
Optics Communications 291 (2013) 253–258
Contents lists available at SciVerse ScienceDirect
Optics Communications
0030-40

http://d

n Corr

E-m
journal homepage: www.elsevier.com/locate/optcom
Classical analogs of double electromagnetically induced transparency
Zhengyang Bai, Chao Hang, Guoxiang Huang n

State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China
a r t i c l e i n f o

Article history:

Received 23 September 2012

Received in revised form

1 November 2012

Accepted 15 November 2012
Available online 5 December 2012

Keywords:

Double electromagnetically induced

transparency

Classical analog

Coupled harmonic oscillators

Coupled RLC circuits
18/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.optcom.2012.11.040

esponding author. Tel.: þ86 21 62233944.

ail address: gxhuang@phy.ecnu.edu.cn (G. Hu
a b s t r a c t

Double electromagnetically induced transparency (DEIT) in a four-level atomic system with tripod-type

energy-level configuration is modeled by using two classical systems. The first is a set of three coupled

harmonic oscillators subject to frictional forces and external drives and the second is a set of three coupled

RLC circuits with electric resistors and alternating voltage sources. It is shown that both of the two classical

systems have absorption spectra of DEIT similar to that of the four-level tripod-type atomic system. These

classical analogies provide simple and intuitive physical description of quantum interference processes and

can be used to illustrate experimental observations of the DEIT in quantum systems.
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1. Introduction

In recent years, tremendous attention has been paid to the
study of electromagnetical induced transparency (EIT) and related
quantum interference phenomena in atomic systems [1,2]. By
means of the quantum interference induced by a control laser
field, the absorption of a probe laser field tuned to a strong one-
photon resonance can be largely canceled and hence an initially
opaque medium becomes transparent. Furthermore, the control
field can greatly modify the dispersive property of the atomic
medium, leading to a significant reduction of group velocity of the
probe field. In addition, the Kerr nonlinearity of the medium can
also be enhanced largely. Based on these striking features, many
applications of EIT have been explored, such as highly efficient
four-wave mixing, quantum memory, optical switches [1,2],
ultraslow optical solitons [3–5], and so on.

Besides the single EIT phenomenon in three-level atomic sys-
tems, double electromagnetical induced transparency (DEIT) [6–11]
may occur when a four-level atomic system with a tripod-type
configuration is exposed to three laser fields that drive three
different transitions with one common excited level (see Fig. 1). In
such settings, a single control laser field can modify the absorption
and dispersion properties of the other two probe laser fields and
produce large Kerr effects, especially cross phase modulations. Such
system has also been used to engineer coherent superposition of
two ground states, etc., very promising for applications in quantum
information processing and quantum computing [12].
ll rights reserved.

ang).
We note that the study of quantum-classical analogies in
physics has been proved to be very useful in helping to illustrate
and understand many fundamental concepts and applicabilities of
different physical theories [13]. It is important to note that these
analogies bring to light the fact that many quantum and classical
phenomena can be described by similar mathematical models, in
which there are drastic difference in fundamental concepts. In the
past two decades, many classical analogies of different quantum
optical systems have been explored, such as stimulated resonance
Raman effect [14], vacuum Rabi oscillation [15], and rapid
adiabatic passage [16]. In addition, classical analogies of single
EIT by using plasmon metamaterials [17,18], superconducting
tetrahertz and planar metamaterials [19–21], as well as metal-
superconductor hybrid metamaterials [22] have also been
reported recently both theoretically and experimentally.

In this paper, we model DEIT in a four-level atomic system with
tripod-type energy-level configuration by using two classical
(i.e. mechanical and electric) systems. The first is a set of three
coupled harmonic oscillators subject to frictional forces and external
drives and the second is a set of three coupled RLC circuits with
electric resistors and alternating voltage sources. We show that both
of the two classical systems have absorption spectra of DEIT similar
to that of the four-level tripod-type atomic system. These classical
analogies provide simple and intuitive physical description of quan-
tum interference processes and can be used to illustrate experi-
mental observations of the DEIT in quantum optical systems. The
present work is related to recent works of the classical analog of EIT
[23,24], which however considered either only a single EIT [23], or
EIT in a four-level inverted-Y system [24].

The rest of the paper is arranged as follows. In Section 2 a
simple description of DEIT in the four-level tripod-type atomic
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Fig. 1. Energy level structure and excitation scheme of the lifetime-broadened

four-level tripod-type atomic system with upper energy level 94S and lower

energy levels 91S, 92S and 93S. D3 and D4 are detunings. Op , Os , and Oc are half

frequencies of the probe, signal, and control fields, respectively.
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system is given. Sections 3 and 4 illustrate the mechanical
and electric analogies of DEIT, respectively. The final section
summarizes the main results obtained in this work.
2. DEIT in tripod-type atomic system

The DEIT in the four-level tripod-type atomic system has been
studied in Refs. [6–11]. Here for completeness we give a simple
description of it. Consider a lifetime-broadened four-level atomic
system with upper energy level 94S and lower energy levels 91S,
92S and 93S (Fig. 1).

A weak probe field of angular frequency op and wavevector kp,
i.e. Epðr,tÞ ¼ epEpðr,tÞeiðkp �r�optÞ þc:c:, couples to the 91S-94S
transition, a strong control field of angular frequency oc and
wavevector kc , i.e. Ecðr,tÞ ¼ ecEcðr,tÞeiðkc �r�octÞ þc:c:, couples to the
93S-94S transition, and a weak signal field of angular frequency
os and wavevector ks, i.e. Esðr,tÞ ¼ esEsðr,tÞeiðks�r�ostÞ þc:c:, couples
to the 92S-94S transition, respectively. Here ep, ec , and es are
unit polarization vectors of the probe, control, and signal fields
with Epðr,tÞ, Ecðr,tÞ, and Esðr,tÞ are, respectively, their envelope
functions. Obviously, the present system consists of two L-type
EIT schemes, i.e. 91S�94S�93S and 92S�94S�93S.

A practical realization for the present system can be a cold 87Rb
atomic gas with states assigned as 91S¼ 952S1=2,F ¼ 1,mF ¼�1S,
92S¼ 952S1=2,F ¼ 1,mF ¼ 1S, 92S¼ 952P1=2,F ¼ 2,mF ¼ 0S, and
94S¼ 952P1=2,F ¼ 1,mF ¼ 0S.

Under electric-dipole and rotating-wave approximations, the
equations of motion for the density matrix governing atomic
dynamics are
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for diagonal density matrix elements and
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for nondiagonal density matrix elements, where Op ¼ ep � d14Ep=_,
Os ¼ es � d24Es=_, and Oc ¼ ec � d34Ec=_ are, respectively, half Rabi
frequencies of the probe, signal, and control fields with
dij �/i9d9jS being density-matrix elements related to states 9iS
and 9jS; dij ¼ ðDi�DjÞþ igij with D4 ¼op�ðo4�o1Þ and D3 ¼

op�oc�ðo3�o1Þ being, respectively, one- and two-photon
detunings; gij ¼

1
2 GiþGj

� �
þgcol

ij with Gj ¼
P

io jGij denoting the
total spontaneous emission decay rate of state 9jS, and gcol

jl

denoting the dephasing rate reflecting the loss of phase coherence
between 9jS and 9lS without changing of population, as might
occur with elastic collisions.

The equations of motion for Rabi frequencies of the probe- and
signal-fields can be obtained by the Maxwell equation, which
under slowly varying envelope approximation gives
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ð2E0c_Þ, with N a being the atomic concentration and k14 �

k24 � k. When deriving Eq. (3) we have assumed that (i) Op and
Os are of the same order and much smaller than Oc , we can
consider Oc as a constant in the system and (ii) both kp and ks are
along the z-direction.

We assume that the atoms are initially populated in the states
91S and 92S (represented by the solid circles in the ground
states 91S and 92S of Fig. 1). In the linear regime the probe and
signal fields are very weak and the ground states not depleted
during evolution, i.e. sð0Þ11þs

ð0Þ
22 � 1 and sð0Þjj � s

ð0Þ
mn � 0 (j¼3, 4;

m,n¼ 1,2,3,4 with man). In this situation Maxwell–Bloch
equations (1)–(3) can be linearized and support the solution
Op ¼ F expfi½KpðoÞz�ot�g and Os ¼ G expfi½KsðoÞz�ot�g with F

and G being constants. Here
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are, respectively, the linear dispersion relations of the probe and
the signal fields.

Fig. 2(a) shows the absorption curves Im(Kp) for the probe field
(solid line) and Im(Ks) for the signal field (dotted line) as functions
of o by taking Oc ¼ 0. Corresponding dispersion curves Re(Kp)
for the probe field (solid line) and Re(Ks) for the signal field



Fig. 2. (a) Absorption curves Im(Kp) for the probe field (solid line) and Im(Ks) for the signal field (dotted line) as functions of o when Oc ¼ 0. (b) Dispersion curves Re(Kp) for

the probe field (solid line) and Re(Ks) for the signal field (dotted line) as a function of o for the case of Oc ¼ 0. (c) and (d) The case for Oc ¼ 20 MHz.

Fig. 3. Mechanical model used to simulate DEIT. mj is the mass of jth harmonic

oscillator with kj ðj¼ 1,2,3Þ, k13, and k23 being spring constants. Arrows below m1

and m2 indicate harmonic forces F1e�iotþc:c: and F1e�iotþc:c:, respectively.
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(dotted line) as a function of o are plotted in Fig. 2(b). The system
considered is a cold 87Rb atomic gas with the upper level in Fig. 1
as 5P1=2, while the lower levels as hyperfine magnetic sublevels of
5S1=2. System parameters are given by G14 ¼G24 ¼G34C6 MHz,
and D3 ¼D4 ¼ 0. One sees that for Oc ¼ 0 there is only a single
peak appearing in the absorption curve Im(Kp) and Im(Ks). How-
ever, when increasing Oc to Oc ¼ 20 MHz, an EIT transparency
window is opened in the region around o¼ 0 in the absorption
spectrum of both the probe and signal fields (panel (c)); simulta-
neously, a drastic change of dispersions (and hence a drastic
reduction of group velocities) occurs (panel (d)). In addition, due
to the symmetry of two L-configurations inherent in Fig. 1, the
absorption and dispersion curves for both the probe and signal
fields nearly coincide with each other. Especially, the group
velocities of the probe and signal fields are perfectly matched.
Such phenomena are the essential features of DEIT, which has
many important applications in quantum computation and quan-
tum information [6–11].
3. Mechanical analog of DEIT

We first consider a mechanical analog of DEIT. Our model is
shown in Fig. 3, where two mass points of masses m1 and m2 are
attached to two springs with spring constants k1 and k2, which
are attached to a rigid support on the left hand side. The other
side of these two mass points are attached separately by two
springs with spring constants k13 and k23, and then connected
together to attach to the third mass point of mass m3. The right
hand side of the third mass point is attached to a spring with
spring constant k3, which is attached to another rigid support
on the right side. We assume in the system that the mass points
m1 and m2 are, respectively, driven by two harmonic forces
F1e�iotþc:c: and F2e�iotþc:c:, and all three mass points put on
horizontal solid walls that contribute friction force to them.
Obviously, the system is a setting with three coupled linear
harmonic oscillators with deriving and damping.
To describe the classical motion of this system, we use
one-dimensional coordinate xj ðj¼ 1,2,3Þ to represent the displa-
cement of jth harmonic oscillator deviating from its equilibrium
position. The equations of motion for harmonic oscillators are
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Fig. 4. (a) The solid (dotted) line is the absorption spectrum Im(Ps1) (Im(Ps2)) as a function of o�o1 ðo�o2Þ when Oc ¼ 0:01. (b) Corresponding real part Re(Ps1) (Re(Ps2))

for the case of Oc ¼ 0:01. (c) and (d) The case for Oc ¼ 1:0. (e) and (f) The case for Oc ¼ 1:6.
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The mechanical powers P1ðtÞ and P2ðtÞ absorbed, respectively,
by the harmonic oscillators 1 and 2 from the external driving
forces can be calculated by the formulas

PjðtÞ ¼ ðFje
�iotþc:c:Þ _xjðtÞ ðj¼ 1,2Þ: ð7Þ

The average of powers during one period of oscillation are
respectively given by

PsjðoÞ ¼
R 2p=o

0 PjðtÞ dt

2p=o ðj¼ 1,2Þ: ð8Þ

The solid line shown in Fig. 4(a) is the absorption spectrum
Im(Ps1) (Im(Ps2)) as a function of o�o1 ðo�o2Þ for Oc ¼ 0:01. The
panel (b) is the corresponding real part Re(Ps1) (Re(Ps2)). One sees
that for this small Oc there is only a single peak appearing in the
absorption curves Im(Ps1) and Im(Ps2). However, when increasing
Oc to Oc ¼ 1:0, an ‘‘EIT’’ transparency window opens in the curves
of Im(Ps1) and Im(Ps2) (panel (c)), with the real part Re(Ps1) and
Re(Ps2) changed greatly (panel (d)). The panels (e) and (f) are the
case for Oc ¼ 1:6, in which case the transparency window
opens more wide. When plotting the figure we have taken system
parameters k1 ¼ k2 ¼ k13 ¼ k23 ¼ k3 ¼ k, m1 ¼m2 ¼m3 ¼m,
Oc ¼Or , and g1 ¼ g2 ¼ 1:0 and g3 ¼ 1:0� 10�3, and o1 ¼o2 ¼

o3 ¼ 2:0 (all quantities have the dimension of frequency). The
values of F1=m and F2=m are taken to be 0.1 in force per
mass units.

Compared with Figs. 4 and 2, we see that the system of the
present coupled-oscillator system has the DEIT property similar
to that of the tripod-type four-level atomic system described in
the last section. The physical reason of the existence of DEIT in the
coupled harmonic system can be explained as follows. It is
well known [25] that the energy absorbed by a damped
harmonic oscillator driven by an external force is a function of
driving frequency. In the case of our system (Fig. 3), the damped
oscillators m1 and m2 are driven by the harmonic forces
F1e�iotþc:c: and F2e�iotþc:c: Standard absorption resonances
for the both oscillators are observed for small k13 and k23 (and
hence small Oc and Or) (Fig. 4(a)). However, when the oscillator



Fig. 5. Coupled RLC electrical circuit used to model the tripod-type 4-level atomic

system. Rj, Cj, Lj, and Vsj are, respectively, the resister, capacitor, inductor, and

alternating voltage source of the jth loop. C is the capacitor shared by 1–3 and 2–3

loops, and SW is a switch of the loop 3.
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m3 moves with large k13 and k23 (and hence large Oc and Or), the
absorptions of the oscillators m1 and m2 are suppressed, and thus
‘‘EIT’’ transparency windows open in the both absorption spectra
(Fig. 4(c) and (e)). Consequently, we can make the following
analog: (i) In our mechanical model, the spring with spring
constant k13 and the spring with spring constant k23 emulate
the control field Oc that couples the states 93S and 94S in Fig. 1;
(ii) Two harmonic driving forces F1e�iotþc:c: and F2e�iotþc:c:
acting on the oscillators m1 and m2 emulate the probe field and
the signal field in Fig. 1, respectively; and (iii) The damping
constants in Eq. (5) emulate the decay rates of spontaneous
emission from the excited state to three lower states of Fig. 1.
Thus, by changing the ‘‘control-field Rabi frequency’’ Oc and Or ,
one can realize a (mechanical) DEIT in the system.
4. Electrical analog of DEIT

A driven and damped harmonic oscillator has a well-known
correspondence with an electrical circuit consisting of a resistor R,
an inductor L and a capacitor C connected in series to an
alternating voltage source V. RLC circuits are easy to build in
laboratory and may be used as excellent examples of non-
mechanical oscillations. We used such circuits to study DEIT by
analyzing the absorption of electric power in resistances. The
electric analog to the atomic system of Fig. 1 is shown in Fig. 5,
where the loop of circuit composed of the inductor L3 and
capacitors C3 and C is a control oscillator. The resistor R3 accounts
for the spontaneous radiative decay from the state 94S to the
state 93S. Atoms are modeled by using two loops, each of them
composed of one inductor, two capacitors, and one resistor, i.e.
L1C1R1 and L2C2R2. Here R1 and R2 determine the spontaneous
radiative decays from the upper state 94S to lower states 91S and
92S, respectively. The capacitor C shared between loops 1 and
3 and loop 2 and 3 models the coupling between atoms and the
control field. Two probe fields are modeled by frequency-tunable
voltage sources Vs1 and Vs2.

The DEIT is investigated by examining the frequency depen-
dence on the transmitted power from frequency-tunable voltage
sources Vs1e�iotþc:c: and Vs2e�iotþc:c: to the first and second
loops. If the electric currents in three loops are, respectively,
written as I1ðtÞ ¼ _q1ðtÞ, I2ðtÞ ¼ _q2ðtÞ, I3ðtÞ ¼ _q3ðtÞ, we obtain the
following coupled equations:
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2
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2
c q1ðtÞ�O

2
r q2ðtÞ ¼ 0, ð9cÞ

where rj ¼ Rj=Lj, o2
j ¼ 1=ðLjCejÞ ðj¼ 1,2,3Þ, O2

c ¼ 1=ðL1CÞ, and O2
r ¼

1=ðL2CÞ, with effective capacitances given by Ce1 ¼ CC1=ðCþC1Þ,
Ce2 ¼ CC2=ðCþC2Þ, and Ce3 ¼ ðC=2ÞC3=ðC=2þC3Þ.

It is easy to get the solution of Eq. (9)
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The electric power Pj(t) transferred from the voltage source

Vsj to the resonant electric circuit LjCjRj is given by PsjðtÞ ¼

Vsje
�iotþc:c:

� �
_qjðtÞ. The average of the electric power Psj(t) during

one period of oscillation reads as

PsjðoÞ ¼
R 2p=o

0 Vsje
�iotþc:c:

� �
_qjðtÞ dt

2p=o ðj¼ 1,2Þ: ð11Þ

Using Eq. (10) we can obtain the concrete expression of PsjðoÞ,
which are omitted here for saving space.

Fig. 6(a) shows the absorption spectrum Im(Ps1) (Im(Ps2)) as a
function of o�o1 ðo�o2Þ for Oc ¼ 0:01. The corresponding real
part Re(Ps1) (solid line) and Re(Ps2) (dotted line) are plotted in
panel (b). In this case, only a single peak appears in the curves of
Im(Ps1) and Im(Ps2). When increasing Oc , the curves undergo a
drastic change. In fact, a doublet appears in the absorption
spectra. Shown in the panel (c) is the case for Oc ¼ 1:0. We see
that in the region around o�o1 ¼ 0 ðo�o2 ¼ 0Þ an ‘‘EIT’’ trans-
parency window opens. Simultaneously, the real part Re(Ps1) and
Re(Ps2) change drastically (see the panel (d)). The panels (e) and
(f) are the case for Oc ¼ 1:6, in which case the transparency
window becomes more wide. When plotting the figure we have
taken system parameters g1 ¼ g2 ¼ 1:0 and g3 ¼ 1:0� 10�3, and
o1 ¼o2 ¼o3 ¼ 2:5 (all quantities have dimension of frequency).
The values of Vs1=L1 and Vs2=L2 are taken to be 0.1 in voltage per
inductance units. Obviously, the phenomenon demonstrated here
is also very similar to the DEIT appeared in the tripod-type four-
level atomic system described in Section 2.
5. Conclusion

In this paper, the DEIT in a tripod-type four-level atomic
system has been modeled by two classical systems. The first is a
set of three coupled harmonic oscillators subject to frictional
forces and external drives and the second is a set of three
coupled RLC circuits with electric resistors and alternating voltage
sources. We have shown that both of the two classical systems
have linear absorption spectrum very similar to that of the four-
level tripod-type atomic system. These classical analogies provide
simple and intuitive physical description of quantum interference
processes and can be used to illustrate experimental observations
of the DEIT in quantum systems. A further interesting topic is to
consider possible analogs in nonlinear regime, where cross-Kerr
nonlinearity will appear.



Fig. 6. (a) The solid (dotted) line is the absorption spectrum Im(Ps1) (Im(Ps2)) as a function of o�o1 ðo�o2Þ for Oc ¼ 0:01. (b) Corresponding real part Re(Ps1) (Re(Ps2)) for

Oc ¼ 0:01. (c) and (d) The case for Oc ¼ 1:0. (e) and (f) The case for Oc ¼ 1:6.
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