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A second-harmonic generatiqi®HG) is predicted for the Bogoliubov excitations in a two-component
Bose-Einstein condensate. It is shown that, because the linear dispersion curve of the excitations displays two
branches, the phase-matching condition for the SHG can be fulfilled if the wave vectors and frequencies of
fundamental and second-harmonic waves are selected suitably from different branches. The nonlinearly
coupled envelope equations for the SHG are derived by using a method of multiple scales. The explicit
solutions of these envelope equations are provided and the conversion efficiency of the SHG is also discussed.
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Since the successful experimental realization of Bosetwo branches and hence provides us with the possibility to
Einstein condensation in weakly interacting atomic gasesiulfill the SHG phase-matching condition. Since the SHG is
much progress has been made on the study of linear collee process of energy up-conversion, at zero temperature such
tive excitations (or called Bogoliubov quasiparticlgsin process can be well described by two coupled Gross-
Bose-Einstein condensatéBECS [1]. The nonlinear collec- Pitaevskii(GP) equations. Using a method of multiple scales
tive excitations in BECs have also attracted much attentionve derive the nonlinearly coupled envelope equations de-
[2-10. The investigation on the nonlinear collective excita-scribing the SHG and give their explicit solutions. We show
tions up to now can be classified into two types. One of thenthat an experimental realization of such SHG may give in-
is the low-energy excitations with the size the same as that dbrmation about the interaction between different compo-
condensate. The eigenfrequencies of such excitations are disents of the condensate.
crete, i.e., they are standing wave modes. The nonlinear fre- We consider a two-component BEC, which is a binary
quency shift and mode coupling have been explored botmixture of condensate. Such mixture may consist of different
theoretically and experimentalljgd—10. A very interesting particles such a¥Rb and*Na, or different isotopes such as
work in this aspect is the experimental observation by Hech®’Rb and®®Rb, or different hyperfine spin states of the same
enblaikneret al. on the harmonic generation from a low- species. Denotin’;(r ,t) as the order parameter of specjes
lying mode to a high-lying mode of condensed rubidium gaswith particle numbem;=fdr|¥;? (j=1,2), ¥; satisfy the
in a harmonic trag7]. The other type of excitations explored GP equations
are those with the size much smaller than that of condensate. o
In this case the excitations have higher energy and their., 2*1 _ > 2 2 2
eigenfrequencies are continuo@s quasi-continuoys char- L =[= (H2m) V24 Vo) + gual Wl + 0 Wo T,
acterizing the intrinsic bulk property of the condengdts. (1)
Such collective excitations can propagate a fairly long time
before reaching the boundary of condensate. The most typi-
cal nonlinear excitations of such kind explored in BECs are iﬁu = [~ (h212mp) V2 + Vo(r ) + G W2 + Qoo W, 2],
solitary excitations, including dark2] and bright[3] soli- at
tons. Recently, Ozert al. [12] investigated the mixing of 2)
three propagating wave modes with energy down-conversion
in a homogeneous, single-component BEC with a repulsiv&vhere m; and V;(r) are respectively the atomic mass and
interatomic interaction. However, as far as we know so faexternal trapping potential for the specieg, g
no work has been reported on a second-harmonic generatierﬂwﬁza“/mj. is interaction parameter witly, (j,1=1,2) be-
(SHG) for propagatingcollective excitations in BECs. It is ing the sswave scattering length between the spegiesnd
this topic that will be addressed here. the speciesl (a;>0 for repulsive interaction and my

Note that for a single-component BEC the SHG is not=mym/(m;+m;) being the reduced mass. We consider a
possible because its excitation spectrum, which takes thguasi-one-dimensionglD) trap with a negligible axial con-
form w(q) =q(c?+q?/4)*? [1] with g the wave number of the finement. Such a system can be realized experimentally by
excitation anct the sound speed of the system, cannot satisfysing, e.g., a toroidal trap of radi&sand cross arear? with
the phase-matching condition for the SHG. Thus we considethe conditionr <R satisfied. Thus the trapping potentials
a two-component BEC, whose excitation spectrum display$ake the formVj(r):(mj/2)w]-2L(y2+zz)], wherew;, are the
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trap frequencies of the specig# transverse directions. For sl @

simplicity we assumen;=m,=m and w; , =w,, =, . Such

assumption is only for getting simplified expressions and 20

clarifying essential physics. A more general case can be con-

sidered with a similar result given below. 15 B
Expressing the order parameters in terms of their modulus

and phases, i.e‘lszv’nj expli¢;), we obtain a set of coupled 10 1

nonlinear equations fon; and ¢; (j=1,2). By letting the

condensate densities, time, axial spatial coordinate and trans-

verse spatial coordinates are measured respectively in the q

units ng=N,/(La%), to,=w7%, L (condensate length in the o N

axial direction, anda, =[#/(mw,)]*? (harmonic oscillator FIG. 1. The dispersion curve of a two-component BEC consist-

length in the transverse directionshese equations become ing of two different hyperfine spin states in a trap with the particle

dimensionless. We assume that the transverse confinementrigmbersN;=N,=2x 10°. Curves 1 and 2 represent the upper

strong enough so that the conditiors <l, [where |, branch,w,(q), and the lower branchy_(q), respectively. The inter-
=(4mny01.) Y2 is healing length and nyg;;<<Aw, can be  action parameters of the system &g=1.0,G;,=G,;=0.9926 and
satisfied. Under these conditions the system can be taken &s,=1.0027. For the fundamental wave and the second-harmonic
quasi-1D, which implies that at sufficiently low temperaturewave, the phase-matched wave vectors and frequencies for the SHG
the transverse motion of the particles is essentially “frozenare(d;=2.743 w,=7.536 and(g,=5.486 w,=15.073, which have
and governed by the ground-state wave functions oPeen illustrated by the pointsA=(qy, @) and B=(0,wp),
corresponding transverse harmonic oscillafdr3,14. Thus respectively.

one can take Vn=AX,Dip(Y)i(z) and @

=¢(x,1)(j=1,2, where ii(y)ho(2) =7 Y2exd-(y?+2)/2]  =w-(d)=w-(2qy), the condition (6) is equivalent to

is the normalized ground state wave function of a 2D harw_-(2q;) =2w.(q;), which results in the solution

monic oscillator. We obtain

g = (2/\6)[(611‘ Gyo)? + 4Gy,Gyy V4. (7)

ANt +e[(OAIIX)(I ¢lax) +3A/(0 2 /axD]=0,  (3) e ot ) . A
Thus for the two-component condensate the SHG phase-
_192/932 1090 2 A2 . " o :
(@ ¢ilat+ DA+ e[~ 30 °19x+3(0 ¢i/9x)+ (L12m)(Gji AT aiching condition can be satisfied based on the multivalue
+Gisj A§_J)]Aj =0, (4) E)I:gpgirsty of _the linear dispersion reIa}ion. Shown in Fig. 1 is
persion curve of the collective modes of the two-
with Gjj=g;;/gy;. The parametes=nyg,,/ (hw,), i.e., thera- component BEC consisting of different hyperfine spin states
tio between the atomic interaction and the strength of thén the trap with the particle numbefd; =N,=2x 10P. For
transverse confinement, is a natural expansion parameter fgis system one ha8,;=1.0, G;,=0.9926 andG,,=1.0027
solving Egs.(3) and(4) approximately. [15]. The modes satisfying the phase-matching condit@®n
The stationaryground state solution of the above equa- have been clearly shown as the poit(qy, w,) (the funda-
tions is given byA;=A;gs=1/\L, Ay=Ayss=y{N,/(N,L),  mental wavgand the poinB=(q,, w,) (the second-harmonic
¢1GS=-(1+M(11))L and ¢ZGS:_(1+M(21))t with M(ll)z(Gn wave). From Eq.(7) we obtainq;=2.743 and hencev;
+GyNo/Np) [ (27L), and Y= (Gyy+ GoNo/Ny)/(2mL). The = 7-536,0,=5.486 andw,=15.072. o o
linear dispersion relation of an excitation from the ground V& know that an optical SHG occurs in active media with
state is given by no inversion symmetry. For trapped atoms this symmetry is
5 y 1 ~ 1o 1y ~ not broken and hence the SHG in the BEC is possible only
wi(A/g°=5(C11+ Gpo) + 30 5[(G11—~ G20 when the ground statécondensateis not depleted by the
4G B2 5 excitations. This imposes a constraint that the amplitude of
+ 461Gl ®) the excitations cannot be too large. Here we develop a weak
= = = nonlinear theory for the SHG in the BEC by making the
where  G11=Gyy/(27L),  G1p=GrNo/(27LNy), Gy . y 10 A A W, 2 (2% g
asymptotic expansioA, —Ajgs=Ajgs(eF. " +&°F “+--+) and
=G,/ (27L), and Gy,=G,,N,/(27LN;). q and w are wave M. 2.0 R0,
ector and frequency of the excitation, respectively, Froml 2ies=8®; +e ¢ +- -, whereF; andd; " are the func-
\é 5) we seglihat ){he dis er);'(lnn Ic r’ o o? thévcglllect' e ions of the fast variables, = and the slow variableX=¢x,
q. 5 w ISpers urv VeT=cr. The expansion parametef=nyg;,/(Aw,)] can be
modes has two branches, i.e., the upper bramgh) and the ; . o
small as long as the typical value of the chemical potential is

lower branchw.(q); bqth of them are acoustic. less than the level spacing of the harmonic oscillator. Using
A qecessary_con_dnmn for the SHG s that the phase'such expansion Eq$3) and(4) are transferred into a set of
matching condition, i.e., equations forFJf') and ¢]§') (j=1,2;1=1,2,3,..). In the first-
O =20;, wp=2w;, (6) order(I=1) we get the solution in linear approximation. For

. the SHG we take
must be fulfilled, wherej;(g,) andw;(w,) are the wave vec-

tor and frequency of the fundamentédecond—harmonjc @ ) )
wave, respectively. By choosings;=w.(q;) and w, F17=Uexpi6y) + Uzexplify) +c.c., (8
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F = (G1o0®) L y(wy,q) U expli 6y)

+(Gyo0) " Ly(wp, G)Uoexpi ) + c.c.,  (9)

HV = —i(201/0) U exp(i 6) — i(2w,/q2) U explify) + c.c.,
(10)

PP = = i271(G10) Wy (01,0 U expli 6y)

- i27mwz(élzq§)‘lL1(wz,Qz)UzeXp(i 6)+cc., (11

where L;(w,q)=w?-(Gy;+q%/4)g?, U; and U, are respec-
tively the envelope functions of the fundamental wawéth
the phase#;=q;x—w;,7) and the second-harmonic wave
(with the phaseéd,=Qx—w,7). 01, Oy, @, and w, are chosen
according to the SHG phase-matching conditi@y, i.e.,
w1=w.(0) and w;=w_(dy) With g,=20;.

At the second ordefl =2), solvability conditions give the
closed equations fod,; and U,. After making the transfor-
mationU;=eu; and noting thalX=ex andT=e7, we get

AU /9 T+vgy(9 U /9X) + T ujuexp(—iAgY) =0, (12)

IUyld T+ vgy(d Ul IX) +iTuZexp(—iAgx) =0, (13

wherevy;=(dw,/dg)4-q is the group velocity ofith wave,

Aq=0,—2q; is a possible phase mismatch. The expression

of vg; (j=1,2) is given by

 La(w),0)(@? +G74) + Ly(w;,q)(@f +qf/4)

, (14
;L1 (wj,0) + Ly(w;,q))]

Ugj
where Ly(w,q)=w?~(Gyy+02/4)g2. The nonlinear coeffi-
cients appearing in Eq$12) and(13) read

I'1 = A/{2wq[L4(@1,01) + Lo(w1,00) ]}, (15

[y = A/ {2w,[L1(w3,0p) + Lo(wy,0p) 1}, (16)

with

Aq = Ly(01,a)[3(w? + Gyy2) + Ly(w1,00) + $L1(w,0)
+ [La(01,00) La(02,02) /(4G 1,08)] + G1.Gontlt + {[3(wf
+ Goa) /(4G 1)} Ly (w1, ULy (w2,0)

+ ézﬂ-ﬁ['—l(wqul) + lel-l(wz,%)], (17)

A= (24/612”—%(&)1,(11)(0)%/(1% +Gyp) + 8612621(1‘1‘
+ 16{321(1?-1(0)1,(3]1) + Ly(wp, Gp)[ 6] + 6611‘1%

+ 4Ly (w1,0y) + [2L2(w1,0)1(G10D)]. (18)

We now consider the solutions of Eq42) and(13) cor-
responding to the SHG. For a stationary cé#&)r=0) and
for Ag=0, Egs.(12) and(13) admit the solutior{16]

u, = (_ F1W/vgl)llzsecfﬁrllvgl(— FzW/ng)llzx]ei<po, (19)

PHYSICAL REVIEW A9, 065601(2004)

08
0.6 3
0.4 2

0.2

0 0.002 0.004 0.006 0.008

FIG. 2. The conversion efficiency as a function of interspecies
interaction parametés(=G;,=G,;) and propagating distansen a
stationary SHG foiG;,=1.0, G,,=1.0027. Curves 1, 2, and 3 cor-
respond to the input pow&¥=10.0 with the propagating distange
taking the values 5.0, 10.0, and 20.0, respectively.

U2 = (_ F2W/Ug2) 1/2tanl{F1/vgl(— F2W/Ug2) 1/2X]ei(2‘P0+7T/2),
(20

where W(X) ==(vg1/T1) s[>~ (vgo/ T'5)|U|?’=W(0) is a con-
stant(denoting the input power of the excitatioand ¢, is

an arbitrary constant. Ax=0, the fundamental wave takes
the total powerW of the system and thus power of the
second-harmonic wave is zero. Adncreases the power of
gqe fundamental wave is converted gradually into the
second-harmonic wave. At distange the conversion effi-
ciency from the fundamental wave into the second-harmonic
wave is given by

7= Wa(X)/Wy(0) = tanif[T'y/v gy (- T W/vgn) V], (21)

whereW;(x)==(vg;/T'))|u;|? is the power ofjth wave. Thus
the conversion efficiency of the SHG is determined)py T’
(j=1,2, W and the propagating distance From Egs.
(14—18) we see that, sincey; andI’; depends on the inter-
atomic interaction parameter;, a larger conversion effi-
ciency can be obtained by controllirgg.

Note that the solution19) and (20) is valid only for
(I'1/vg)(I'z/vg) >0. Because bothy, andvg, are positive,
we require thatl’; and I', have the same sign. It can be
shown that botH"; andI', are negative for the interaction
parameterss,,=1.0, G,,=1.0027 whenG,, takes the value
in the interval between zero and 1. Thus the soluti® and
(20) is physically realizable.

Shown in Fig. 2 is the conversion efficieneyas a func-
tion of G;5(=G,;) and the propagating distan¢er sample
length x whenG,;=1.0 andG,,=1.0027. The input power is
taken asWw=10.0. The curves 1, 2, and 3 correspond to the
propagating distance taking the values 5.0, 10.0, and 20.0,
respectively. From Fig. 2 we see that to obtain a significant
conversion efficiency of the SHG, in addition to a larger
propagating distance and a larger input power, one must
choose an appropriate interspecies interaction stre@ggh
This provides us also a possibility for determinify, by
measuring the SHG conversion efficiengy

Note that for a condensate of finite lendthto make the
localized solution19) and(20) be valid the size of the first
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harmonic localizatiori.e., (vg/|T1|)[vge/ (T2 W)1*?) should  length is much larger than the nonlinear length, ils,,
be less thanL, which results in the requirement >Ly, the walk-off effect can be neglected. In
= (vg/[T1)[vga! (T2 /W) ]2 Forw=10.0 one hat=8.0(in  this case the solution24) and (25 is simplified into
unit of the healing lengtiy, which is about lum). To geta (7 x)=Ay/(1+72)sechiAx/(1+0)] and wy(Z,X) =Ay/ (1

larger conversion efficiency; in a real experiment, one ~ ~ o .
should use a long enough condensate. + 2 tanf Agx/ (1+¢)]. This situation corresponds to a quasis-

For very short-pulse excitations the walkoff effect tationary SHG and only in this case the conversion efficiency

due to different group velocities for the fundamental and'S Significant. _ o
the second-harmonic wave must be taken into N conclusion, we have made a theoretical prediction of

account [16]. By the transformation u;=[vgvg SHG for propagating nonlinear collective excitations in a
J(TC) Y20 exo(i and U= (o /TOw.exdi(2o+ /2 quasi-1D, two-component BEC. We have shown _that_ the
(\Evll V\i]andtp ae(eq;)eal functiénévg; a'%:) arr{d(a(spsuapt)ig)n phase-matching condition of the SHG can be satisfied if the

_ wave vectors and frequencies of fundamental and second-
Ag=0, Egs.(12) and(13) become harmonic waves are selected suitably from different branches
AW/ X+ (LIvgy) (IW,/3 T) = Wy Wy, (22)  of the linear dispersion curve. We have derived the nonlinear

envelope equations for the SHG by using a method of mul-
IWol X+ (L) (I Wold 7) = = WE. (23)  tiple scales and presented the SHG solutions. The conversion

efficiency from the fundamental wave to the second-
Consider a traveling-wave solution, i.e., take(j=1,2) are  harmonic wave has also been discussed. The results pre-
the functions ofx and {=7-x/vy, EQs.(22) and (23) are  sented here can also be generalized to the quasi-1D BEC
transferred asw;/ dx=w;yWy, W,/ X+ v W,/ I¢= ‘Wi where  with a slowly varying axial confining potential. In this case
v=1/vgp—1lvg is a parameter denoting the walkofér  the envelope equatiorid2) and(13) are still valid but their
group-velocity dispersioneffect. If atx=0 the fundamental coefficients will depend on the slow-variable Although
wave and the second-harmonic wave take the fogt®,7)  solving the SHG problem in such trap is a further topic, one
=Ay/ (1+72/ 73) andw,(0,7) =0, wherer, is the initial pulse  can expect that the main character of the solution will not be
width andAy is a constant representing the initial amplitude changed. To experimentally test the prediction given above,
of the fundamental wave, one can get the following solutionone can use the method developed in R&7] to generate

[16]: high frequency and weak nonlinear excitations of small size
by suddenly modifying the trapping potential using optical

w;(¢,X) = = Ao _ ~1 , dipole force of a focused laser beam. To get a larger conver-

(1 +7)Y1 +(-%)?M?coshg + {/fy sinh & sion efficiency one can adjust the parameters of the trapping

potential. It is better to use a condensate long enaaghn

Ref. [17]) so that two wave modes can have a significant

s energy transfer. Another way is to change the interspecies
Ay Xcoshé+([fy— (¢ =%X)/fy]sinh & interaction parametes,, by using Feshbach resonance tech-

' nique [1]. Inversely, the measurement of the conversion ef-
ficiency n» in the SHG may provide a possibility to determine
(25 the interspecies interaction paramet&;, for a two-
component BEC.

(24)

wy(g) =
T T s (-2 coshé + ¥,

where Z’:é’/ro, X=x/L,, fOZ(Tg/T(Z:r—l)llz, Tor=vhn, €
=f[tam/—tam({-%)] with L,=7,/v (walk-off or disper- This work was supported in part by the NSFC under
sion length and LN,_:A(;1 (nonlinear length If the walk-off ~ Grant No. 10274021.
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