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Abstract

The correlation function of the quantum fluctuations due to collective excitations is calculated and used to investigate the
phase diffusion of a Bose–Einstein condensate close to zero temperature. It is shown that the phase diffusion time of the
condensate is much longer than the result obtained by assuming that the correlation time of the quantum fluctuations is infinity.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The development of the technologies of laser trap-
ping and evaporative cooling has yielded intriguing
Bose–Einstein condensates (BECs) [1–3], a state of
matter in which many atoms are in the same quan-
tum mechanical state. The remarkable observations
of gaseous BECs have opened up new avenues [4–6]
of research into the physical properties and nature of
Bose-condensed systems. The phase properties of a
BEC are of particular interest because the phase of an
order parameter, i.e., the macroscopic wave function
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of the condensate, reflects directly the coherent nature
of the condensate.

For BEC created in experiment, one of the most
important characters is that all the atoms in the
condensate can be described by the wave function
(i.e., the order parameter) with a single phase. Due to
thermal and quantum fluctuations, however, the single
phase of the condensate will become unpredictable
beyond the phase diffusion time. After the realization
of BECs, the phase diffusion of the condensate has
been discussed intensively [7–20]. In particular, the
role of quantum fluctuations on the phase diffusion
process was investigated in the pioneering work by
Lewenstein and You [9,10], and a far off-resonant
light scattering experiment was proposed to detect
the quantum diffusion. Recently, a Langevin equation
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was given by Graham [14,15] to discuss the phase
diffusion due to quantum fluctuations and thermal
fluctuations. The calculation of the time scale of the
phase diffusion is a very important problem because
the phase diffusion time determines when the phase
of a BEC would be unpredictable. Recently, the phase
correlation has been investigated experimentally by
the JILA group [21]. It was found that there is
no detectable diffusion of the phase on time scale
100 ms. The stable interference patterns shown in the
experiment put forward a question [21] why the phase
correlation is so robust despite the phase diffusion
and complicated rearrangement dynamics of the two
condensates.

In the present Letter, we address the question of
the phase diffusion process of a condensate close to
zero temperature. In general, the phase diffusion of
the condensate can have either a thermal or a quan-
tum origin. At extremely low temperature (in the ex-
periment by the JILA group [21], the temperature is
only 0.1Tc, where Tc denotes the critical tempera-
ture of the Bose gas), the thermal fluctuations can be
omitted and hence the quantum fluctuations become
dominant. We give therefore emphasis on the role of
collective excitations due to quantum fluctuations in
a phase diffusion process. Although the phase diffu-
sion process due to quantum fluctuations has been in-
vestigated by several authors such as the recent re-
searches in [14,15,20], the analysis of the time cor-
relation of the quantum fluctuations is not given when
the phase fluctuations are calculated. Obviously, the
correct consideration of the time correlation of the
quantum fluctuations would make more reliable pre-
diction on the phase diffusion process. In particular,
researches show that the phase diffusion time is much
longer than the correlation time of the quantum fluc-
tuations. In this case, our results show that the phase
diffusion time calculated from the correlation func-
tion of the quantum fluctuations is much longer than
that obtained in the previous theoretical researches
[14,15,20].

The Letter is organized as follows. In Section 2,
we investigate the phase fluctuations of the condensate
due to quantum fluctuations. In Section 3, the phase
diffusion time is calculated for the condensate close
to zero temperature, where the effect of thermal
fluctuations can be omitted. Section 4 contains a
discussion and summary of our results.

2. Phase fluctuations of the condensate due to
quantum fluctuations

For temperature below the critical temperatureTc,
the condensate can be described very well by the
following order parameter with a phase factorφ(t)

(1)Φ(r, t)=Φ0(r)e−iφ(t),
where the phase of the condensate has the form

(2)φ(t)= µ(N0, T )t/h̄,

and the time-independent real componentΦ0(r) is
determined by the stationary Gross–Pitaevskii (GP)
equation [4]:

µ(N0, T )Φ0(r)

(3)=
(

− h̄
2

2m
∇2 + Vext(r)+ gΦ2

0(r)
)
Φ0(r),

whereVext(r) is an external harmonic potential, and
g = 4πh̄2as/m is the coupling constant fixed by the
s-wave scattering lengthas . The chemical potential
µ(N0, T ) in the above equation is determined by the
normalization condition for the density distribution
n0(r) of the condensate. With a Thomas–Fermi ap-
proximation [4], one gets easily the following expres-
sion for the chemical potential:

(4)µ(N0, T )= h̄ωho

2

(
15N0as

aho

)2/5

,

whereωho = (ωxωyωz)
1/3 is the geometric average

of oscillator frequencies, andaho = √
h̄/mωho is

the harmonic oscillator length of the system. From
Eqs. (2) and (4), we see that the particle number
fluctuations of the condensate yield fluctuations in
the chemical potential, and hence lead to the phase
diffusion of the condensate.

Assuming the mean ground state occupation num-
ber is〈N0〉, the average phase of the condensate is then
given by

(5)φ
(〈N0〉, t

) = µ(〈N0〉, T
)
t/h̄.

The phase diffusion of the condensate can be described
by considering the phase difference∆φ(t) = φ(t) −
φ(〈N0〉, t). From Eqs. (2) and (5), it is straightforward
to obtain a differential equation on∆φ(t):

(6)
d∆φ(t)

dt
=Xqua(t)= ∂µ(〈N0〉, T )

∂〈N0〉 ∆N0(t)/h̄,
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whereXqua(t) is determined by collective excitations
due to quantum fluctuations. In the above expres-
sion,∆N0(t) represents the fluctuations of the ground
state occupation number around〈N0〉. A similar equa-
tion was derived and used by Graham [14,15] to dis-
cuss the phase diffusion of the condensate. Note that
∆N0(t) can be either negative or positive numbers. For
∆N0(t) < 0, there are collective excitations created
so that the atoms would loss in the condensate. Sim-
ilarly, ∆N0(t) > 0 means the annihilation of collec-
tive excitations, and the ground state occupation num-
ber would increase in this case. In addition,∆N0(t)

should be time-dependent because it originates from
quantum fluctuations. Eq. (6) is our starting point to
discuss the phase diffusion of the condensate. Because
it is obtained from Eqs. (2) and (5), rather than di-
rectly from a time-dependent GP equation, we antic-
ipate that Eq. (6) is still correct for longer time where
the time-dependent GP equation may be no longer
valid [22].

From Eq. (6), the phase fluctuations of the conden-
sate are given by

(7)
〈(
∆φ(τ)

)2
〉
=

τ∫
0

τ∫
0

〈
Xqua(ξ)Xqua

(
ξ ′)〉 dξ dξ ′,

where〈Xqua(ξ)Xqua(ξ
′)〉 is the correlation function of

the quantum fluctuations. When obtaining Eq. (7), we
have assumed that〈(∆φ)2〉 = 0 at time t = 0. The
calculation of〈Xqua(ξ)Xqua(ξ

′)〉 plays a crucial role
in investigating the phase diffusion process close to
zero temperature.

For the Bose gas trapped in a harmonic potential,
it is convenient to use the following decomposition of
the particle field operator

(8)ψ̂
(�r ) =Φ(�r ) +

∑
i

(
ui

(�r )
αi + v∗

i

(�r )
α

†
i

)
,

whereΦ(�r ) = 〈ψ̂(�r )〉 is the well-known order para-
meter, and the indexi labels the elementary excitations
of the system. For the collective excitations discussed
here, the energy of the collective mode indexed bynl

is given by the dispersion law [23]

(9)εnl = h̄ωho
(
2n2 + 2nl + 3n+ l)1/2

.

As shown in [24,25], the contributions to condensate
fluctuations due to quantum fluctuations are domi-

nated by these phonon-type collective excitations. For
the collective modenl, one obtains the following lead-
ing behaviour forunl(�r ) andvnl(�r ) [26]:

(10)unl
(�r ) 
 −vnl

(�r ) 

√
gn0(�r )

2εnl
χnl

(�r ),
whereχnl(�r ) is the velocity potential associated with
the collective mode, and satisfies the condition

∫
d�r χ∗

nl

(�r)χij (�r)d3�r = δnl,ij .

In addition, the average occupation number of the
atoms corresponding to the collective mode indexed
by nl is given by [27,28]

(11)〈Nnl〉 = (
u2

nl + v2
nl

)
fnl,

wherefnl = [exp(εnl/kBT )− 1]−1. When a collective
excitation with indexnl is created from the condensate
due to quantum fluctuations, its energyεnl originates
from the energy fluctuations∆E of the condensate.
Under this consideration, a time-energy uncertainty
relation can be used to calculate the longevityτnl of the
collective modenl. The longevityτnl of the collective
modenl is therefore approximated as 1/ωho(2n2 +
2nl+3n+ l)1/2. For JILA experiment [21], this means
that the longevity of the collective mode is smaller
than 10 ms, which is obviously much smaller than the
phase diffusion time.

When all collective modes are considered,Xqua(t)

can be written as:

(12)Xqua(t)= ∂µ(〈N0〉, T )
∂〈N0〉

∑
nl�=0

∆Nnl(t)/h̄,

where∆Nnl(t) reflects the changes of the ground state
occupation number due to the creation and annihila-
tion of the collective modenl. Therefore, the mag-
nitude of ∆Nnl(t) can be regarded as〈Nnl〉. Note
that∆Nnl(t) itself can be either positive or negative,
and varies with time due to quantum fluctuations. In
the case of∆Nnl(t) < 0, there are|∆Nnl(t)| atoms
created from the condensate due to quantum fluctua-
tions, while∆Nnl(t) > 0 represents the annihilation
of ∆Nnl(t) atoms.
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From Eq. (12),〈Xqua(ξ)Xqua(ξ
′)〉 can be written

as:〈
Xqua(ξ)Xqua

(
ξ ′)〉

= 1

h̄2

[
∂µ

(〈N0〉, T
)/
∂〈N0〉

]2

(13)×
∑
nl�=0

∑
n′l′ �=0

〈
∆Nnl(ξ)∆Nn′ l′

(
ξ ′)〉.

Assuming that there is no correlation between dif-
ferent collective modes, i.e.,〈∆Nnl(ξ)∆Nn′ l′(ξ ′)〉 = 0
whennl �= n′l′, one gets the following expression for
the correlation function:〈
Xqua(ξ)Xqua

(
ξ ′)〉 = 1

h̄2

[
∂µ

(〈N0〉, T
)/
∂〈N0〉

]2

(14)×
∑
nl�=0

〈Nnl〉2e−|ξ−ξ ′|/τnl .

When obtaining the above result, we have used the
following relation

(15)
〈
∆Nnl(ξ)∆Nnl

(
ξ ′)〉 = 〈Nnl〉2e−|ξ−ξ ′|/τnl .

In the above expression,τnl is the longevity of the col-
lective excitationnl. When|ξ−ξ ′| is much larger than
τnl, the correlation between the collective excitations
at timesξ andξ ′ can be omitted. Therefore,τnl can be
approximated as the correlation time of the correlation
function〈∆Nnl(ξ)∆Nnl(ξ

′)〉.
Because the contributions to the quantum fluctua-

tions come mainly from the low-lying collective exci-
tations, as a reasonable approximation, the correlation
function〈Xqua(ξ)Xqua(ξ

′)〉 can be approximated as an
exponential form:

(16)
〈
Xqua(ξ)Xqua

(
ξ ′)〉 =Qquae

−|ξ−ξ ′|/τqua.

When the above exponential form is used,τqua should
be regarded as the average correlation time of the col-
lective excitations, and is determined by the following
expression:

(17)τ2
qua=

∫ ∞
−∞ dτ τ

2〈Xqua(t)Xqua(t + τ )〉∫ ∞
−∞ dτ 〈Xqua(t)Xqua(t + τ )〉

.

In terms of Eqs. (14) and (17), the correlation time of
the quantum fluctuations is given byτqua= √

2/ωho.
In addition, in Eq. (16), the magnitudeQqua of the
correlation function is given by

(18)Qqua= 1

h̄2

[
∂µ

(〈N0〉, T
)/
∂〈N0〉

]2〈
δ2Nqua

〉
.

In the above expression,〈δ2Nqua〉 = ∑
nl�=0〈Nnl〉2 can

be taken as the particle number fluctuations [25] of the
condensate due to the collective excitations. Using the
formulas (9)–(11), after a straightforward (although
rather complex) calculation, we obtain the result of
〈δ2Nqua〉:
〈
δ2Nqua

〉 = 0.958

(
as

aho

)4/5(
T

Tc

)2

N22/15

(19)+ 14.174

(
as

aho

)4/5

N12/15,

whereN is the total number of atoms in the trap.
The second term on the right-hand side of the above
equation represents the fluctuations due to the effect
of the quantum depletion which is given in [24].
This term has a finite contribution to the condensate
fluctuations when the temperature approaches zero.
Thus, we anticipate that there is still phase diffusion
in the case of zero temperature.

We now turn to discussing the phase diffusion of
the condensate due to quantum fluctuations. From
Eqs. (7) and (16), the phase fluctuations of the conden-
sate, which play a crucial role in discussing the phase
diffusion, read

(20)

〈(
∆φ(τ)

)2
〉
= 2Qquaτqua

(
τ − τqua+ τquae

−τ/τqua
)
.

The phase diffusion timeτphase can be obtained by
setting〈(∆φ(τ))2〉 = π2 in the above expression.

3. Phase diffusion time of the condensate close to
zero temperature

We now turn to discussing the phase diffusion time
using the phase fluctuations given by Eq. (20). It
is useful to discuss the phase fluctuations given by
Eq. (20) for two special cases. When the timeτ is
much larger than the time scale of the correlation time
τqua, the phase fluctuations of the condensate can be
approximated as:

(21)
〈(
∆φ(τ)

)2
〉
≈ 2Qquaτquaτ.

Therefore, if the phase diffusion timeτphasecalculated
from Eq. (20) is much larger thanτqua, the phase
diffusion time in this situation takes the following
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analytical form:

(22)τphase= π2

2Qquaτqua
.

In the case ofτ � τqua, however, the phase fluctu-
ations of the condensate can be approximated as:

(23)
〈(
∆φ(τ)

)2
〉
≈Qquaτ

2.

Different from the result given by Eq. (21), the phase
fluctuations are proportional toτ2 when τ is much
smaller than the correlation timeτqua. Therefore, if
τphasecalculated from Eq. (20) is much smaller than
τqua, the analytical result of the phase diffusion time
τ ′

phaseis then

(24)τ ′
phase=

πh̄

δNqua∂µ(〈N0〉, T )/∂〈N0〉 ,

whereδNqua=
√

〈δ2Nqua〉.
We now turn to discuss the phase correlation exper-

iment by the JILA group [21]. The experimental val-
ues in the experiment are:N0 = 5 × 105, T ≈ 50 nk,
Tc ≈ 500 nk, andas ≈ 5 × 10−7 cm. It may be help-
ful to make a comparison between the particle num-
ber fluctuations due to quantum fluctuations and ther-
mal fluctuations. For temperature much lower than the
critical temperature, the analytical result〈δ2Nth〉 =
π2N(T/Tc)

3/6ζ(3) [25] can give a rather well de-
scription for the particle number fluctuations due to
thermal fluctuations. For the values typical for the ex-
periment by the JILA group [21], a simple calcula-
tion shows that〈δ2Nqua〉/〈δ2Nth〉 = 62.6. Therefore,
the thermal fluctuations can be safely omitted when
the phase diffusion process is investigated for the ex-
periment by JILA group [21]. Using the formula (20)
(or Eq. (22)), the numerical result of the phase diffu-
sion timeτphaseis 119 s, which is much larger than the
correlation timeτqua. When obtaining this result, we
have used the exponential form of the correlation func-
tion given by Eq. (16). In fact, we can obtainτphasedi-
rectly from Eqs. (7) and (14), and it is worth pointing
out that there is no important correction to the phase
diffusion time, in comparison with the result obtained
by using the exponential form (16). The merit of the
exponential form (16) is that it clearly shows the role
of particle number fluctuations on the phase diffusion
process, and the analytical result of the phase fluctua-
tions is rather concise using this exponential form.

If the correlation time of the collective excitations
is assumed to be infinity, however, using Eqs. (19)
and (24), the numerical result ofτ ′

phaseis 0.62 s, which
is much smaller than the result given by Eq. (22). Al-
though the phase fluctuations due to quantum fluctu-
ations are investigated in deep in Ref. [20], the finite-
ness of the correlation time of the quantum fluctua-
tions was not considered, and the dephasing time was
approximated as 1 s. In addition, it is worth pointing
out that although a Langevin equation was proposed
by Graham [14,15] to investigate the phase fluctua-
tions due to thermal fluctuations and quantum fluctu-
ations, the phase fluctuations due to collective excita-
tions were proportional toτ2, because the finiteness
of the longevity of the collective excitations was not
considered too.

For temperature close to zero, our result of the
phase diffusion time given by Eq. (22) is reasonable
because of two reasons:

(i) In the experiment by the JILA group [21], the
phase of the condensate was found to be very robust.
In fact, the rigidity of the phase was also shown
in other experiments, such as the observation of the
interference between two BECs [32], and the recent
experiments where the optical lattice [33,34] is used
to investigate the coherent properties of the BECs. For
example, recently a BEC [34] is created with up to 2×
105 atoms and no discernible thermal component. The
radial trapping frequencies are relaxed over a period
of 500 ms to 24 Hz such that the harmonic potential
becomes spherically symmetric. Then three optical
standing waves are aligned orthogonal to each other, in
order to form a three-dimensional lattice potential. In
this situation, the condensate is distributed over more
than 150 000 lattice sites. When the magnetic trap and
lattice potential are both switched off, it is interested to
find that there is a high-contrast interference pattern,
which means that phase is still robust after the BEC
has been formed for nearly 1 s, and even after the
interference between a large number of BECs.

(ii) In the present Letter, the correlation time of
the quantum fluctuations is calculated and found to
be much smaller than the time scale of the phase
diffusion time. In this situation, we should regard the
quantum fluctuations as a white noise to investigate
the phase diffusion process. Recall that the particular
collective excitations are rather stable when it is
created in the experiment [29–31] by applying a small
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time-dependent perturbation, it seems the longevity of
the collective excitations is very long. However, we
should note that in the problem discussed here for
the mechanism of the phase diffusion, the collective
excitations are created and annihilated through the
quantum fluctuations. As pointed out in this Letter, the
longevity of these collective excitations is found to be
much smaller than the phase diffusion time.

We should note that when obtaining the phase dif-
fusion time, the time-energy uncertainty relation is
used to calculate approximately the longevity of the
collective modes created due to quantum fluctuations.
A more accurate average longevity of these collec-
tive modes can be obtained when interparticle interac-
tion effect is included. Nevertheless, a reasonable or-
der of magnitude on the phase diffusion time can be
obtained, using Eq. (20) and the time-energy uncer-
tainty relation. Additionally, the collective timeτqua
can be obtained from Eq. (20) whenτphaseis measured
in experiment. This gives us a chance to check whether
standard many-body theory can be used successfully
to investigate the interested quantityτqua.

4. Discussion and conclusion

In summary, the phase diffusion time of the con-
densate due to quantum fluctuations is discussed at
extremely low temperature. Because the correlation
time of the quantum fluctuations is much smaller
than the time scale of the phase diffusion, the quan-
tum fluctuations can be regarded as white noise when
the phase diffusion of the condensate is investigated
for extremely low temperature. In this situation, the
phase diffusion time calculated here is much longer
than the result obtained in the previous theoretical re-
searches [14,15,20]. It is obvious that the present work
cannot be applied directly to the experiment conducted
by the JILA group [21], where the complicated re-
arrangement of the two condensates would be very im-
portant to the phase diffusion process. We shall extend
our idea in a future work to the case of the specific sit-
uation realized by the JILA group [21] and discuss the
phase diffusion at finite temperature. Recently, BECs
have been realized in quasi-one and quasi-two dimen-
sions [35], where new phenomena such as quasicon-
densates with a fluctuating phase [36–38] may be ob-
served. A simple method is developed recently [25,

39–41] to discuss the particle number fluctuations of
the low-dimensional condensate. This makes it pos-
sible to discuss the phase diffusion process in low-
dimensional condensates.
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