to the discrete-spectrum eigenmodes, satis-
fying commutation relations [Q̂(α)

n , P̂(α′ )
n′ ] = iδαα′δnn′ (α, α′ =

a, b; n, n′ = 1, 2). The terms related to P̂(a)
2 and Q̂(a)

1 can be
understood to be induced by the deformation of the VOS,
while the term related to â(α)

k is due to the radiations from
the VOS.

Note that the four zero modes obtained above are not Gold-
stone modes, though their origins have some similarities to
that of Goldstone bosons. The occurrence of these zero modes
is due to the existence of the VOS, which is inhomogeneous in
space and time [37,38]. For detailed discussions on quantum
solitons and zero modes, see Refs. [85–87].

IV. QUANTUM SQUEEZING OF LIGHT POLARIZATIONS
AND ATOMIC SPINS

A. Quantum dynamics of the vector optical soliton

Based on the diagonalized effective Hamiltonian (43), we
can obtain the dynamics equations describing the quantum
fluctuations of the VOS

∂

∂s
Q̂(a)

1 = 0, (44a)

∂

∂s
P̂(a)

1 − 2A2
0Q̂(a)

1 = 0, (44b)

∂

∂s
P̂(a)

2 = 0, (44c)

∂

∂s
Q̂(a)

2 − 2A2
0P̂(a)

2 = 0, (44d)

∂

∂s
Q̂(b)

n = 0, (44e)

∂

∂s
P̂(b)

n = 0, (44f)

i
∂

∂s
â(α)

k − A2
0λ

(α)
k â(α)

k = 0 (α = a, b). (44g)

It is easy to get the exact solutions of these equations, which
are given by

Q̂(a)
1 (s) = Q̂(a)

1 (0), (45a)

P̂(a)
1 (s) = 2A2

0Q̂(a)
1 (0)s + P̂(a)

1 (0), (45b)

Q̂(a)
2 (s) = 2A2

0P̂(a)
2 (0)s + Q̂(a)

2 (0), (45c)

P̂(a)
2 (s) = P̂(a)

2 (0), (45d)

Q̂(b)
n (s) = Q̂(b)

n (0), (45e)

P̂(b)
n (s) = P̂(b)

n (0), (n = 1, 2), (45f)

â(α)
k = â(α)

k (0) exp
(− iA2

0λ
(α)
k s
)
, (α = a, b), (45g)

where Q̂(α)
n (0), P̂(α)

n (0), â(α)
k (0) are the values of Q̂(α)

n (s),
P̂(α)

n (s), â(α)
k (s) at s = 0, respectively. From these solutions we

can obtain the following conclusions. (i) From Eqs. (45a) to
(45d), we see that during propagation Q̂(a)

1 and P̂(a)
2 remain

unchanged; however, P̂(a)
1 and Q̂(a)

2 are changed and they be-
come correlated with Q̂(a)

1 and P̂(a)
2 . A direct outcome of such a

correlation between Q̂(a)
n and P̂(a)

n (n = 1, 2) is the induction of
the phase diffusion and position spreading of the VOS, which
are contributed by the self- and cross-Kerr nonlinearities in
the system. (ii) Interestingly, from Eqs. (45e) and (45f) we see
that the two zero modes of the Hermitian operator L̂b have no
effect on the VOS deformation. This property is the result of
the left-right configuration symmetry between the two EITs in
the system [see in Fig. 1(a)]. If this symmetry is broken (e.g.,
by using a larger magnetic field B, which is not considered
here), the Hermitian property of L̂b will be lost and hence its
zero modes will contribute to the deformation of the VOS. (iii)
The continuous modes of both L̂a and L̂b have contributions
to quantum fluctuations. However, these (radiation) modes
display only a simple effect, i.e., each of them contributes a
constant phase shift to itself (which is also caused by the Kerr
nonlinearities in the system).

B. Polarization squeezing of the probe pulse

Based on the results obtained above, we now investigate
the quantum squeezing of the VOS. Because the quantum
fluctuations from the continuous modes are much smaller
compared with those from the zero modes [37,38,88,89], they
will be neglected in the following calculations.

The quantum property of the probe field with the two
polarization components can be described by the following
Stokes operators [57,60]:

ŝ0 ≡ N̂11 + N̂22, (46a)

ŝ1 = N̂12 + N̂21, (46b)

ŝ2 = i(N̂21 − N̂12), (46c)

ŝ3 = N̂11 − N̂22, (46d)

where N̂j j′ = ∫ dτ Ê†
p j (s, τ )Êp j′ (s, τ ), with j, j′ = 1, 2. These

operators are Hermitian (thus observables), and satisfy the
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commutation relations of angular momentum

[ŝ0, ŝi] = 0, [ŝi, ŝ j] = 2iεi jk ŝk, (47)

where i, j, k = 1, 2, 3 and εi jk is the antisymmetric unit (Levi
Civita) tensor. In these operators, ŝ0 corresponds to the inten-
sity of the probe pulse, ŝ3 describes the number difference,
and ŝ1 and ŝ2 describe the relative phase difference between
the two components. Due to their quantum property, the vari-
ances of the Stokes operators obey the Heisenberg uncertainty
relation

〈(�ŝi )
2〉〈(�ŝ j )

2〉 � εi jk|〈ŝk〉|2. (48)

Here 〈(�ŝi )2〉 ≡ 〈(ŝi − s̄i )2〉 is the variance of the Stokes op-
erator ŝi, with s̄i ≡ 〈ŝi〉.

Although the uncertainty relation (48) is state dependent,
one is always able to find pairs of maximally conjugate op-
erators by defining a Stokes basis in which only one Stokes
operator has a nonzero expectation value. This can be re-
alized by considering a special polarization state for which
〈ŝi〉 = 〈ŝ j〉 = 0 and 〈ŝk〉 = 〈ŝ0〉 
= 0, where ŝi, ŝi, and ŝk are
Stokes operators that are orthogonal to each other [57,60]. In
this basis, there is only one nontrivial uncertainty inequality,
given by

〈(�ŝi )
2〉〈(�ŝ j )

2〉 � |〈ŝk〉|2 = |〈ŝ0〉|2. (49)

The polarization squeezing is achieved if

〈(�ŝi )
2〉 < |〈ŝ0〉| < 〈(�ŝ j )

2〉. (50)

The choice of the conjugate operator pair (ŝi, ŝ j) in Eq. (49)
is not unique. In fact, an infinite set of such operator pairs exist
in the plane of ŝi-ŝ j . Since 〈ŝi〉 and 〈ŝ j〉 have zero mean value,
this plane is called the dark plane. The direction of 〈ŝ〉 defines
an axis (called the Stokes axis), with |〈ŝ〉| = |〈ŝ0〉| along this
axis. Generally, a dark-plane operator can be defined as

ŝθ = cos θ ŝi + sin θ ŝ j, (51)

with θ being the detection angle in the dark plane relative to
ŝi. Thus the polarization squeezing occurs when

〈(�ŝθ )2〉 < |〈ŝ0〉| < 〈(�ŝθ+π/2)2〉. (52)

Usually, the squeezing ratio defined by Rp(θ ) =
〈(�ŝθ )2〉/|〈ŝ0〉| is taken to estimate the amount (or degree) of
the polarization squeezing.

In the above expressions, the quantum average of operator
Ô is defined by 〈Ô〉 ≡ 〈�0|Ô|�0〉. Here we assume |�0〉 =
|n0, 0, 0, . . .〉 is the input quantum state of the probe pulse;
it is a coherent state, with the photon number n0 
 1 and
n(a)

f = n(b)
f = 0 (where n(a)

f and n(b)
f are occupation numbers

of the modes of L̂a and L̂b, respectively). In the following
calculations we take n0 = 1.55 × 104.

Because Êp j = √
n0ÛjeiA2

0s, with Ûj ≡ Vj + û j , we have
N̂j j′ = n0

∫
dτÛ †

j (s, τ )Ûj′ (s, τ ). For convenience, we define
the reduced Stokes operators

Ŝ0 ≡ N̂11 + N̂22, (53a)

Ŝ1 = N̂12 + N̂21, (53b)

Ŝ2 = i(N̂21 − N̂12), (53c)

Ŝ3 = N̂11 − N̂22, (53d)

where N̂ j j′ = ∫ dτÛ †
j (s, τ )Ûj′ (s, τ ), satisfying the commuta-

tion relations

[Ŝ0, Ŝi] = 0, [Ŝi, Ŝ j] = 2iεi jk
Ŝk

n0
. (54)

Based on the results given above, we obtain

Ŝ0 = 2A0 +
√

2A0
(
cos ϑQ̂(a)

1 + 2 sin ϑQ̂(b)
1

)
, (55a)

Ŝ1 = 2A0 sin(2ϑ ) +
√

2A0
(
sin ϑQ̂(a)

1 + 2 cos ϑQ̂(b)
1

)
,

(55b)

Ŝ2 =
√

2A0
(
2 cos ϑP̂(b)

1 − 2 sin ϑP̂(a)
1

)
, (55c)

Ŝ3 = 2A0 cos(2ϑ ) +
√

2A0
(
cos ϑQ̂(a)

1 − 2 sin ϑQ̂(b)
1

)
.

(55d)

We thus have 〈Ŝ0〉 = 2A0. This is the dimensionless energy
of the input probe pulse, independent of the value of ϑ [the
parameter describing the amplitude ration between the two
polarization components; see Eq. (13)].

If the input probe pulse is circularly polarized, i.e., ϑ = 0
(which corresponds to the case where only a single EIT that
involves the levels |1〉 |4〉, |3〉 plays a role in the system), one
has

〈Ŝ1〉 = 〈Ŝ2〉 = 0, 〈Ŝ3〉 = 〈Ŝ0〉 = 2A0. (56)

If the input probe pulse is linearly polarized, i.e., ϑ = π/4
(which corresponds to the case where the two EITs involving,
respectively, the levels |1〉 |4〉, |3〉 and the levels |2〉 |4〉, |3〉
play roles simultaneously), we have

〈Ŝ2〉 = 〈Ŝ3〉 = 0, 〈Ŝ1〉 = 〈Ŝ0〉 = 2A0. (57)

Note that to make the two EITs in the system be symmetric
and hence the description of the Manakov equations (12) be
valid, an equal initial ground-state population S(0)

11 and S(0)
22

and equal amplitude of the two polarization components of
the VOS (13) must be chosen. This can be realized by taking
S(0)

11 = S(0)
22 = 0.5, ϑ = π/4 and the input probe pulse is lin-

early polarized (which can be taken as a linear composition of
the σ+ and σ− polarization components; see the description
in Sec. II A).

For describing the polarization squeezing of the probe
pulse with the reduced Stokes operators defined by Eq. (55),
we introduce the following dark-plane operator:

Ŝθ = cos θ Ŝ2 + sin θ Ŝ3, (58)

where θ is the detection angle in the dark-plane operator
relative to Ŝ2. Such a choice of the dark-plane operator is
based on the result (57), which indicates that 〈Ŝ1〉 is along
the Stokes axis and (Ŝ2, Ŝ3) are conjugate operator pair in the
dark plane. The polarization squeezing occurs when

〈(�Ŝθ )2〉 < |〈Ŝ1〉| < 〈(�Ŝθ+π/2)2〉. (59)

The degree (or amount) of polarization squeezing is described
by the squeezing ratio

Rp(θ ) = 〈(�Ŝθ )2〉
|〈Ŝ0〉|/n0

. (60)

The variances of Ŝθ , i.e., 〈(�Ŝθ )2〉, can be calculated by
using Eqs. (45) and (55) with ϑ = π/4. Shown in Fig. 3(a) is
the result of numerical simulation on the polarization squeez-
ing ratio R Rp(θ ) in decibels (dB), i.e., 10 × log10 Rp, as a
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units of 2

units of 2

FIG. 3. (a) Polarization squeezing ratio Rp(θ ) (in dB) versus
detection angle θ for the dimensionless VOS amplitude A0 = 1 and
different dimensionless propagation distance s = 0.5 (solid red line),
1 (dashed blue line), and 1.5 (dotted pink line). (b) Rp(θ ) versus θ for
s = 0.5 and different A0 = 0.5 (dashed blue line), 1 (solid red line),
and 1.5 (dotted pink line). (c) The maximum (Rmax; dashed blue line)
and minimum (Rmin; solid red line) polarization squeezing ratio R
versus A0 for s = 0.5.

function of the detection angle θ for the dimensionless VOS
amplitude A0 = 1 and different dimensionless propagation
distance s, with the solid red line, dashed blue line, and
dotted pink line being for s = z/(2LD) = 0.5, 1, 1.5 (which

correspond to z ≈ 1, 2, 3 cm), respectively. We see that the
polarization squeezing of the probe pulse indeed occurs in
the system, with the squeezing ratio being sensitive to the
selection of detection angle θ . Moreover, as the distance s
increases, the degree of squeezing (log10 Rp is negative) is
increased slowly, while the degree of antisqueezing (log10 Rp

is positive) grows rapidly.
To explore the property of the polarization squeezing re-

lated to the Kerr nonlinearity and the input energy of the
probe pulse, the calculation of the squeezing ratio Rp(θ ) as a
function of θ is also carried out by fixing s = 0.5 but varying
different VOS amplitude A0 (which is proportional to the
Kerr nonlinearity and the pulse input energy). Illustrated in
Fig. 3(b) is the result of the calculation, where the dashed
blue line, solid red line, and dashed pink line are for A0 = 0.5,
1, 1.5, respectively. One sees that both the squeezing and the
antisqueezing grow when A0 is increased (the antisqueezing
grows more faster than the squeezing). Plotted in Fig. 3(c) is
the maximum (Rmax; dashed blue line) and minimum (Rmin;
solid red line) polarization squeezing ratio versus A0 for s =
0.5. We see that the squeezing degree of the VOS displays a
lower bound (with the value −6.9 dB), but the antisqueezing
degree has no upper bound [90].

It should be indicated that, compared with the polarization
squeezing of the VOS in optical fibers [57,60], the polariza-
tion squeezing of the VOS in the present atomic system via
the DEIT is more efficient. A pronounced feature is that the
optical pulse can acquire a large polarization squeezing within
a very short propagation distance (in the order of centimeter).
The most important physical reason for this is due to the fact
that the DEIT-based atomic gas here possesses giant self- and
cross-Kerr nonlinearities (which are much larger than that in
optical fibers), which make the typical nonlinearity length LNL

of the system be small (i.e., order of centimeter). Furthermore,
the ultraslow propagating velocity of the VOS is also factor
that makes the polarization squeezing more significant.

By minimizing the variance of the dark-plane operator (58)
with respect to the detection θ , one can obtain the optimum
angle θ = θopt. Figure 4(a) shows the numerical result of θopt

as a function of the propagation distance s for the dimension-
less amplitude A0 = 1; while Fig. 4(b) shows θopt as a function
of A0 for s = 0.5. Based on these results, experimentally one
can choose the optimum detection angle to acquire the largest
polarization squeezing of the probe pulse.

C. Atomic spin squeezing

Due to the significant coupling between the probe pulse
and the atoms, the self- and cross-Kerr nonlinearities in the
system not only can result in the large polarization squeezing
of the probe pulse (as illustrated above), but also can induce
significant spin squeezing of the atoms simultaneously, as
shown below.

Because the atoms with the tripod configuration have four
levels [see Fig. 1(a)], based on the atomic transition opera-
tors Ŝ jl [ j, l = 1–4; see the definition (4)] one can define 15
collective spin and multipolar operators [i.e., the generators of
the SU(4) group] of the atoms, which include three spin oper-
ators, five quadrupolar tensor operators, and seven octupolar
tensor operators [91,92]. These operators are Hermitian ones
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FIG. 4. (a) Numerical result of the optimum detection angle θopt

for the polarization squeezing as a function of dimensionless prop-
agation distance s for dimensionless amplitude A0 = 1. (b) θopt as a
function of A0 for s = 0.5.

and hence are observables. One can study the squeezing of
these observables, but here we consider only three classes of
spin squeezing for simplicity.

Class 1. This is related to the EIT involving the atomic
levels |1〉, |4〉, and |3〉 in Fig. 1(a). The three atomic spin
operators are given by

Ĵz = 1

2

∫
dτ [Ŝ11(σ ) − Ŝ33(σ )], (61a)

Ĵx = 1

2

∫
dτ [Ŝ13(σ ) + Ŝ31(σ )], (61b)

Ĵy = i

2

∫
dτ [Ŝ13(σ ) − Ŝ31(σ )]. (61c)

Class 2. This is related to the EIT involving atomic levels |2〉,
|4〉, and |3〉. The three atomic spin operators read

Ĵz = 1

2

∫
dτ [Ŝ22(σ ) − Ŝ33(σ )], (62a)

Ĵx = 1

2

∫
dτ [Ŝ23(σ ) + Ŝ32(σ )], (62b)

Ĵy = i

2

∫
dτ [Ŝ23(σ ) − Ŝ32(σ )]. (62c)

Class 3. If a coherence is initially prepared between the two
ground states |1〉 and |2〉, i.e., S(0)

21 = S(0)
12 
= 0, the system can

support another class of atomic spin squeezing, with the spin
operators defined by

Ĵz = 1

2

∫
dτ [Ŝ12(σ ) + Ŝ21(σ )], (63a)

Ĵx = 1

2

∫
dτ [Ŝ12(σ ) − Ŝ21(σ )], (63b)

Ĵy = i

2

∫
dτ [Ŝ11(σ ) − Ŝ22(σ )]. (63c)

It is easy to show that the atomic spin operators defined in
these three classes satisfy the commutation relations

[Ĵi, Ĵ j] = iεi jk Ĵk, (64)

where i, j, k = x, y, z.
Because the mean polarization for all three classes is along

the direction of Ĵz (i.e., the “Stokes axis” is the z axis), to
estimate the spin squeezing we can introduce the following
spin dark-plane operator:

Ĵθ = 1

2

∫
dτ [Ŝαe−iθ + Ŝβeiθ ]

= cos θ Ĵx + sin θ Ĵy, (65)

where (α, β ) = (31, 13) is for the class 1, (α, β ) = (32, 23)
is for the class 2, and (α, β ) = (21, 12) is for the class 3. The
degree (amount) of the spin squeezing can be described by

ξ 2 = 〈(�Ĵθ )2〉
〈Ĵz〉/2

. (66)

If ξ 2 < 1, the atomic state is said to be spin squeezed [15].
From the results given in the Appendix B (where the dynami-
cal equations for Ŝ jl and Êp j are solved simultaneously for all
atomic levels; no adiabatical elimination of the upper levels
is used), especially Eq. (B8), we can calculate the amount of
spin squeezing based on the solution on Êp j given above.

Shown in Fig. 5(a) are results on the amount of atomic
spin squeezing ξ 2

1 (for the class 1) and ξ 2
2 (for the class 2) as

functions of detection angle θ , by taking the dimensionless
VOS amplitude A0 = 1. In the figure, the dot-dashed blue
line (dotted pink line) is for the class 1 (class 2) for s = 0.5,
while the solid orange line (dashed purple line) is for the
class 1 (class 2) for s = 1. We see that the system indeed
supports significant squeezing of the atomic spins, which can
reach a minimum value by choosing the value of θ . The spin
squeezing of both class 1 and class 2 are nearly the same, this
is due to the fact that the two EITs configurations in the system
are highly symmetric.

To reveal the relation between the spin squeezing and the
Kerr nonlinearity of the system, a calculation on the minimum
spin squeezing degree ξ 2

min of the class 1 as a function of s is
carried out, with the result plotted in Fig. 5(b). In the figure,
the dashed blue line, dotted orange line, and solid purple
line are for A0 = 0.8, 1, and 1.2, respectively. One sees that
as A0 and s increase, ξ 2

min is reduced. This means that the
stronger the Kerr nonlinearity, the larger the spin squeezing.
This conclusion can also be obtained through the calculation
of the minimum spin squeezing degree ξ 2

min of the class 2.
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units of 2

FIG. 5. (a) The amount of atomic spin squeezing ξ 2
1 and ξ 2

2

(for the class 1 and class 2, respectively) as functions of detection
angle θ for dimensionless VOS amplitude A0 = 1 and dimensionless
propagation distances s = 0.5 (dot-dashed blue line for the class 1,
dotted pink line for the class 2), and s = 1 (solid orange line for the
class 1, dashed purple line for the class 2). (b) Minimum atomic spin
squeezing degree ξ 2

min of the class 1 as a function of s, for A0 = 0.8
(dashed blue line), 1 (dotted orange line), and 1.2 (solid purple line).

One can also obtain the degree of atomic spin squeezing
ξ 2

3 for the class 3 as a function of θ and s with different A0.
The result shows that the behavior of ξ 2

3 is similar to that of
the polarization squeezing degree Rθ of the probe pulse (i.e.,
Fig. 3); see Appendix D for details.

From the above results we see that the spin squeezing of the
atoms occurs simultaneously with the polarization squeezing
shown in the last subsection, both of which originate from
the giant self- and cross-Kerr nonlinearities resulted from
the perturbed DEIT; during the formation the simultaneous
squeezing of light polarization and the atomic spins, the zero

modes of the quantum fluctuations in the system play very
important roles.

V. DISCUSSION AND SUMMARY

Since the atomic gas we consider is dilute, the direct
interaction between atoms can be neglected. If the system
works under the condition of strict DEIT (i.e., �3 = 0), no
squeezing occurs both for the probe pulse and for the atoms.
The physical reasons for the occurrence of the simultaneous
squeezing of the probe pulse and the atomic spins described
above can be understood as follows. (i) The use of a per-
turbed DEIT brings a significant coupling between the probe
pulse and the atoms, which makes the system have giant Kerr
nonlinear and second-order dispersion effects that can result
in the formation of the VOS and the polarization squeezing
of the probe pulse. (ii) Under the condition of the perturbed
DEIT, the significant coupling between the probe pulse and
the atoms induces an indirect interaction between the atoms
and hence the atomic spin squeezing can be generated si-
multaneously with the appearance of the squeezing of the
probe pulse.

In conclusion, we investigated the quantum dynamics of
a weakly nonlinear probe pulse with two polarization com-
ponents, which is coupled to a cold atomic ensemble and
working under the condition of perturbed DEIT. We derived
two coupled quantum NLS equations from the MHL equa-
tions and developed a quantum theory of VOS, which have
ultraslow propagation velocity and extremely low generation
power. We solved the non-Hermitian eigenvalue problem that
describes the quantum fluctuations on the VOS background
and rigorously proved that all fluctuation eigenmodes (in-
cluding the continuous modes and the zero modes) obtained
constitute a biorthonormal and complete set. We found that,
due to the giant self- and cross-Kerr nonlinearities contributed
by the DEIT, a significant polarization squeezing of the probe
pulse can be realized in the system. We also found that a
large squeezing of atomic spins can be generated, which ap-
pears simultaneously with the occurrence of the polarization
squeezing of the probe pulse. The zero modes of the quantum
fluctuations are the main origin for the formation of such a
simultaneous squeezing.

The remarkable conclusions for generating the simultane-
ous squeezing of light polarizations and atomic spins by using
only a coherent probe pulse obtained here opens a way for
revealing the unique property of quantum squeezing in cou-
pled light-atom systems and also for promising applications
in quantum information and precision measurement.
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APPENDIX A: EXPLICITY EXPRESSIONS OF THE HEISENBERG-LANGEVIN EQUATIONS

Explicit forms of the Heisenberg-Langevin equations (6a) read

i

(
∂

∂t
+ �31

)
Ŝ11 − i�13Ŝ33 − i�14Ŝ44 + g∗

p1Ê†
p1Ŝ41 − gp1Ŝ14Êp1 − iF̂11 = 0, (A1a)

i

(
∂

∂t
+ �32

)
Ŝ22 − i�23Ŝ33 − i�24Ŝ44 + g∗

p2Ê†
p2Ŝ42 − gp2Ŝ24Êp2 − iF̂22 = 0, (A1b)

i

(
∂

∂t
+ �3

)
Ŝ33 − i�31Ŝ11 − i�32Ŝ22 − i�34Ŝ44 + �∗

c Ŝ43 − �cŜ34 − iF̂33 = 0, (A1c)

i

(
∂

∂t
+ �4

)
Ŝ44 − �∗

c Ŝ43 + �cŜ34 − g∗
p1Ê†

p1Ŝ41 + gp1Ŝ14Êp1 − g∗
p2Ê†

p2Ŝ42 + gp2Ŝ24Êp2 − iF̂44 = 0, (A1d)

(
i
∂

∂t
+ d21

)
Ŝ21 + g∗

p2Ê†
p2Ŝ41 − gp1Ŝ24Êp1 − iF̂21 = 0, (A1e)

(
i
∂

∂t
+ d43

)
Ŝ43 + �c

(
Ŝ33 − Ŝ44

)+ gp1+Ŝ13Êp1 + gp2Ŝ23Êp2 − iF̂43 = 0, (A1f)

(
i
∂

∂t
+ d31

)
Ŝ31 + �∗

c Ŝ41 − gp1Ŝ34Êp1 − iF̂31 = 0, (A1g)

(
i
∂

∂t
+ d32

)
Ŝ32 + �∗

c Ŝ42 − gp2Ŝ34Êp2 − iF̂32 = 0, (A1h)

(
i
∂

∂t
+ d41

)
Ŝ41 + �cŜ31 + gp1(Ŝ11 − Ŝ44)Êp1 + gp2Ŝ21Êp2 − iF̂41 = 0, (A1i)

(
i
∂

∂t
+ d42

)
Ŝ42 + �cŜ32 + gp2(Ŝ22 − Ŝ44)Êp2 + gp1Ŝ12Êp1 − iF̂41 = 0. (A1j)

Here dαβ = �α − �β + iγαβ (α 
= β ) with γαβ ≡ (�α +
�β )/2 + γ

dep
αβ , �β ≡∑α<β �αβ , and �αβ is the decay

rate of the spontaneous emission from the state |β〉 to
the state |α〉, γ

dep
αβ is the dephasing rate between |α〉

and |β〉. The two-time correlation functions of F̂αβ are
given by 〈F̂αβ (z, t )F̂α′β ′ (z′, t ′)〉 ≡ TrR[F̂αβ (z, t )F̂α′β ′ (z′, t ′)ŜR],
where ŜR is the initial density operator of the thermal reservoir
coupling to the atomic system, TrR denotes the trace over the
reservoir variables.

APPENDIX B: DERIVATION OF THE COUPLED
QUANTUM NLS EQUATIONS

Due to the difficulties for solving quantum nonlinear prob-
lems, up to now there is no quantum reductive perturbation
method developed by which one can derive a quantum NLS
equation directly from coupled nonlinear quantum partial dif-
ferential equations involving many degrees of freedom of both
atoms and quantized light fields. Here, we give a heuristic
derivation on the coupled quantum NLS Eqs. (7) describing
the nonlinear evolution of the probe-field envelope Êp j in the
present system. The derivation can be divided into two steps.

1. Step 1: Quantum linear Schrödinger equation
with group-velocity dispersion

We assume that the probe field is very weak so that the
Kerr nonlinearity in the system can be neglected. Thus the
Heisenberg-Langevin and Maxwell equations can be treated

by using a linear approximation. By taking Ŝαβ → S(0)
αβ + Ŝαβ .

Here S(0)
αβ is the steady-state solution of Ŝαβ when the probe

pulse is not applied (when, i.e., Êp j = 0), satisfying

S(0)
11 + S(0)

22 = 1, (B1)

with S(0)
12 = S(0)

21 arbitrary and all other S(0)
αβ = 0. To have a

symmetry between the two EITs in Fig. 1(a), we take S(0)
11 =

S(0)
22 = 0.5. We then obtain the linearized equations of Eqs. (6),

which can be solved by using a Fourier transform. After elim-
inating the atomic variables, we obtain[

i
∂

∂z
+ Kj (ω)

]
˜̂E pj (z, ω) = i ˜̂F p j (z, ω), (B2)

j = 1, 2. Here ω is the sideband frequency of the probe pulse,
˜̂E pj (z, ω) and ˜̂Fp j (z, ω) are, respectively, the Fourier trans-

forms of Êp j (z, t ) and F̂p j (z, t ), and Kj is the linear dispersion
relation defined by

Kj (ω) = ω

c
+ |gpj |2N

c

(ω + d3 j )S
(0)
j j

D j (ω)
, (B3)

The new noise operator F̂p(z, t ) is defined by

F̂p j (z, t ) = g∗
p jN

c

(ω + d3 j )F̂4 j (z, t ) − �cF̂3 j (z, t )

D(ω)
, (B4)

where Dj (ω) = |�c|2 − (ω + d3 j )(ω + d4 j ).

033517-13



JINZHONG ZHU, YUE MU, AND GUOXIANG HUANG PHYSICAL REVIEW A 107, 033517 (2023)

Assuming that the bandwidth of the probe pulse is not too
narrow, one can expand Kj (ω) in a Taylor series around ω = 0
up to the second order in ω, i.e., K (ω) j ≈ K0 j + ω/Vgj +
K2 jω

2/2. Here K0 j ≡ Kj |ω=0, V −1
gj ≡ K1 j ≡ (∂Kj/∂ω)|ω=0 is

the group-velocity dispersion of the probe field and K2 j ≡
(∂2Kj/∂ω2)|ω=0 is the coefficient denoting the group-velocity
dispersion. Substituting this expansion into the envelope equa-
tion (B2) and convert it back to time domain by using an
inverse Fourier transformation, we arrive the quantum linear
Schrödinger equation

i

(
∂

∂z
+ 1

Vgj

∂

∂t

)
Êp j + K0 j Êp j − K2 j

2

∂2

∂t2
Êp j = iF̂p j, (B5)

where F̂p j (z, t ) is the inverse Fourier transform of ˜̂F p j (z, ω).

2. Step 2: Quantum nonlinear equation with cubic
Kerr nonlinearity

We next derive the equation for a weakly nonlinear probe
field for which the group-velocity dispersion can be neglected
but the Kerr nonlinearity is considered. This is valid when
the probe pulse has a long-time duration, so that the time
derivatives in the HLM Eqs. (6) play negligible roles. To get
the equation for Êp j we employ an iteration method by taking
gpjÊp j as a small quantity. By considering the steady-state
solution of the Heisenberg-Langevin equations, we obtain the
solution at the zero-order approximation, given by

S(0)
44 = �31�32B1

A1B2 + B1A2
, (B6a)

S(0)
33 = A1S(0)

44

B1
, (B6b)

S(0)
22 = �23S(0)

33 + �24S(0)
44

�32
, (B6c)

S(0)
11 = �13S(0)

33 + �14S(0)
44

�31
, (B6d)

S(0)
43 = �c

(
S(0)

44 − S(0)
33

)
d43

, (B6e)

with S(0)
12 = S(0)

21 arbitrary and other S(0)
αβ = 0. Here

A1 = i�4 + |�c|2(1/d∗
43 − 1/d43), (B7a)

B1 = |�c|2(1/d∗
43 − 1/d43), (B7b)

A2 = �31�24 + �32�14 + �32�31, (B7c)

B2 = �31�32 + �32�13 + �23�31. (B7d)

The first-order solution reads

Ŝ(1)
α j = a(1)

α j gp j Êp j (α = 3, 4, j = 1, 2), (B8)

with other Ŝ(1)
αβ = 0, and

a(1)
3 j = �∗

c

(
S(0)

44 − S(0)
j j

)− d4 jS
∗(0)
43

Xj
, (B9a)

a(1)
4 j = d3 j

(
S(0)

j j − S(0)
44

)+ �cS∗(0)
43

Xj
, (B9b)

with Xj = |�c|2 − d3 jd4 j .

The second-order solution reads

Ŝ(2)
21 = a(2)

21 gp1g∗
p2Ê†

p2Êp1, (B10a)

Ŝ(2)
44 = a(2)

441|gp1|2Ê†
p1Êp1 + a(2)

442|gp2|2Ê†
p2Êp2, (B10b)

Ŝ(2)
33 = a(2)

331|gp1|2Ê†
p1Êp1 + a(2)

332|gp2|2Ê†
p2Êp2, (B10c)

Ŝ(2)
22 = a(2)

221|gp1|2Ê†
p1Êp1 + a(2)

222|gp2|2Ê†
p2Êp2, (B10d)

Ŝ(2)
11 = a(2)

111|gp1|2Ê†
p1Êp1 + a(2)

112|gp2|2Ê†
p2Êp2, (B10e)

Ŝ(2)
43 = a(2)

431|gp1|2Ê†
p1Êp1 + a(2)

432|gp2|2Ê†
p2Êp2, (B10f)

with other Ŝ(2)
αβ = 0, and

a(2)
21 = a∗(1)

42 − a(1)
41

d21
, (B11a)

a(2)
441 = B2s11 + B1s21

A1B2 + B1A2
, (B11b)

a(2)
442 = B2s12 + B1s22

A1B2 + B1A2
, (B11c)

a(2)
331 = A1s21 − A2s11

A1B2 + B1A2
, (B11d)

a(2)
332 = A1s22 − A2s12

A1B2 + B1A2
, (B11e)

a(2)
221 = �23a(2)

331 + �24a(2)
441

�32
, (B11f)

a(2)
222 = �23a(2)

332 + �24a(2)
442 + i

(
a(1)

42 − a∗(1)
42

)
�32

, (B11g)

a(2)
111 = �13a(2)

331 + �14a(2)
441 + i

(
a(1)

41 − a∗(1)
41

)
�31

, (B11h)

a(2)
112 = �13a(2)

332 + �14a(2)
442

�32
, (B11i)

a(2)
431 = �c

(
a(2)

441 − a(2)
331

)− a∗(1)
31

d43
, (B11j)

a(2)
432 = �c

(
a(2)

442 − a(2)
332

)− a∗(1)
32

d43
, (B11k)

here

s11 = �ca(1)
31 /d∗

43 − �∗
ca∗(1)

31 /d43 + a(1)
41 − a∗(1)

41 , (B12a)

s12 = �ca(1)
32 /d∗

43 − �∗
ca∗(1)

32 /d43 + a(1)
42 − a∗(1)

42 , (B12b)

s21 = i�32(a∗(1)
41 − a(1)

41 ), (B12c)

s22 = i�31(a∗(1)
42 − a(1)

42 ). (B12d)

Proceeding to the third order, we obtain

Ŝ(3)
41 = a(3)

411|gp1|2gp1Ê†
p1Êp1Êp1

+ a(3)
412|gp2|2gp1Ê†

p2Êp2Êp1, (B13a)

Ŝ(3)
42 = a(3)

421|gp1|2gp2Ê†
p1Êp1Êp2

+ a(3)
422|gp2|2gp2Ê†

p2Êp2Êp2, (B13b)
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and

a(3)
411 = �ca∗(2)

431 − d31
(
a(2)

441 − a(2)
111

)
X1

, (B14a)

a(3)
412 = �ca∗(2)

432 − d31
(
a(2)

442 − a(2)
112 + a(2)

21

)
X1

, (B14b)

a(3)
422 = �ca∗(2)

432 − d32
(
a(2)

442 − a(2)
222

)
X2

, (B14c)

a(3)
421 = �ca∗(2)

431 − d32
(
a(2)

441 − a(2)
221 + a∗(2)

21

)
X2

. (B14d)

The solutions of other Ŝαβ are also obtained but are omitted
here. Exact to the third-order approximation with respect to
gpÊp, we obtain the perturbation expansion of Ŝ4 j , given by

Ŝ4 j = Ŝ(1)
4 j + Ŝ(3)

4 j . (B15)

Here the first (second) term on the right-hand side of the above
expression describes the linear (nonlinear) response of the
atoms to the probe field. Substituting Eq. (B15) into Eq. (6 b),
we arrive at the nonlinear equation(

i
∂

∂z
+ K0 j

)
Êp j + (Wj j |gpj |2Ê†

p j Êp j

+ Wj3− j |gp3− j |2Ê†
p3− j Êp3− j )Êp j = 0, (B16)

where the coefficients of the self-phase and cross-phase mod-
ulations appearing in the above equation, given by

W11 = N |gp1|2
c

a(3)
411, (B17a)

W12 = N |gp2|2
c

a(3)
412, (B17b)

W22 = N |gp2|2
c

a(3)
422, (B17c)

W21 = N |gp1|2
c

a(3)
421, (B17d)

and satisfying the relation W11W22 = W12W21. By combining
Eqs. (B5) and (B16), we obtain the coupled quantum NLS
equations for Êp j :[

i

(
∂

∂z
+ 1

Vgj

∂

∂t

)]
Êp j − K2 j

2

∂2

∂t2
Êp j + (Wj j |gpj |2Ê†

p j Êp j

+ Wj3− j |gp3− j |2Ê†
p3− j Êp3− j )Êp j = iF̂p j, (B18)

which is valid for probe fields when the group-velocity dis-
persion and cubic Kerr nonlinearity play equal roles. By
making the transformation Êp j → Êp j exp[iRe(K0 j )z], the
above equation becomes the coupled quantum NLS Eqs. (7)
given in the main text.

Notice that, under the DEIT condition, the Langevin noise
F̂p j plays a negligible role in the system. The reason is that,
at an ultracold environment, the excitation energy of probe
photons, i.e., h̄ωp, is much larger than that of the thermal
noises, which is of order kBT (here kB is the Boltzmann
constant and T is temperature). Thus the average number of
thermal noise photons, i.e., n̄th ≡ {exp[h̄ωp/(kBT )] − 1}−1, is
vanishing small. Thus the thermal reservoir coupling to the

atomic medium can be safely regarded as a vacuum reservoir
ρ̂R ≈ |{0}R〉〈{0}R| [67,72,73]. In addition, the atomic popu-
lation at the excited state |4〉 is always very small due to
the EIT effect, which make the spontaneous emission of the
atoms (and hence the dissipation of the probe pulse during
propagation) be suppressed greatly. As a result, the Langevin
noise operators make negligible contributions to all normally
ordered two-time correlation functions [67,72,73].

APPENDIX C: SIMPLIFICATION OF THE ENVELOPE
EQ. (9)

The dimensionless form of the coupled quantum NLS
Eqs. (9) read as

i

(
∂

∂s
+ 2α j

)
Ûj + igδ

∂

∂τ
Û1 + gD j

∂2

∂τ 2
Ûj

+ 2(g j jÛ
†
j Û j + g j3− jÛ

†
3− jÛ3− j )Ûj = 0. (C1)

Let s = s0s′, τ = τ0τ
′, Ûj = U0Û ′

j , then Eq. (C1) can be writ-
ten as

i

(
1

s0

∂

∂s′ + 2α j

)
U0Û

′
j + i

gδU0

τ0

∂

∂τ ′ Û
′
j + gD jU0

τ 2
0

∂2

∂τ ′2 Ûj

+ 2
U 3

0

g11

(
g j j

g11
Û ′†

j Û ′
j + g j3− j

g11
Û ′†

3− jÛ
′
3− j

)
Û ′

j = 0, (C2)

divide both sides by U0/s0, Eq. (C2) turns into

i

(
∂

∂s′ + 2α j s0

)
Û ′

j + i
gδs0

τ0

∂

∂τ ′ Û
′
j + gD js0

τ 2
0

∂2

∂τ ′2 Û ′
j

+ 2
U 2

0 s0

g11

(
g j j

g11
Û ′†

j Û ′
j + g j3− j

g11
Û ′†

3− jÛ
′
3− j

)
Û ′

j = 0. (C3)

Due to the symmetry of the system, we have gD1 ≈ gD2 = gD,
g11 ≈ g22, by setting gDs0/τ

2
0 = 1 and U 2

0 s0/g11 = 1, then
Eq. (C3) can be reduced into the perturbed quantum Manakov
equations

i
∂

∂s′ Û
′
j + ∂2

∂τ ′2 Û ′
j + 2

⎛
⎝∑

l=1,2

Û ′†
l Û ′

l

⎞
⎠Û ′

j = Rj (Û
′
1, Û ′

2), (C4)

where

Rj (Û
′
1, Û ′

2) = −2iα j s0Ûj − i
gδs0

τ0

∂

∂τ ′ Û
′
j − 2β jÛ

′†
3− jÛ

′
3− jÛ

′
j,

(C5)

with β j = g j3− j/g11 − 1. Note that, under the DEIT condi-
tion, the absorption length Lj,A and group-velocity mismatch
length Lδ are much larger than the dispersion length LD, which
means α j = LD/Lj,A � 1, and gδ = sgn(δ)LD/Lδ � 1. By
choosing suitable system parameters, one can make β j ≈ 0
(i.e., gj3− j/g11). Thereby, the quantities Rj (Û1, Û2) on the
right-hand side of Eq. (C1) can be taken as perturbations. This
can be realized if the magnetic field B is not large and the two-
photon detuning �3 is not far from the value 2.9 × 106 Hz; see
Fig. 2 and the relevant statements in the main text. The situa-
tion where the influence of the perturbations Rj (especially the
external magnetic field B) plays a significant role is the work
beyond the present study and will be considered elsewhere.
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units of 2

FIG. 6. The degree of the spin squeezing ξ 2
3 (in dB) of the class

3 versus the detection angle θ at s = 0.5 for different dimensionless
VOS amplitude A0 = 0.5 (solid red line), 1 (dashed blue line), and
1.5 (dotted pink line), respectively. The initial coherence between
the state |1〉 and |2〉 is assumed to be S(0)

21 = S(0)
12 = 1/2.

APPENDIX D: ATOMIC SPIN SQUEEZING FOR THE
CLASS 3 DEFINED BY EQ. (63)

In the class 1 and class 2 discussed in Sec. IV C, we
assumed that there is no initial coherence between the two

atomic ground states |1〉 and |2〉, i.e., S(0)
21 = S(0)

12 = 0. If an
initial coherence is prepared between the two ground states,
the atomic ground state will be a coherent superposed state of
|1〉 and |2〉 and hence one has S(0)

21 = S(0)
12 
= 0. In this situation,

the system can also support significant atomic spin squeezing.
By using Eq. (63), it is easy to show

〈Ĵz〉 
= 0, 〈Ĵx〉 = 〈Ĵy〉 = 0. (D1)

Based on the MHL equations (6a) and (6b), for nonzero S(0)
21

and S(0)
12 we can obtain the solution

Ŝ11 ≈ Ŝ(0)
11 + a(2)

111|gp|2Ê†
p1Êp1, (D2a)

Ŝ22 ≈ Ŝ(0)
22 + a(2)

222|gp|2Ê†
p2Êp2, (D2b)

Ŝ21 ≈ Ŝ(0)
21 + a(2)

21 |gp|2Ê†
p2Êp1. (D2c)

This means that the dynamics of the atomic spins is similar to
that of the probe-field polarization and hence in this case the
behavior of the atomic spin squeezing is similar to that of the
polarization of the probe field.

Shown in Fig. 6 is the degree of the spin squeezing ξ 2
3 (in

dB) of the spin class 3 as a function of the detection angle
θ at s = 0.5, respectively, for different dimensionless VOS
amplitude A0 = 0.5 (solid red line), 1 (dashed blue line), and
1.5 (dotted pink line). When plotting the figure, the initial
coherence between the state |1〉 and |2〉 is chosen to be S(0)

21 =
S(0)

12 = 1/2. We see that the behavior of ξ 2
3 is indeed similar

to that of the polarization squeezing degree Rθ of the probe
pulse [i.e., Fig. 3(b)]. The lower limit of ξ 2

3 for the degree of
the atomic spin squeezing is −6.1 dB.
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