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Abstract: We consider an array of the meta-atom consisting of two cut-wires and a split-ring
resonator coupled with an electromagnetic field with two polarization components. We show
that the system can be taken as a classical analogue of the atomic medium of a double-Λ-type
four-level configuration coupled with four laser fields and working under the condition of
electromagnetically induced transparency, exhibits an effect of plasmon induced transparency
(PIT), and displays a similar behavior of atomic four-wave mixing (FWM). We show also that with
the PIT and FWM effects the system can support vector plasmonic dromions when a nonlinear
varactor is mounted onto the each gap of the split-ring resonator. Our work not only gives a
plasmonic analogue of the FWM in coherent atomic systems but also provides the possibility for
obtaining new type of plasmonic excitations in metamaterials.
© 2017 Optical Society of America
OCIS codes: (190.5530) Pulse propagation and temporal solitons; (060.4370) Nonlinear optics, fibers; (160.3918)
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1. Introduction

In recent years, there are tremendous efforts seeking for the classical analogue of electromagneti-
cally induced transparency (EIT) [1] in solid systems, including coupled resonators [2–4], electric
circuits [2,4,5], optomechanical devices [6,7], whispering-gallery-mode microresonators [8], and
various metamaterials [9–25]. Especially, the plasmonic analogue of EIT, called plasmon-induced
transparency (PIT) [9–11], has become a very important platform for exploring EIT-like physical
properties of plasmonic polaritons and for designing new types of metematerials.
Similar to EIT, PIT is resulted from a destructive interference between wideband bright and

narrowband dark modes in artificial atoms (called meta-atoms). A typical character of PIT is the
opening of a deep transparency window within broadband absorption spectrum, together with a
steep dispersion and greatly reduced group velocity of plasmonic polaritons. PIT metamaterials
can work in different frequency regions (including micro [10] and terahertz [11, 14,17] waves,
infrared and visible radiations [9,12,16]), and may be used to design novel, chip-scale plasmonic
devices (including highly sensitive sensors [13, 14], optical buffers [15, 17], and ultrafast optical
switches [17], etc.) in which the radiation damping can be significantly eliminated, very intriguing
for practical applications.

However, the PIT in plasmonic metamaterials reported up to now [9–25] is only for the classical
analogue of the simplest atomic EIT, i.e. the one occurring in a coherent three-level atom gas
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resonantly interacting with two laser fields. We know that atoms possess many (energy) levels,
quantum interference effect may occur in atomic systems with level number larger than three
and the number of laser fields larger than two [1]. In fact, in the past two decades the EIT has
been extended into the atomic systems with various multi-level configurations, such as four-level
systems of double Λ-type [26–36], tripod-type [37–39], Y-type [40–43], five-level systems of
M-type [44–47], and six-level systems of double-tripod-type [48,49], etc. Thus it is natural to ask
the question: Is it possible to find a classical analogue of the atomic EIT with the level number
larger than three in a metamaterial?

In this work, we give a positive answer for the above question. The metamaterial we consider
is an array of meta-atoms [see Fig. 2(a)], i.e. the unit cells consisting of two cut-wires (CWs)
and a split-ring resonator (SRR) [see Fig. 2(b)], interacting with an electromagnetic (EM) field
with two polarization components. We show that such plasmonic metamaterial system may be
taken as a classical analogue of an EIT-based atomic medium with a double-Λ-type four-level
configuration coupled with four (two probe and two control) laser fields [see Fig. 1(a) ], exhibits
an effect of PIT and displays a similar behavior of atomic four-wave mixing (FWM).
Based on this interesting classical analogue, we further show that, if a nonlinear varactor is

mounted onto each gap of the SRR, the system can support a new type of nonlinear plasmonic
polaritons, i.e. vector plasmonic dromions, which are (2+1)-dimensional plasmonic solitons with
two polarization components for electric field and have very low generation power and are robust
during propagation. This gives a significant generalization of our work [24], where plasmonic
dromions with only a single polarization component was reported. The results presented here not
only gives a close metamaterial analogue of the EIT and FWM in multi-level atomic systems,
useful to find novel wave interference phenomena and nonlinear property in solid systems, but
also provides a way to obtain new type of plasmonic polaritons via suitable design of plasmonic
metamaterials.
The article is arranged as follows. In Sec. 2, we give a simple introduction of EIT-based

FWM in a four-level atomic system, describe our metamaterial model allowing the occurrence of
PIT and FWM, and show the equivalence between the two models. The propagation of linear
plasmonic polaritons in the metamaterial is discussed in detail. In Sec. 3, we derive the coupled
nonlinear envelope equations and present the vector plasmonic dromion solutions when the
nonlinear varactors are mounted onto the gaps of the SRRs. The last section (Sec. 4) gives a
discussion and a summary of our work.

2. EIT-based atomic FWM and its metamaterial analogue

2.1. EIT-based FWM in a double-Λ-type four-level atomic system

For a detailed comparison with the metamaterial model presented in the next subsection, we
first give a brief introduction on an atomic gas with a double-Λ-type four-level configuration,
shown in Fig. 1(a). In this system, two weak probe laser fields with central angular frequencies
ωp1 and ωp2 and wavevectors kp1 and kp2 drive respectively the transitions |1〉 ↔ |3〉 and
|1〉 ↔ |4〉, and two strong control laser fields with central angular frequencies ωc1 and ωc2 and
wavevectors kc1 and kc2 drive respectively the transitions |2〉 ↔ |3〉 and |2〉 ↔ |4〉. The total
electric fields in this system is given byE = ep1Ep1 exp[i(kp1z−ωp1t)] + ep2Ep2 exp[i(kp2z−
ωp2t)] + ec1Ec1 exp[i(kc1z − ωc1t)] + ec2Ec2 exp[i(kc2z − ωc2t)] + c.c., where ejn and Ejn
(j = p, c;n = 1, 2) are respectively the unit vector denoting the polarization direction and the
envelope of the corresponding laser field. Note that for simplicity all the laser fields are assumed
to be injected in the same (i.e. z) direction (which is also useful to suppress Doppler effect).
Under electric-dipole approximation and rotating-wave approximation (RWA), the Hamiltonian
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Fig. 1. (a) Double-Λ-type four-level atomic system with the atomic states |j〉 (j = 1, 2, 3, 4),
coupled with two probe fields (with Rabi frequency Ωpn) and two strong control fields
(with Rabi frequency Ωcn) (n = 1, 2). ∆3, ∆2, and ∆4 are respectively the one, two,
and three-photon detunings. (b) Im(K+

a ) [imaginary part of K+
a ] as a function of ω for

Ωc1 = Ωc2 = 20 MHz (red dashed line) and Ωc1 = Ωc2 = 60 MHz (green dashed-dot
line). EIT transparency window is opened near the central frequency of the probe fields (i.e.
at ω = 0). The blue solid cure is Im(K−

a ), which has always a large absorption peak at
ω = 0 for arbitrary Ωc1 and Ωc2.

of the system in interaction picture reads

Ĥint = −~
4∑
j=1

∆j |j〉〈j| − ~ [Ωp1|3〉〈1|+ Ωp2|4〉〈1|+ Ωc1|3〉〈2|+ Ωc2|4〉〈2|+ H.c.] , (1)

where ∆1 = 0; ∆3 = ωp1 − (E3 − E1)/~, ∆2 = ωp1 − ωc1 − (E2 − E1)/~, and ∆4 =
(ωp1 − ωc1 + ωc2) − (E4 − E1)/~ are respectively one-, two-, and three-photon detunings,
with El the eigenenergy of the atomic state |l〉 (l = 1, 2, 3, 4); Ωp1 = (ep1 · p31)Ep1/~,
Ωp2 = (ep2 · p41)Ep2/~, Ωc1 = (ec1 · p32)Ec1/~, and Ωc2 = (ec2 · p42)Ec2/~ are respectively
the half Rabi frequencies of the probe and the control laser fields, with pjl the electric dipole
moment related to the transition |j〉 ↔ |l〉. The Hamiltonian (1) allows three bright states and one
dark state [50]. The dark state reads |ψdark〉 = (Ωc1|1〉 − Ωp1|2〉)/

√
|Ωp1|2 + |Ωc1|2, which is

a superposition of only the two lower states |1〉 and |2〉 and has a zero eigenvalue. The condition
yielding the dark state is [28]

Ωp1Ωc2 − Ωp2Ωc1 = 0. (2)

The dynamics of the atoms is governed by the optical Bloch equation i~ (∂/∂t+ Γ)σ =
[Ĥint, σ], where σ is a 4 × 4 density matrix, Γ is a 4 × 4 decoherence (relaxation) matrix
describing spontaneous emission and dephasing. The explicit expression of the Bloch equation is
given in Appendix A. We assume that initially the probe fields are absent, thus for substantially
strong control fields the atoms are populated in the ground state |1〉. The solution of the Bloch
equation reads σ11 = 1 and all other σjl are zero.

When the two weak probe fields are applied, the ground state |1〉 is not depleted much. In this
case, the Bloch equation reduces to(

i
∂

∂t
+ d31

)
σ31 + Ωc1σ21 + Ωp1 = 0, (3a)(

i
∂

∂t
+ d41

)
σ41 + Ωc2σ21 + Ωp2 = 0, (3b)(

i
∂

∂t
+ d21

)
σ21 + Ω∗c1σ31 + Ω∗c2σ41 = 0, (3c)
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with dj1 = ∆j + iγj1 with γj1 = Γ1j/2 (j = 2, 3, 4). Equations (3a)-(3c) describe the dynamics
of three coupled harmonic oscillators [51], where σ31 and σ41 are bright oscillators due to their
direct coupling to the probe fields Ωp1 and Ωp2, but σ21 is a dark oscillator because it has no
direct coupling to any of the two probe fields.

The dynamics of the probe fields is governed by theMaxwell equation∇2E−(1/c2)∂2E/∂t2 =
1/(ε0c

2)∂2P/∂t2. Here the polarization intensity is given by P = N0[σ31e
i(kp1z−ωp1t) +

σ41e
i(kp2z−ωp2t) + c.c.], with N0 the atomic density. Under a slowly-varying envelope approxi-

mation (SVEA), the Maxwell equation reduces to

i

(
∂

∂z
+

1

c

∂

∂t

)
Ωp1 + κ13σ31 = 0, (4a)

i

(
∂

∂z
+

1

c

∂

∂t

)
Ωp2 + κ14σ41 = 0, (4b)

with κ13 = N0|ep1 · p13|2ωp1/(2~ε0c) and κ14 = N0|ep2 · p14|2ωp2/(2~ε0c). For simplicity,
we assume the two control fields are strong enough and thus have no depletion during the
evolution of the probe fields; additionally, the diffraction effect is negligible, which is valid for
the probe fields having large transverse size.
It is easy to understand the basic feature of the propagation of the probe fields through

solving the Maxwell-Bloch (MB) equations (3) and (4) with σl1 (l = 1, 2, 3) and Ωpj (j = 1, 2)
proportional to the form exp[i(Kaz − ωt)] [52]. We obtain

K±a (ω) =
ω

c
+

− (κ14D3 + κ13D4)±
√

(κ14D3 − κ13D4)
2

+ 4κ13κ14|Ωc1Ωc2|2

2 [|Ωc1|2 (ω + d41) + |Ωc2|2 (ω + d31)− (ω + d21) (ω + d31) (ω + d41)]
,

(5)
with D3 = |Ωc1|2 − (ω + d21)(ω + d31) and D4 = |Ωc2|2 − (ω + d21)(ω + d41). We see that
the MB equations allow two normal modes, with the linear dispersion relations given byK+

a and
K−a , respectively.

Fig. 1(b) shows Im(K+
a ) [i.e. the imaginary part ofK+

a ] as a function of ω for Ωc1 = Ωc2 =
20 MHz (red dashed line) and Ωc1 = Ωc2 = 60 MHz (green dashed-dot line). When plotting
the figure, ∆j (j = 1, 2, 3) are set to be zero, and realistic parameters from 87Rb atoms are
taken, given by Γ13 = Γ23 = Γ14 = Γ24 = 16 MHz, κ13 = κ14 = 1× 1010 cm−3 [54]. We see
that a transparency window is opened in the profile of Im(K+

a ) near ω = 0; the transparency
window becomes larger when the control fields are increased. The opening of the transparency
window (called EIT transparency window) is due to the EIT effect contributed by the control
fields. The blue solid cure in the figure is Im(K−a ) as a function of ω, which however has always
a large absorption peak near ω = 0 irrespective of the value of the control fields. Below, for
convenience we shall call the normal mode with the linear dispersion relation K+

a (K−a ) as
EIT-mode (non-EIT-mode).
The double-Λ-type four-level system can be used to describe a resonant FWM process in

atomic systems [1, 29–32]. The first laser field (i.e. the control field tuned to the |2〉 ↔ |3〉
transition with the half Rabi frequency Ωc1) and the second laser field (i.e. the probe field tuned
to the |1〉 ↔ |3〉 transition with the half Rabi frequency Ωp1) can adiabatically establish a large
atomic coherence of the Raman transition, described by the off-diagonal density matrix element
σ21. The third laser field, i.e. the control field tuned to the |2〉 ↔ |4〉 transition with the half
Rabi frequency Ωc2, can mix with the coherence σ21 to generate a fourth field with the half
Rabi frequency Ωp2 resonant with the |1〉 ↔ |4〉 transition. For details, see Refs. [1, 29–32] and
references therein.
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Fig. 2. (a) Schematic of the plasmonic metamaterial, which is an array of meta-atoms. (b)
The meta-atom consists of two CWs (indicated by “A” and “B”) and a SRR, where the
parameters dx, dy , Lx, Ly , wb, wg , and ws are given in the text. For generating nonlinear
excitations, four hyperabrupt tuning varactors are mounted onto the slits of the SRR. (see
Sec. 3). (c) The numerical result (blue dashed lines) of the normalized absorption spectrum
of the EM wave as a function of frequency by taking Ey0 = −Ex0, dx = dy = 4.0 mm (first
panel), and dx = dy = 3.4 mm (second panel). (d) The numerical result (blue dashed line)
of normalized absorption spectrum for Ey0 = Ex0, dx = dy = 4.0 mm. Red solid lines in
(c) and (d) are analytical results obtained from the formula Im(q10) given by Eq. (26) in
Appendix B.

2.2. Metamaterial analogue of the double-Λ-type four-level atomic system

We now seek for a possible classical analogue of the above four-level atomic model by using a
metamaterial, which is assumed to be an array [Fig. 2(a)] of unit cells (i.e. meta-atoms) [Fig. 2(b)]
consisting two CWs (indicated by “A” and “B”) and a SRR. The CWA and CWB are, respectively,
positioned along x and y direction, while the SRR is formed by a square ring with a gap at the
center of each side. 20-µm-thick copper forming the CWs and the SRR is etched on a substrate
with a height ofH = 1.5 mm. Geometrical parameters of the meta-atom are Lx = Ly = 8 mm,
ws = 1.2 mm, wg = 0.6 mm, and wb = 1.2 mm [53].

We assume that an incident gigahertz radiationE = exEx+eyEy [withEj = Ej0e−iωpt+c.c.
(j = x, y)] is collimated on the array of the meta-atoms, with polarization component Ex (Ey)
parallel to the CW A (CW B). In order to understand the EM property of the system, a numerical
simulation is carried out by using the commercial finite difference time domain software package
(CST Microwave Studio) and probing the imaginary part of the radiative field amplitude at the
center of the end facet of the CW A [red arrow in Fig. 2(b)] [9]. The blue dashed lines in Fig. 2(c)
are normalized absorption spectrum as a function of the incident wave frequency by taking
the excitation condition Ey0 = −Ex0 for dx = dy = 3.4 mm (first panel), and Ey0 = −Ex0

for dx = dy = 4.0 mm (second panel). Here and below, Ex0 and Ey0 are taken to be real for
simplicity. Fig. 2(d) shows the normalized absorption spectrum under the excitation condition
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Ey0 = Ex0 for dx = dy = 4.0 mm. The red solid lines in the figure are analytical results obtained
from Im(q10) based on Eq. (26) in Appendix B. We see that the absorption spectrum profile
depends on excitation condition, which is quite different from the PIT absorption spectrum
considered before.

The dependence on the excitation condition for the absorption spectrum can be briefly explained
as follows. A sole CW in the meta-atoms is function as an optical dipole antenna and thus
serves as a bright (or radiative) oscillator, which can be directly excited by the incident radiation.
The surface current in an excited SRR can be clockwise or anticlockwise direction, indicating
that there is no direct electric dipole coupling with the incident radiation and hence the SRR
serves as a dark or trapped oscillator with long dephasing time [55]. For the excitation condition
Ey0 = −Ex0 [Fig. 2(c)], the surface current is cooperatively induced through the near-field
coupling between SRR and CWs, resulting in a maximum enhancement of the dark-oscillator
resonance and thus the substantial suppression of the absorption of the incident radiation, acting
like a typical PIT metamaterial. However, for the excitation condition Ey0 = Ex0 [Fig. 2(d)],
the surface current is suppressed due to an opposite excitation direction, leading to a complete
suppression of the dark-oscillator resonance. As a result, the radiation absorption is significant
(acting like a sole CW) and hence no PIT behavior occurs. For convenience, in the following we
called the excitation mode under the Ey0 = −Ex0 [Fig. 2(c)] as the PIT-mode, and the excitation
mode under the Ey0 = Ex0 [Fig. 2(d)] as the non-PIT-mode (or absorption mode).

The dynamics of the bright oscillators (i.e. CW A and CW B) and dark oscillator (i.e. SRR) in
the meta-atoms can be described by the coupled Lorentz equations [9, 17, 20, 23–25]

∂2q1

∂t2
+ γ1

∂q1

∂t
+ ω2

1q1 − κ1q3 = g1Ex, (6a)

∂2q2

∂t2
+ γ2

∂q2

∂t
+ ω2

2q2 − κ2q3 = g2Ey, (6b)

∂2q3

∂t2
+ γ3

∂q3

∂t
+ ω2

3q3 − κ1q1 − κ2q2 = 0, (6c)

where ql are displacements from the equilibrium position of the bright oscillators (l = 1, 2) and
the dark oscillator (l = 3), with γl and ωl [55] respectively the damping rate and the natural
frequency of lth oscillator; g1 (g2) is the parameter describing the coupling between the CW A
(CW B) and the x-polarization (y-polarization) component of the EM wave, and κ1 (κ2) is the
parameter describing the coupling between CW A (CW B) and SRR. The numerical values of
these coefficients can be obtained from the numerical result presented in Fig. 2, by using the
method described in Appendix B.
Based on the solution given by Eq. (26), we deduce that, in the case of ω3 = ωp, γ3 = 0 and

g1 = g2, Eq. (6) allows a “dark state” (i.e. the state where both the bright oscillators are not
excited, i.e. q10 = q20 = 0) exists, if

κ2Ey0 − κ1Ex0 = 0. (7)

This “dark state” condition is equivalent to the one obtained in the four-level double-Λ-type
atomic system, given by Eq. (2). Obviously, the PIT-mode shown in Fig. 2(c) corresponds to the
case κ2 = −κ1, where the minus symbol can be understood as a π-phase difference resulting in a
cooperative coupling effect, which is assumed in all the numerical calculations carried out below.

The equation of motion of the EM wave is governed by the Maxwell equation

∇2Ex(y) −
1

c2
∂2Ex(y)

∂t2
=

1

ε0c2
∂2Px(y)

∂t2
, (8)

where Px(y) = ε0χ
(1)
D Ex(y) +Nmeq1(2), with Nm the unit-cell density, e the unit charge, and
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χ
(1)
D the optical susceptibility of the hosting material. We assume the distance between the

meta-atoms is large so that the interaction between them can be neglected.
Assuming the central frequency of the incident radiation ωp is near the natural frequencies

of the Lorentz oscillators described by Eq. (6) [55], a resonant interaction occurs between the
incident radiation and these oscillators. To deal with the propagation problem of the plasmonic
polaritons in the system analytically, we assume Ej(r, t) = Ej(z, t)ei(kpz−ωpt) + c.c. and
ql(r, t) = q̃l(z, t) exp[i(kpz − ωlt−∆lt)] + c.c., where Ej(z, t) and q̃l(z, t) are slowly-varying
envelopes and ∆l = ωp − ωl is a small detuning. With this ansatz and under RWA, Eq. (6) is
simplified into the reduced Lorentz equation(

i
∂

∂t
+ d1

)
q̃1 +

κ1

2ωp
q̃3 +

g1

2ωp
Ex = 0, (9a)(

i
∂

∂t
+ d2

)
q̃2 +

κ2

2ωp
q̃3 +

g2

2ωp
Ey = 0, (9b)(

i
∂

∂t
+ d3

)
q̃3 +

κ1

2ωp
q̃1 +

κ2

2ωp
q̃2 = 0, (9c)

with dj = ∆j + iγj/2. We see that the reduced Lorentz equation (9) describing the unit cell
has the same form as the optical Bloch equation (3) describing the four-level double-Λ atom.
Consequently, each unit cell in the metamaterial is analogous to a four-level double-Λ-type
atom in the atomic gas presented in the last subsection. That is to say, the unit cell is indeed
a meta-atom, where the bright-oscillator excitation in the CW A (CW B) driven by Ex (Ey) is
equivalent to the dipole-allowed transition |1〉 ↔ |3〉 (|1〉 ↔ |4〉) driven by the probe field Ωp1
(Ωp2), and the dark-oscillator excitation in the SRR is equivalent to the dipole-forbidden transition
|1〉 → |2〉 in the four-level double-Λ-type atom. We also see that the coupling between the CW A
(CW B) and the SRR, described by κ1 (κ2), is equivalent to the control field Ωc1 (Ωc2) driven
the atomic transition |2〉 ↔ |3〉 (|2〉 ↔ |4〉).

Under SVEA, the Maxwell equation in the metamaterial reads

i

(
∂

∂z
+
nD

c

∂

∂t

)
Ex + κ0q̃1 = 0, (10a)

i

(
∂

∂z
+
nD

c

∂

∂t

)
Ey + κ0q̃2 = 0, (10b)

with κ0 = Nmeωp/(2ε0cnD), nD =

√
1 + χ

(1)
D . Obviously, Eq. (10) has similar structure as

Eq. (4). Thus, a complete correspondence between the MB equations (3) and (4) described
the four-level double-Λ-type atomic gas and the Maxwell-Lorentz (ML) equations (9) and (10)
described the plasmonic metamaterial is established.
The propagation feature of a plasmonic polariton in the metamaterial can be obtained by

assuming all quantities in the ML equations (9) and (10) proportional to exp[i(Kmz − ωt)]. It is
easy to get the linear dispersion relation

K±m (ω) =
nD

c
ω + κ0

− (R1gf2 +R2gf1)±
√

(R1gf2 −R2gf1)
2

+ 4κ2
f1κ

2
f2gf1gf2

2
[
κ2
f1 (ω + d2) + κ2

f2 (ω + d1)− (ω + d3) (ω + d1) (ω + d2)
] , (11)

where Rj = κ2
fj − (ω+ dj)(ω+ d3), with κfj = κj/(2ωp) and gfj = gj/(2ωp) (j = 1, 2). As

expected, the metamaterial system allows two normal modes with the linear dispersion relation
respectively given by K+

m and K−m. In fact, K+
m (K−m) is a PIT-mode (non-PIT-mode) of the

system, as explained below.
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Fig. 3. (a) Linear dispersion relation of theK+
m-mode (PIT-mode). Im(K+

m) (blue dashed
line) and Re(K+

m) (red solid line) are plotted as functions of ω for κ2 = −κ1 = 50 GHz2

(first panel) and κ2 = −κ1 = 250 GHz2 (second panel). (b) Linear dispersion relation of
theK−

m-mode (non-PIT-mode) for arbitrary κ1 (κ2 = −κ1).

The character of the above two normal modes can be clearly illustrated by plottingK+
m and

K−m as functions of ω. Shown in Fig. 3(a) are Im(K+
m) (blue dashed line) and Re(K+

m) (red
solid line) for κ2 = −κ1 = 50 GHz2 (first panel; corresponding to dx = dy = 4.0 mm) and
κ2 = −κ1 = 250 GHz2 (second panel; corresponding to dx = dy = 3.4 mm), respectively.
When plotting the figure, the system parameters are taken from Appendix B, and additional
parameters are chosen by κ0 = 1010 kg/(cm · s2 · C) [56] and ∆j = 0 (j = 1, 2, 3). We see
that Im(K+

m) displays a transparency window (called PIT transparency window) near ω = 0,
analogous to the EIT transparency window in Im(K+

a ) of the four-level double-Λ-type atomic
system [red dashed line and green dashed-dot line in Fig. 1(b)]. The steep slope of Re(K+

m)
indicates a normal dispersion and a slow group velocity of the plasmonic polariton. As the
coupling strength between the CWs and the SRR gets larger (i.e. the separations dx and dy is
reduced), the PIT transparency window becomes wider and deeper, and the slope of Re(K+

m) gets
flatter. The opening of the PIT transparency window is attributed to the destructive interference
between the two bright oscillators and the dark oscillator through cooperative near-field coupling.
Shown in Fig. 3(b) is the imaginary (red solid line) and the real (blue dashed line) ofK−m, which
is nearly independent on the coupling constant κ1 (κ2 = −κ1). We see that Im(K−m) has a
single, large absorption peak and Re(K−m) has an abnormal dispersion near ω = 0, analogous to
Im(K−a ) of the double-Λ-type atomic system [blue solid line in Fig. 1(b)].

2.3. Propagation of linear plasmonic polaritons via an analogous FWM process of
atomic system

As indicated above, the meta-atoms in the present metamaterial system are analogous to the
four-level atoms with the double-Λ-type configuration, and hence an analogous resonant FWM
phenomenon for the plasmonic polaritons is possible. That is to say, if initially only one
polarization-component of the EM wave (e.g. x-component) is injected into the metamaterail, a
new polarization-component (e.g. y-component) will be generated through two equivalent control
fields (i.e. the couplings between the SRR and CWs, described by κ1 and κ2). To illustrate this,
we present the solution of the ML equations (9) and (10)

Ex(z, t) =
1

2π

∫ +∞

−∞
dω
[
F+

0 e
i(K+

mz−ωt) + F−0 e
i(K−

mz−ωt)
]
, (12a)

Ey(z, t) =
1

2π

∫ +∞

−∞
dω
[
G+F+

0 e
i(K+

mz−ωt) +G−F−0 e
i(K−

mz−ωt)
]
, (12b)

which can be obtained by using Fourier transform [32, 57]. Here G± = [−A ± (A2 +
4κ2

f1κ
2
f2gf1gf2)1/2]/(2κf1κf2gf2) with A = R1gf2 −R2gf1, and F±0 is the initial amplitude
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of the normal modeK±m determined by given excitation condition. We assume initially only the
x-component of the EM field in input to the system, i.e. the initial condition for the EM field is
given by Ex(0, t) 6= 0, Ey(0, t) = 0. By Eq. (12) we have

Ex(z, t) =
1

2π

∫ +∞

−∞
dω
G+ei(K

−
mz−ωt) −G−ei(K+

mz−ωt)

G+ −G−
Ẽx(0, ω), (13a)

Ey(z, t) =
1

2π

∫ +∞

−∞
dω

G+G−

G+ −G−
[
ei(K

−
mz−ωt) − ei(K

+
mz−ωt)

]
Ẽx(0, ω), (13b)

where Ẽx(0, ω) =
∫ +∞
−∞ dtEx(0, t)eiωt. For simplicity, we consider the adiabatic regime where

the power series ofK±m and G± on ω converge rapidly. By takingK±m = K±0 + ω/V ±g +O(ω2)

and G± = G±0 +O(ω), we readily obtain

Ex(z, t) =
G+

0 Ex(0, τ−)eiK
−
0 z −G−0 Ex(0, τ+)eiK

+
0 z

G+
0 −G

−
0

, (14a)

Ey(z, t) =
G+

0 G
−
0

G+
0 −G

−
0

[
Ex(0, τ−)eiK

−
0 z − Ex(0, τ+)eiK

+
0 z
]
, (14b)

where τ± = t− z/V ±g , with V ±g ≡ (∂K±m/∂ω)−1|ω=0 being the group-velocity of the normal
modeK±m.

The conversion efficiency of the FWM is given by η(L) ≡
∫ +∞
−∞ dt|Ey(L, t)/Ex(0, t)|2, where

L is the medium length. For the case κ2 = −κ1, one has Im(K−0 )� Im(K+
0 ), which means

that theK−m mode decays away rapidly during propagation and hence can be safely neglected.
Then Eq. (14) is simplified as

Ex(z, t) =
G−0

G−0 −G
+
0

Ex(0, τ+)eiK
+
0 z, (15a)

Ey(z, t) =
G−0 G

+
0

G−0 −G
+
0

Ex(0, τ+)eiK
+
0 z. (15b)

We see that the x-and y-polarization components of the EM wave have matched group velocity
V +
g . The expression of the FWM conversion efficiency reduces into

η(L) =
|G+

0 G
−
0 |2

|G+
0 −G

−
0 |2
| exp(iK+

0 L)|2. (16)

Shown in Fig. 4 is the FWM conversion efficiency η as a function of the dimensionless optical
depth (κ0gf1/γ1)L for ∆1 = ∆2 = 0 (blue dashed line) and for ∆1 = ∆2 = 5γ1 (red solid
line). When plotting this figure, we have set ∆3 = 0 and γ3 ≈ 0 in order for a better analogue
to the atomic system. The influence of γ3 can be effectively reduced by introducing a gain
element into the gaps of the SRRs (see the discussion in Sec. 4). From the figure, we see that for
the case of exact resonance (i.e. ∆1 = ∆2 = 0), the FWM efficiency η increases and rapidly
saturates to 25% when the dimensionless optical depth (κ0gf1/γ1)L ≈ 5 (i.e. L ≈ 0.9 cm),
indicating a unidirectional energy transmission from Ex to Ey. For the case of far-off resonance
(i.e. ∆1 = ∆2 = 5γ1), the FWM efficiency displays a damped oscillation in the interval
0 < (κ0gf1/γ1)L < 250, indicating a back-and-forth energy exchange between Ex and Ey;
eventually the efficiency reach to the steady-state value 25% when (κ0gf1/γ1)L ≥ 300 (see
the inset). Interestingly, the value of the FWM conversion efficiency may reach to η ≈ 76% at
(κ0gf1/γ1)L ≈ 15 (i.e. L ≈ 3 cm).
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Fig. 4. FWM conversion efficiency η as a function of the dimensionless optical depth
(κ0gf1/γ1)L for ∆1 = ∆2 = 0 (blue dashed line), and ∆1 = ∆2 = 5γ1 (red solid line).
Inset: FWM conversion efficiency η for optical depth up to 300 for ∆1 = ∆2 = 5γ1.

3. Vector plasmonic dromions in the PIT metamaterial

Note that when deriving Eq. (10), the diffraction effect has been neglected, which is invalid for
the plasmonic polaritons with small transverse size or long propagation distance; furthermore,
because of the highly resonant (and hence dispersive) character inherent in the PIT metamaterial,
the linear plasmonic polaritons obtained above inevitably undergo significant distortion during
propagation. Hence it is necessary to seek the possibility to obtain a robust propagation of the
plasmonic polaritons in the PIT metamaterial. One way to solve this problem is to make the PIT
system work in a nonlinear propagation regime.
In recent years, nonlinear metamaterials have attracted much attention due to their potential

applications (see Ref. [58] and references therein). One suitable way to design a nonlinear
PIT metamaterial in microwave and lower THz ranges is to use nonlinear insertions onto the
meta-atoms [59, 60]. Here, as suggested in Refs. [24, 59, 60], we assume the nonlinear insertion
in the PIT metamaterial are varactor diodes, which are mounted onto the gaps of the SRRs [60]
[see Fig. 2(b)].

3.1. Nonlinear envelope equations

Since the introduction of the nonlinear element onto the SRRs, Eq. (6c) should be replaced
by [60]

∂2q3

∂t2
+ γ3

∂q3

∂t
+ ω2

3q3 − κ2q1 − κ2q2 + αq2
3 + βq3

3 = 0, (17)

where α and β are nonlinearity coefficients, described in Appendix E.
Due to the quadratic and cubic nonlinearities in Eq. (17), the input EM field (with only a

fundamental wave) will generate longwave (rectification), and second harmonic components, i.e.
El(r, t) = Edl(r, t) + [Efl(r, t)ei(kpz−ωpt) + c.c.] + [Esl(r, t)eiθp + c.c.] (l = x, y), with θp =
(2kp+∆k)z−2ωpt and ∆k a detuning in wavenumber. The oscillations of the Lorentz oscillators
in the meta-atoms have the form qj(r, t) = qdj(r, t)+[qfj(r, t)e

iθj +c.c.]+[qsj(r, t)e
2iθj +c.c.]

(j = 1, 2, 3), with θj = kjz − ωjt−∆jt. Substituting these expressions into Eqs. (6a), (6b), (8),
and (17), and adopting RWA and SVEA, we obtain a series of equations for the motion of qµj
and Eµl, listed in Appendix C.
We solve the equations for qµj and Eµl by using the standard method of multiple scales [61].

Take the asymptotic expansion qfj = εq
(1)
fj +ε2q

(2)
fj + · · · , qdj = ε2q

(2)
dj + · · · , qsj = ε2q

(2)
sj + · · · ,

Efl = εE(1)
fl + ε2E(2)

fl + · · · , and Edl = ε2E(2)
dl + · · · (here ε is a dimensionless small parameter
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characterizing the amplitude of the incident EM field), and assume all quantities on the right sides
of the asymptotic expansion as functions of the multiscale variables [61] zl = εlz (l = 0, 1, 2) and
tl = εlt (l = 0, 1). Substituting the expansion into the equations for qµj and Eµj and comparing
powers of ε, we obtain a chain of linear but inhomogeneous equations which can be solved order
by order.
The leading order [i.e. O(ε)] solution reads E(1)

fx = F+e
iθ+ and E(1)

fy = G+F+e
iθ+ , where

θ+ = K+
mz0−ωt0 and F+ is a slowly-varying envelope function to be determined in higher-order

approximations. The expression of G+ is given in Sec. 2.3. Here we consider only the PIT (i.e.
K+
m) mode because the non-PIT (i.e.K−m) mode decays rapidly during propagation, as indicated

in the last section. The solution for q(1)
µj is presented in Appendix D.

At the second order [i.e.O(ε2)], a solvability condition yields i[∂/∂z1+(1/V +
g )∂/∂t1]F+ = 0,

where V +
g is the group-velocity of the fundamental wave. Solution for the longwave is E(2)

dx = Q+

and E(2)
dy = G+Q+, with Q+ the slowly-varying envelope to be determined yet. Explicit

expressions of the solutions for other quantities at this order are listed in Appendix D.
At the third order [i.e. O(ε3)], a solvability condition results in the equation

i
∂F+

∂z2
−K

+
2

2

∂2F+

∂t21
+

c

2ωpnD

(
∂2

∂x2
1

+
∂2

∂y2
1

)
F++

ωpR0

2cnD
χ

(2)
+ Q+F++

ωp
2cnD

χ
(3)
+ |F+|2 F+ = 0,

(18)
where K+

2 ≡ [∂2K+
m/∂ω

2]|ω=0 describes the group-velocity dispersion of the fundamental
wave; R0 is a coefficient characterizing the coupling between the fundamental and long waves,
with the expression given in Appendix D; χ(2)

+ and χ(3)
+ are, respectively, the second-order and

third-order nonlinear susceptibilities of theK+
m mode, with the form

χ
(2)
+ =

Nme

ε0

2α(ω2
2κ1g1 + ω2

1κ2g2G
+)

g2G+(G+ −G−)(ω2
1ω

2
2ω

2
3 − ω2

2κ
2
1 − ω2

1κ
2
2)

∣∣∣∣ D2κ1g1 +D1κ2g2G
+

D1D2D3 −D2κ2
1 −D1κ2

2

∣∣∣∣2 ,
(19a)

χ
(3)
+ =

Nme

ε0

(D2κ1g1 +D1κ2g2G
+)

2 |D2κ1g1 +D1κ2g2G
+|2

g2G+(G+ −G−)(D1D2D3 −D2κ2
1 −D1κ2

2)2 |D1D2D3 −D2κ2
1 −D1κ2

2|
2

×
[(

4α2ω2
1ω

2
2

ω2
1ω

2
2ω

2
3 − ω2

2κ
2
1 − ω2

1κ
2
2

+
2α2H1H2

H1H2H3 −H2κ2
1 −H1κ2

2

)
− 3β

]
. (19b)

At the fourth order [i.e. O(ε4)], a solvability condition results in the equation for the longwave
Q+ (

∂2

∂x2
1

+
∂2

∂y2
1

)
Q+ +

[(
1

V +
g

)2

−
(

1

V +
p

)2
]
∂2Q+

∂t21
−
χ

(2)
+

c2
∂2|F+|2

∂t21
= 0, (20)

hereV +
p ≡ [n+

m(0)/c]−1 is the phase-velocity of the longwave, defined byn+
m(0) = n+

m|ωp=0,ω=0

with n+
m(ω;ωp) = c[kp(ωp) +K+

m(ω;ωp)]/(ωp + ω). It is easy to obtain

1

V +
p

=
nD

c
+

Nme

2ε0cnD

(g1X2 + g2X1) +
√

(g1X2 − g2X1)2 + 4κ2
1κ

2
2g1g2

ω2
1ω

2
2ω

2
3 − ω2

1κ
2
2 − ω2

2κ
2
1

, (21)

with Xj = ωjω3 − κ2
j .

Under the PIT condition [i.e. (κj/2ωp)2 � γjγ3/4, j = 1, 2], the real parts of the nonlinearity
susceptibilities χ(2)

+ and χ(3)
+ are greatly enhanced and their imaginary parts are much smaller

than their real parts. Interestingly, χ(3)
+ can be further enhanced via a strong coupling between
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the longwave and the fundamental wave. This can be seen from the expression of the effective

third-order nonlinearity susceptibility χ(3)
eff = χ

(3)
+ + R0

[
χ

(2)
+

]2
/

{
c2
[(

1
V +
p

)
−
(

1
V +
g

)2
]}

,

obtained by neglecting the diffraction term in Eq. (20) and then plugging the derived expression
forQ+ into Eq. (18). One sees that when longwave-shortwave resonance occurs (i.e. V +

g ≈ V +
p ),

χ
(3)
eff can be enhanced largely, which can be realized by adjusting the coupling parameters κ1 and
κ2. It is easy to show that the coupling strength of the longwave-shortwave interaction in the
present FWM-based system is

√
2 time larger than that in the metamaterial used Ref. [24], and

hence χ(3)
eff here is larger than that obtained in Ref. [24].

3.2. Vector plasmonic dromions

Equations (18) and (20) can be converted into the dimensionless form

i
∂u

∂s
+

(
∂2

∂ξ2
+ gd0

∂2

∂η2
+ gd1

∂2

∂τ2

)
u+ 2g1|u|2u+ g2vu = 0, (22a)

gd2
∂2v

∂τ2
−
(
∂2

∂ξ2
+ gd0

∂2

∂η2

)
v + g3

∂2|u|2

∂τ2
= 0. (22b)

where u = εF+/U0, v = ε2Q+/V0, s = z/(2Ldiff), τ = (t − z/V +
g )/τ0, ξ = x/Rx,

η = y/Ry, and gd0 = (Rx/Ry)2, gd1 = Ldiff/Ldisp, gd2 = [R2
x/τ

2
0 ][(1/V +

p )2 − (1/V +
g )2],

g1 = Ldiff/Lnln, g2 = Ldiff [ωp/(nDc)]R0V0χ
(2)
+ , g3 = R2

xU
2
0χ

(2)
+ /[c2τ2

0V0]. Here Rx (Ry)
is the typical radius of the incident EM field in the x (y) direction; τ0 is the typical pulse
duration of the probe field; U0 (V0) is the typical amplitude of the longwave (shortwave)
envelope; Ldisp = −τ2

0 /Re(K+
2 ), Ldiff ≡ nDωpR

2
x/c and Lnln = (2nDc)/[ωpU

2
0 Re(χ

(3)
+ )]

are, respectively, the typical dispersion length, the typical diffraction length, and the typical
nonlinearity length. Note that in obtaining Eq. (22), we have neglected the small imaginary parts
of χ(3)

+ andK+
2 , which is reasonable under the PIT condition as discussed above.

In favor of the formation of plasmonic dromions, we take the following two assumptions. First,
we shall assume Rx � Ry and thus gd0 � 1 so that the original (3+1)-dimensional nonlinear
problem can be reduced into a (2+1)-dimensional one. Second, we assume the contribution
of the dispersion, diffraction and the nonlinearity effects are of the same level, which can be
achieved by taking Ldiff = Ldisp = Lnln and thus we obtain τ0 = Rx

√
−ωpnDRe(K+

2 )/c and

U0 = [c/(ωpRx)]

√
2/Re[χ

(3)
+ ]. In fact, these two assumptions can be realized by taking the

realistic set of parameters, i.e. ∆1 = ∆2 = −5γ1, κ2 = −κ1 = 4260 GHz2, Rx = 1.8 cm,
Ry = 10.2 cm, U0 = 8.25 V/cm, V0 = 1.3 V/cm, τ0 = 4.1 × 10−11 s, and hence we
have K+

2 = (−1.30 + i0.10) × 10−19 cm−2s, χ(3)
+ = 1.20 × 10−3 + i2.26 × 10−7 cm2/V2,

Ldiff = Ldisp = Lnln = 13.4 cm, g1 = g2 = gd1 = gd2 = 1, g3 = 4, and gd0 � 1.
For such case, Eq. (22) can be simplified into standard Davey-Stewartson-I (DS-I) equation
i∂u/∂s + ∂2u/∂ξ2

1 + ∂2u/∂τ2
1 + v1u = 0,

(
∂2/∂ξ2

1 + ∂2/∂τ2
1

)
|u|2 = ∂2v1/∂ξ1∂τ1, with

v1 = v + 2|u|2, where for convenience ξ1 = (ξ + τ)/
√

2 and τ1 = (ξ − τ)/
√

2. The DS-I
equation can be exactly solved via the Hirota’s bilinear method [62]. A single-dromion solution
reads [63] u = G/F , v1 = V11 + V12, with V11 = 2∂2ln(F )/∂ξ2

1 , V12 = 2∂2ln(F )/∂τ2
1 , and

F = 1 + exp(η1 + η∗1) + exp(η2 + η∗2) + γ exp(η1 + η∗1 + η2 + η∗2), G = ρ exp(η1 + η2).
Here ηj = (kjr + ikji)(rj− rj0) + (Ωjr + iΩji)s (j = 1, 2), with (r1(0), r2(0)) = (ξ1(0), τ1(0)),
Ωjr = −2kjrkji, Ω1i + Ω2i = k2

1r + k2
2r − k2

1i − k2
2i, and ρ = 2

√
2k1rk2r(γ − 1). Here kjr,

kji, rj0 and γ are free real parameters.
Shown in Fig. 5(a) and Fig. 5(b) are, respectively, intensity distributions of the shortwave

profile |u|2 and the longwave profile |v1|2 as functions of ξ1 and τ1 at s = 0, when taking γ = 9,
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Fig. 5. Plasmonic dromions and their interaction. (a) [(b)] is the intensity profile of the
shortwave |u|2 (longwave |v1|2) as functions of ξ1 and τ1 at s = 0. (c1), (c2), (c3), (c4)
[(d1), (d2), (d3), (d4)] are intensity profiles of the shortwave |u|2 (longwave |v1|2) during
the interaction between two dromions, respectively at s ≡ z/(2Ldiff) = 0, 1, 2, 3. System
parameters are given in the text.

ξ10 = τ10 = 0, k1r = k2r = 1, and k1i = k2i = 0. Obviously, the shortwave profile |u|2 denotes
a localized envelope function, which decays exponentially in all spatial directions [Fig. 5(a)];
the longwave profile |v1|2 denotes two interacting plane solitons (kinks), which decay in their
respective traveling directions [Fig. 5(b)].
We proceed with the investigation on the interaction between two plasmonic dromions by

using a numerical simulation. Shown in Fig. 5(c1)-Fig. 5(c4) [Fig. 5(d1)-Fig. 5(d4)] are results
for the evolution of the shortwave |u|2 (longwave |v1|2) during the collision between two
dromions at s ≡ z/(2Ldiff) = 0, 1, 2, 3, respectively. When doing the simulation we have taken
a superposition of two dromion solutions as an initial input [i.e. Fig. 5(c1) and Fig. 5(d1)],
and initial speeds and positions of the two dromions are setting to be k1i = −k2i = 1.8 and
r10 = −r20 = 3.2. From the figure we see that two initial dromions become four dromions
after the collision, which are, respectively, located around the four intersections of the longwave
v1, and these four dromions gradually separate and propagate almost stably, indicating that the
collision between dromions is inelastic. The reason is that the four intersections of v1 are the
most attractive points in the entire region, which attract the EM wave intensities of the main
peaks of the shortwaves u during the collision, resulting in the appearance of four pulses for the
shortwave located around the four intersections after the collision [63].

Within the forth-order approximation, the explicit expression for theEMfield in themetamaterial
takes the form

E (r, t) ≡ exκ1 + eyκ2

κ2
1 + κ2

2

[(
U0ue

ikpz−iωpt + c.c.
)

+ V0v
]
. (23)
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When u and v are taken as the dromion solution given above, we obtain a vector plasmonic
dromion since the EM field (23) has two polarization components, with each component a
plasmonic dromion. Note that, different from the result in the scalar model considered before [24],
the polarization of the EM field obtained here can be actively selected by adjusting the separation
between the CWs and SRR [i.e. dx and dy in Fig. 2(b) and hence the coupling constants κ1 and
κ2], which can be served as a polarization selector for practical applications [64, 65].
The threshold of the power density of the vector plasmonic dromion given above can be

estimated by using Poynting vector. Based on the above system parameters, the average power of
the vector plasmonic dromion is given by P̄ = 6.1 mW. We see that due to the resonant character
of the PIT effect in the system, extremely low generation power is required for generating the
vector plasmonic dromion.

4. Discussion and summary

It should be mentioned that in writing the dark-state condition (7), the damping coefficient γ3 of
the dark oscillator in the meta-atoms is assumed to be small. However, due to the Ohmic loss
inherent in the metal, by our numerical calculation the value of γ3 is about 0.18 GHz, which,
although smaller comparing with the damping coefficients of the CWs (γ1 = γ2 = 2.1 GHz),
is still large and has inevitably detrimental impact on the PIT quality. In order to improve the
performance of the PIT, one can suppress γ3 by introducing a gain element into the SRR of the
meta-atoms. One possible way is the use of tunneling diodes that have negative resistance and
hence may provide gain to the PIT-based metamaterial [66,67]. Such method has been recognized
to be useful for suppressing and even cancelling γ3, particularly in microwave and THz regimes.

In conclusion, we have considered a plasmonic metamaterial interacting with a radiation field
with two polarization components. We have shown that such metamaterial can be taken as a
classical analogue of an EIT-based atomic gas with a double-Λ-type four-level configuration,
displays an PIT effect and allows an equivalent process of atomic FWM. We have also shown
that, when the nonlinear varactors are mounted onto the gaps of the SRRs, the system may
support vector plasmonic dromions, which have very low generation power and are robust during
propagation. Our work not only contributes a plasmonic analogue of atomic EIT and FWM but
also provides a way for generating novel plasmonic polaritons, and hence opens a new avenue on
the exploration of PIT effect in metamaterials.

Appendix

A. Explicit Expressions of the atomic Bloch equation

Explicit expressions of the Bloch equation for the density-matrix elements σjl of the four-level
double-Λ-type atoms are given by

i
∂σ11

∂t
− iΓ13σ33 − iΓ14σ44 − Ωp1σ

∗
31 − Ωp2σ

∗
41 + Ω∗p1σ31 + Ω∗p2σ41 = 0, (24a)

i
∂σ22

∂t
− iΓ23σ33 − iΓ24σ44 − Ωc1σ

∗
32 − Ωc2σ

∗
42 + Ω∗c1σ32 + Ω∗c2σ42 = 0, (24b)

i

(
∂

∂t
+ Γ13 + Γ23

)
σ33 + Ωp1σ

∗
31 + Ωc1σ

∗
32 − Ω∗p1σ31 − Ω∗c1σ32 = 0, (24c)

i

(
∂

∂t
+ Γ14 + Γ24

)
σ44 + Ωp2σ

∗
41 + Ωc2σ

∗
42 − Ω∗p2σ41 − Ω∗c2σ42 = 0 (24d)
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for diagonal elements, and(
i
∂

∂t
+ d21

)
σ21 − Ωp1σ

∗
32 − Ωp2σ

∗
42 + Ω∗c1σ31 + Ω∗c2σ41 = 0, (25a)(

i
∂

∂t
+ d31

)
σ31 − Ωp1 (σ33 − σ11)− Ωp2σ

∗
43 + Ωc1σ21 = 0, (25b)(

i
∂

∂t
+ d32

)
σ32 − Ωp2 (σ44 − σ11)− Ωc2σ

∗
43 + Ωp1σ

∗
21 = 0, (25c)(

i
∂

∂t
+ d41

)
σ41 − Ωc1 (σ33 − σ22)− Ωp1σ43 + Ωc2σ21 = 0, (25d)(

i
∂

∂t
+ d42

)
σ42 − Ωc2 (σ44 − σ22)− Ωc1σ43 + Ωp2σ

∗
21 = 0, (25e)(

i
∂

∂t
+ d43

)
σ43 − Ω∗p1σ41 − Ω∗c1σ42 + Ωp2σ

∗
31 + Ωc2σ

∗
32 = 0, (25f)

for non-diagonal elements, where Γj =
∑
l<j Γjl, with Γjl the spontaneous emission decay rate

from the state |l〉 to the state |j〉; djl = ∆j −∆l + iγjl, γjl = (Γj + Γl)/2 + γdep
jl , with γdep

jl

the dephasing rate between the state |j〉 and the state |l〉.

B. Determination of the system parameters in the Lorentz equation

The coefficients in the coupled Lorentz equation Eq. (6) is determined by fitting the numerical
result in Fig. 2(c) and Fig. 2(d) obtained by using the finite difference time domain software
package (CST Microwave Studio) stated in the main text, and the analytical result of Eq. (6).
Assuming the solution of Eq. (6) has the form ql(z, t) = ql0 exp(ikpz− iωpt) + c.c. (l = 1, 2, 3)
and Ej(z, t) = Ej0 exp(ikpz − iωpt) + c.c. (j = x, y), we have

q10 =

(
D3D2 − κ2

2

)
g1Ex0 + κ1κ2g2Ey0

D1D2D3 −D2κ2
1 −D1κ2

2

, (26a)

q20 =
κ2κ1g1Ex0 +

(
D3D1 − κ2

1

)
g2Ey0

D1D2D3 −D2κ2
1 −D1κ2

2

, (26b)

q30 =
D2κ1g1Ex0 +D1κ2g2Ey0

D1D2D3 −D2κ2
1 −D1κ2

2

, (26c)

with Dj = ω2
j − ω2

p − iγjωp.
The red solid lines in Fig. 2(c) and Fig. 2(d) (where Ex0 and Ey0 have been taken to be real)

show the analytical result based on Eq. (26a) in the cases Ey0 = −Ex0 (the excitation condition
of the PIT-mode) and Ey0 = Ex0 (the excitation condition of the non-PIT-mode), respectively. A
better fitting yields ω1 = ω2 = 2π × 13.13 GHz, ω3 = 2π × 13.08 GHz γ1 = γ2 = 2.1 GHz,
γ3 = 0.15 GHz, κ2 = −κ1 = 50 GHz2 for dx = dy = 4.0 mm and κ2 = −κ1 = 250 GHz2 for
dx = dy = 3.4 mm, and g1 = g2 = 1.79× 1011 C/kg.

C. Equations for qµj and Eµj
The equations of motion for qµj read(

i
∂

∂t
+ df1

)
qf1 +

κ1

2ωp
qf3 +

g1

2ωp
Efx = 0, (27a)(

i
∂

∂t
+ df2

)
qf2 +

κ2

2ωp
qf3 +

g2

2ωp
Efy = 0, (27b)
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(
i
∂

∂t
+ df3

)
qf3 +

κ1

2ωp
qf1 +

κ2

2ωp
qf2

− 1

2ωp

[
2α(qd3qf3 + qs3q

∗
f3) + 3β|qf3|2qf3

]
= 0, (27c)(

∂2

∂t2
+ γ1

∂

∂t
+ ω2

1

)
qd1 − κ1qd3 − g1Edx = 0, (27d)(

∂2

∂t2
+ γ2

∂

∂t
+ ω2

2

)
qd2 − κ2qd3 − g2Edy = 0, (27e)(

∂2

∂t2
+ γ3

∂

∂t
+ ω2

3

)
qd3 − κ2qd1 − κ2qd2 + 2α |qf3|2 = 0, (27f)(

i
∂

∂t
+ ds1 +

3

4
ω1

)
qs1 +

κ1

4ωp
qs3 +

g1

4ωp
Esxei∆kz = 0, (27g)(

i
∂

∂t
+ ds2 +

3

4
ω2

)
qs2 +

κ2

4ωp
qs3 +

g2

4ωp
Esyei∆kz = 0, (27h)(

i
∂

∂t
+ ds3 +

3

4
ω3

)
qs3 +

κ1

4ωp
qs1 +

κ2

4ωp
qs2 −

α

4ωp
q2
f3 = 0, (27i)

with dfj = ∆j + iγj/2 and dsj = 2∆j + iγj/2, and equations for Eµj are given by

i

(
∂

∂z
+
nD

c

∂

∂t

)
Efx +

c

2ωpnD

(
∂2

∂x2
+

∂2

∂y2

)
Efx + κ0qf1 = 0, (28a)

i

(
∂

∂z
+
nD

c

∂

∂t

)
Efy +

c

2ωpnD

(
∂2

∂x2
+

∂2

∂y2

)
Efy + κ0qf2 = 0, (28b)(

∂2

∂z2
− n2

D

c2
∂2

∂t2

)
Edx +

(
∂2

∂x2
+

∂2

∂y2

)
Edx −

Nme

ε0c2
∂2

∂t2
qd1 = 0, (28c)(

∂2

∂z2
− n2

D

c2
∂2

∂t2

)
Edy +

(
∂2

∂x2
+

∂2

∂y2

)
Edy −

Nme

ε0c2
∂2

∂t2
qd2 = 0, (28d)

i

(
∂

∂z
+
nD

c

∂

∂t

)
Esx +

c

4ωpnD

(
∂2

∂x2
+

∂2

∂y2

)
Esx + 2κ0qs1e

−i∆kz = 0, (28e)

i

(
∂

∂z
+
nD

c

∂

∂t

)
Esy +

c

4ωpnD

(
∂2

∂x2
+

∂2

∂y2

)
Esy + 2κ0qs2e

−i∆kz = 0. (28f)

D. Solutions of q(m)
µj at each order approximations

The first-order [i.e. O(ε)] solution has only the fundamental wave, which reads

q
(1)
f1 =

1

κ0

(
K+
m −

nD

c
ω
)
F+e

iθ+ , (29a)

q
(1)
f2 =

G+

κ0

(
K+
m −

nD

c
ω
)
F+e

iθ+ , (29b)

q
(1)
f3 =

D2κ1g1 +D1κ2g2G
+

D1D2D3 −D2κ2
1 −D1κ2

2

F+e
iθ+ , (29c)

with Dj = −2ωj(ω + dfj) (j = 1, 2, 3).
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At the second order [i.e. O(ε2)], solution for the fundamental wave is given by

q
(2)
f1 =

1

κ0

(
∂K+

m

∂ω
− nD

c

)(
i
∂

∂t1

)
F+e

iθ+ , (30a)

q
(2)
f2 =

G+

κ0

(
∂K+

m

∂ω
− nD

c

)(
i
∂

∂t1

)
F+e

iθ+ . (30b)

The expression of q(2)
f3 is long and omitted for saving space. Solution for the longwave (rectification)

reads

q
(2)
d1 =

(
Nme

2ε0nD

)−1 [
n+
m(0)− nD

]
Q+ +

−2αω2
2κ1

ω2
1ω

2
2ω

2
3 − ω2

2κ
2
1 − ω2

1κ
2
2

∣∣∣q(1)
f3

∣∣∣2 , (31a)

q
(2)
d2 =

(
Nme

2ε0nD

)−1

G+
[
n+
m(0)− nD

]
Q+ +

−2αω2
1κ2

ω2
1ω

2
2ω

2
3 − ω2

2κ
2
1 − ω2

1κ
2
2

∣∣∣q(1)
f3

∣∣∣2 , (31b)

q
(2)
d3 =

ω2
2κ1g1 + ω2

1κ2g2G
+

ω2
1ω

2
2ω

2
3 − ω2

2κ
2
1 − ω2

1κ
2
2

Q+ +
−2αω2

1ω
2
2

∣∣∣q(1)
f3

∣∣∣2
ω2

1ω
2
2ω

2
3 − ω2

2κ
2
1 − ω2

1κ
2
2

, (31c)

where n+
m(0) = n+

m|ωp=0,ω=0, with n+
m(ω;ωp) = c[kp(ωp) +K+

m(ω;ωp)]/(ωp + ω) the linear
refractive index of the metamaterial. Solutions of the second-harmonic wave is

q
(2)
s3 =

−αH1H2

H1H2H3 −H2κ2
1 −H1κ2

2

[q
(1)
f3 ]2, (32)

with Hj = −4ωj(2ω + dsj + 3ωj/4), where δji is the Kronecker symbol. Expressions for q(2)
s1

and q(2)
s2 are omitted here for saving space.

At the third order [i.e. O(ε3)], solution of the fundamental wave reads

q
(3)
f1 =

−1

2κ0

∂2K+
m

∂ω2

∂2F+

∂t21
eiθ+ +

D2κ1

[
2α[q

(2)
d3 q

(1)
f3 + q

(2)
s3 q

(1)∗
f3 ] + 3β|q(1)

f3 |2q
(1)
f3

]
D1D2D3 −D2κ2

1 −D1κ2
2

, (33a)

q
(3)
f2 =

−G+

2κ0

∂2K+
m

∂ω2

∂2F+

∂t21
eiθ+ +

D1κ2

[
2α[q

(2)
d3 q

(1)
f3 + q

(2)
s3 q

(1)∗
f3 ] + 3β|q(1)

f3 |2q
(1)
f3

]
D1D2D3 −D2κ2

1 −D1κ2
2

. (33b)

The expression of the coefficient R0 in Eq. (18) is given by

R0 =
(D2κ1g1 +D1κ2g2G

+)
2

|D2κ1g1 +D1κ2g2G+|2

∣∣D1D2D3 −D2κ
2
1 −D1κ

2
2

∣∣2
(D1D2D3 −D2κ2

1 −D1κ2
2)

2 . (34)

E. Nonlinear coefficients in Eq. (17)

The nonlinear property of the SRRs has been theoretically analyzed and experimentally measured
in Ref. [60]. The value of q in Ref. [60] represents the renormalized voltage, which has the unit
of volt (V), while the value of q3 in our work represents the amplitudes of the dark modes, which
has the unit of centimeters (cm). To make a comparison we switch the unit of Eq. (6), reading

∂2u1

∂t2
+ γ1

∂u1

∂t
+ ω2

1u1 − κ1u3 =
g1

Q0
Ex, (35a)

∂2u2

∂t2
+ γ2

∂u2

∂t
+ ω2

2u2 − κ2u3 =
g2

Q0
Ey, (35b)

∂2u3

∂t2
+ γ3

∂u3

∂t
+ ω2

3u3 − κ1u1 − κ2u2 + αQ0u
2
3 + βQ2

0u
3
3 = 0, (35c)
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where qj = Q0uj (j = 1, 2, 3). uj has the unit of V and Q0 has the unit of cm · V−1.
Thus, nonlinear coefficients α and β in our model (6) can be calculated through the dimension
transformation α = Q−1

0 α0 and β = Q−2
0 β0, where α0 = −Mω2

3/(2Vp) and β0 = M(2M −
1)ω2

3/(6V
2
p ) can be found in Ref. [60], readily given by α0 = −2.3503 × 103 V−1GHz2

and β0 = 4.8211 × 102 V−2GHz2 with ω3 = 2π × 13.08 GHz given in context. Taking a
typical value Q0 = 1.0× 10−9 V−1cm [23, 24] for dimension transformation, we finally obtain
α = −2.3503× 1012 cm−1GHz2 and β = 4.8211× 1020 cm−2GHz2.
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