
Second-harmonic generation of Bogoliubov excitations
in a two-component Bose-Einstein condensate

Guoxiang Huang,1,2 Xin-qi Li, 1,3 and Jacob Szeftel2

1Department of Physics and Key Laboratory for Optical and Magnetic Resonance Spectroscopy, East China Normal University,
Shanghai 200062, China

2Laboratorie de Physique Théorique de la Matière Condensée, Case 7020, Université Paris VII—Denis Diderot, 2 Place Jussieu,
F-75251 Paris Cedex 05, France

3National Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912,
Beijing 100083, China

(Received 8 September 2003; revised manuscript received 12 February 2004; published 24 June 2004)

A second-harmonic generation(SHG) is predicted for the Bogoliubov excitations in a two-component
Bose-Einstein condensate. It is shown that, because the linear dispersion curve of the excitations displays two
branches, the phase-matching condition for the SHG can be fulfilled if the wave vectors and frequencies of
fundamental and second-harmonic waves are selected suitably from different branches. The nonlinearly
coupled envelope equations for the SHG are derived by using a method of multiple scales. The explicit
solutions of these envelope equations are provided and the conversion efficiency of the SHG is also discussed.
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Since the successful experimental realization of Bose-
Einstein condensation in weakly interacting atomic gases,
much progress has been made on the study of linear collec-
tive excitations (or called Bogoliubov quasiparticles) in
Bose-Einstein condensates(BECs) [1]. The nonlinear collec-
tive excitations in BECs have also attracted much attention
[2–10]. The investigation on the nonlinear collective excita-
tions up to now can be classified into two types. One of them
is the low-energy excitations with the size the same as that of
condensate. The eigenfrequencies of such excitations are dis-
crete, i.e., they are standing wave modes. The nonlinear fre-
quency shift and mode coupling have been explored both
theoretically and experimentally[4–10]. A very interesting
work in this aspect is the experimental observation by Hech-
enblaikneret al. on the harmonic generation from a low-
lying mode to a high-lying mode of condensed rubidium gas
in a harmonic trap[7]. The other type of excitations explored
are those with the size much smaller than that of condensate.
In this case the excitations have higher energy and their
eigenfrequencies are continuous(or quasi-continuous), char-
acterizing the intrinsic bulk property of the condensate[11].
Such collective excitations can propagate a fairly long time
before reaching the boundary of condensate. The most typi-
cal nonlinear excitations of such kind explored in BECs are
solitary excitations, including dark[2] and bright [3] soli-
tons. Recently, Ozeriet al. [12] investigated the mixing of
three propagating wave modes with energy down-conversion
in a homogeneous, single-component BEC with a repulsive
interatomic interaction. However, as far as we know so far
no work has been reported on a second-harmonic generation
(SHG) for propagatingcollective excitations in BECs. It is
this topic that will be addressed here.

Note that for a single-component BEC the SHG is not
possible because its excitation spectrum, which takes the
form vsqd=qsc2+q2/4d1/2 [1] with q the wave number of the
excitation andc the sound speed of the system, cannot satisfy
the phase-matching condition for the SHG. Thus we consider
a two-component BEC, whose excitation spectrum displays

two branches and hence provides us with the possibility to
fulfill the SHG phase-matching condition. Since the SHG is
a process of energy up-conversion, at zero temperature such
process can be well described by two coupled Gross-
Pitaevskii(GP) equations. Using a method of multiple scales
we derive the nonlinearly coupled envelope equations de-
scribing the SHG and give their explicit solutions. We show
that an experimental realization of such SHG may give in-
formation about the interaction between different compo-
nents of the condensate.

We consider a two-component BEC, which is a binary
mixture of condensate. Such mixture may consist of different
particles such as87Rb and23Na, or different isotopes such as
87Rb and85Rb, or different hyperfine spin states of the same
species. DenotingC jsr ,td as the order parameter of speciesj
with particle numberNj =edr uC ju2 s j =1,2d, C j satisfy the
GP equations

i"
] C1

] t
= f− s"2/2m1d¹2 + V1sr d + g11uC1u2 + g12uC2u2gC1,

s1d

i"
] C2

] t
= f− s"2/2m2d¹2 + V2sr d + g21uC1u2 + g22uC2u2gC2,

s2d

where mj and Vjsr d are respectively the atomic mass and
external trapping potential for the speciesj , gjl
=2p "2ajl /mjl is interaction parameter withajl s j , l =1,2d be-
ing the s-wave scattering length between the speciesj and
the speciesl (ajl .0 for repulsive interaction) and mjl
=mjml / smj +mld being the reduced mass. We consider a
quasi-one-dimensional(1D) trap with a negligible axial con-
finement. Such a system can be realized experimentally by
using, e.g., a toroidal trap of radiusR and cross areapr2 with
the condition r !R satisfied. Thus the trapping potentials
take the formVjsr d=smj /2dv j'

2 sy2+z2d], wherev j' are the
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trap frequencies of the speciesj in transverse directions. For
simplicity we assumem1=m2=m and v1'=v2'=v'. Such
assumption is only for getting simplified expressions and
clarifying essential physics. A more general case can be con-
sidered with a similar result given below.

Expressing the order parameters in terms of their modulus
and phases, i.e.,C j =Înj expsif jd, we obtain a set of coupled
nonlinear equations fornj and f j s j =1,2d. By letting the
condensate densities, time, axial spatial coordinate and trans-
verse spatial coordinates are measured respectively in the
units n0=N1/ sLa'

2 d, t0=v'
−1, L (condensate length in the

axial direction), anda'=f" / smv'dg1/2 (harmonic oscillator
length in the transverse directions), these equations become
dimensionless. We assume that the transverse confinement is
strong enough so that the conditionsa'! l0 [where l0
=s4pn0g11d−1/2 is healing length], and n0g11!"v' can be
satisfied. Under these conditions the system can be taken as
quasi-1D, which implies that at sufficiently low temperature
the transverse motion of the particles is essentially “frozen”
and governed by the ground-state wave functions of
corresponding transverse harmonic oscillators[13,14]. Thus
one can take Înj =Ajsx,tdc0sydc0szd and f j

=f jsx,tds j =1,2d, where c0sydc0szd=p−1/2expf−sy2+z2d /2g
is the normalized ground state wave function of a 2D har-
monic oscillator. We obtain

] Aj /] t + «fs] Aj /] xds] f j /] xd + 1
2Ajs] 2f j /] x2dg = 0, s3d

s] f j /] t + 1dAj + «f− 1
2] 2/] x2 + 1

2s] f j /] xd2 + s1/2pdsGjj Aj
2

+ Gj3−j A3−j
2 dgAj = 0, s4d

with Gij =gij /g11. The parameter«=n0g11/ s"v'd, i.e., the ra-
tio between the atomic interaction and the strength of the
transverse confinement, is a natural expansion parameter for
solving Eqs.(3) and (4) approximately.

The stationary(ground) state solution of the above equa-
tions is given byA1=A1GS=1/ÎL, A2=A2GS=ÎN2/ sN1Ld,
f1GS=−s1+m1

s1ddt, and f2GS=−s1+m2
s1ddt with m1

s1d=sG11

+G12N2/N1d / s2pLd, andm2
s1d=sG21+G22N2/N1d / s2pLd. The

linear dispersion relation of an excitation from the ground
state is given by

v2sqd/q2 = 1
2sG̃11 + G̃22d + 1

4q2 ± 1
2fsG̃11 − G̃22d2

+ 4G̃12G̃21g1/2, s5d

where G̃11=G11/ s2pLd, G̃12=G12N2/ s2pLN1d, G̃21

=G21/ s2pLd, and G̃22=G22N2/ s2pLN1d. q and v are wave
vector and frequency of the excitation, respectively. From
Eq. (5) we see that the dispersion curve of the collective
modes has two branches, i.e., the upper branchv+sqd and the
lower branchv−sqd; both of them are acoustic.

A necessary condition for the SHG is that the phase-
matching condition, i.e.,

q2 = 2q1, v2 = 2v1, s6d

must be fulfilled, whereq1sq2d andv1sv2d are the wave vec-
tor and frequency of the fundamental(second–harmonic)
wave, respectively. By choosingv1=v+sq1d and v2

=v−sq2d=v−s2q1d, the condition (6) is equivalent to
v−s2q1d=2v+sq1d, which results in the solution

q1 = s2/Î3dfsG̃11 − G̃22d2 + 4G̃12G̃21g1/4. s7d
Thus for the two-component condensate the SHG phase-
matching condition can be satisfied based on the multivalue
property of the linear dispersion relation. Shown in Fig. 1 is
the dispersion curve of the collective modes of the two-
component BEC consisting of different hyperfine spin states
in the trap with the particle numbersN1=N2=23106. For
this system one hasG11=1.0, G12=0.9926 andG22=1.0027
[15]. The modes satisfying the phase-matching condition(6)
have been clearly shown as the pointA=sq1,v1d (the funda-
mental wave) and the pointB=sq2,v2d (the second-harmonic
wave). From Eq. (7) we obtain q1=2.743 and hencev1
=7.536,q2=5.486 andv2=15.072.

We know that an optical SHG occurs in active media with
no inversion symmetry. For trapped atoms this symmetry is
not broken and hence the SHG in the BEC is possible only
when the ground state(condensate) is not depleted by the
excitations. This imposes a constraint that the amplitude of
the excitations cannot be too large. Here we develop a weak
nonlinear theory for the SHG in the BEC by making the
asymptotic expansionAj −AjGS=AjGSs«Fj

s1d+«2Fj
s2d+¯d and

f j −f jGS=«f j
s1d+«2f j

s2d+¯, whereFj
sld andf j

sld are the func-
tions of the fast variablesx, t and the slow variablesX=«x,
T=«t. The expansion parameter«f=n0g11/ s"v'dg can be
small as long as the typical value of the chemical potential is
less than the level spacing of the harmonic oscillator. Using
such expansion Eqs.(3) and (4) are transferred into a set of
equations forFj

sld andf j
sld s j =1,2;l =1,2,3, . . .d. In the first-

ordersl =1d we get the solution in linear approximation. For
the SHG we take

F1
s1d = U1expsiu1d + U2expsiu2d + c.c., s8d

FIG. 1. The dispersion curve of a two-component BEC consist-
ing of two different hyperfine spin states in a trap with the particle
numbersN1=N2=23106. Curves 1 and 2 represent the upper
branch,v+sqd, and the lower branch,v−sqd, respectively. The inter-
action parameters of the system areG11=1.0,G12=G21=0.9926 and
G22=1.0027. For the fundamental wave and the second-harmonic
wave, the phase-matched wave vectors and frequencies for the SHG
aresq1=2.743,v1=7.536d andsq2=5.486,v2=15.072d, which have
been illustrated by the pointsA=sq1,v1d and B=sq2,v2d,
respectively.
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F2
s1d = sG̃12q1

2d−1L1sv1,q1dU1expsiu1d

+ sG̃12q2
2d−1L1sv2,q2dU2expsiu2d + c.c., s9d

f1
s1d = − is2v1/q1

2dU1expsiu1d − is2v2/q2
2dU2expsiu2d + c.c.,

s10d

f2
s1d = − i2gmv1sG̃12q1

4d−1L1sv1,q1dU1expsiu1d

− i2gmv2sG̃12q2
4d−1L1sv2,q2dU2expsiu2d + c.c., s11d

where L1sv ,qd=v2−sG̃11+q2/4dq2, U1 and U2 are respec-
tively the envelope functions of the fundamental wave(with
the phaseu1=q1x−v1t) and the second-harmonic wave
(with the phaseu2=q2x−v2t). q1, q2, v1 andv2 are chosen
according to the SHG phase-matching condition(6), i.e.,
v1=v+sq1d andv2=v−sq2d with q2=2q1.

At the second ordersl =2d, solvability conditions give the
closed equations forU1 and U2. After making the transfor-
mationUj =«uj and noting thatX=«x andT=«t, we get

] u1/] t + vg1s] u1/] xd + iG1u1
*u2exps− iDqxd = 0, s12d

] u2/] t + vg2s] u2/] xd + iG2u1
2exps− iDqxd = 0, s13d

wherevgj=sdv+/dqdq=qj
is the group velocity ofj th wave,

Dq=q2−2q1 is a possible phase mismatch. The expressions
of vgj s j =1,2d is given by

vgj =
L1sv j,qjdsv j

2 + qj
4/4d + L2sv j,qjdsv j

2 + qj
4/4d

qjv jfL1sv j,qjd + L2sv j,qjdg
, s14d

where L2sv ,qd=v2−sG̃22+q2/4dq2. The nonlinear coeffi-
cients appearing in Eqs.(12) and (13) read

G1 = D1/h2v1fL1sv1,q1d + L2sv1,q1dgj, s15d

G2 = D2/h2v2fL1sv2,q2d + L2sv2,q2dgj, s16d

with

D1 = L2sv1,q1df3sv1
2 + G̃11q1

2d + L1sv1,q1d + 1
4L1sv2,q2d

+ fL1sv1,q1dL1sv2,q2dg/s4G̃12q1
2dg + G̃12G̃21q1

4 + hf3sv1
2

+ G̃22q1
2dg/s4G̃12q1

2djL1sv1,q1dL1sv2,q2d

+ G̃21q1
2fL1sv1,q1d + 1

4L1sv2,q2dg, s17d

D2 = s24/G̃12dL1
2sv1,q1dsv1

2/q1
2 + G̃22d + 8G̃12G̃21q1

4

+ 16G̃21q1
2L1sv1,q1d + L2sv2,q2df6v1

2 + 6G̃11q1
2

+ 4L1sv1,q1d + f2L1
2sv1,q1dgsG̃12q1

2dg. s18d

We now consider the solutions of Eqs.(12) and(13) cor-
responding to the SHG. For a stationary cases] /]t=0d and
for Dq=0, Eqs.(12) and (13) admit the solution[16]

u1 = s− G1W/vg1d1/2sechfG1/vg1s− G2W/vg2d1/2xgeiw0, s19d

u2 = s− G2W/vg2d1/2tanhfG1/vg1s− G2W/vg2d1/2xgeis2w0+p/2d,

s20d

where Wsxd=−svg1/G1duu1u2−svg2/G2duu2u2=Ws0d is a con-
stant(denoting the input power of the excitation) and w0 is
an arbitrary constant. Atx=0, the fundamental wave takes
the total powerW of the system and thus power of the
second-harmonic wave is zero. Asx increases the power of
the fundamental wave is converted gradually into the
second-harmonic wave. At distancex, the conversion effi-
ciency from the fundamental wave into the second-harmonic
wave is given by

h = W2sxd/W1s0d = tanh2fG1/vg1s− G2W/vg2d1/2xg, s21d

whereWjsxd=−svgj /G jduuju2 is the power ofj th wave. Thus
the conversion efficiency of the SHG is determined byvgj, G j
s j =1,2d, W and the propagating distancex. From Eqs.
(14)–(18) we see that, sincevgj andG j depends on the inter-
atomic interaction parametersgij , a larger conversion effi-
ciency can be obtained by controllinggij .

Note that the solution(19) and (20) is valid only for
sG1/vg1dsG2/vg2d.0. Because bothvg1 andvg2 are positive,
we require thatG1 and G2 have the same sign. It can be
shown that bothG1 and G2 are negative for the interaction
parametersG11=1.0, G22=1.0027 whenG12 takes the value
in the interval between zero and 1. Thus the solution(19) and
(20) is physically realizable.

Shown in Fig. 2 is the conversion efficiencyh as a func-
tion of G12s=G21d and the propagating distance(or sample
length) x whenG11=1.0 andG22=1.0027. The input power is
taken asW=10.0. The curves 1, 2, and 3 correspond to the
propagating distancex taking the values 5.0, 10.0, and 20.0,
respectively. From Fig. 2 we see that to obtain a significant
conversion efficiency of the SHG, in addition to a larger
propagating distance and a larger input power, one must
choose an appropriate interspecies interaction strengthG12.
This provides us also a possibility for determiningG12 by
measuring the SHG conversion efficiencyh.

Note that for a condensate of finite lengthL, to make the
localized solution(19) and (20) be valid the size of the first

FIG. 2. The conversion efficiency as a function of interspecies
interaction parameterGs=G12=G21d and propagating distancex in a
stationary SHG forG11=1.0, G22=1.0027. Curves 1, 2, and 3 cor-
respond to the input powerW=10.0 with the propagating distancex
taking the values 5.0, 10.0, and 20.0, respectively.
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harmonic localization(i.e., svg1/ uG1udfvg2/ suG2uWdg1/2) should
be less thanL, which results in the requirementL
ù svg1/ uG1udfvg2/ suG2uWdg1/2. ForW=10.0 one hasLù8.0 (in
unit of the healing lengthl0, which is about 1mm). To get a
larger conversion efficiencyh in a real experiment, one
should use a long enough condensate.

For very short-pulse excitations the walkoff effect
due to different group velocities for the fundamental and
the second-harmonic wave must be taken into
account [16]. By the transformation u1=fvg1vg2

/ sG1G2dg1/2w1expsiwd and u2=svg1/G1dw2expfis2w+p /2dg
(w1, w2 andw are real functions ofx andt) and assumption
Dq=0, Eqs.(12) and (13) become

] w1/] x + s1/vg1ds] w1/] td = w1w2, s22d

] w2/] x + s1/vg2ds] w2/] td = − w1
2. s23d

Consider a traveling-wave solution, i.e., takewj s j =1,2d are
the functions ofx and z=t−x/vg1, Eqs. (22) and (23) are
transferred as]w1/]x=w1w2, ]w2/]x+n]w2/]z=−w1

2, where
n=1/vg2−1/vg1 is a parameter denoting the walkoff(or
group-velocity dispersion) effect. If at x=0 the fundamental
wave and the second-harmonic wave take the formw1s0,td
=A0/ s1+t 2/t 0

2d andw2s0,td=0, wheret0 is the initial pulse
width andA0 is a constant representing the initial amplitude
of the fundamental wave, one can get the following solution
[16]:

w1sz,xd =
A0

s1 + z̃ 2d1/2f1 + sz̃ − x̃d2g1/2

1

coshj + z̃/f0 sinh j
,

s24d

w2sz,xd =
tcr

t

A0

1 + sz̃ − x̃d2

x̃ coshj + ff0 − z̃sz̃ − x̃d/f0gsinh j

coshj + z̃/f0

,

s25d

where z̃=z /t0, x̃=x/Ln, f0=st 0
2/t cr

2 −1d1/2, tcr=nLNL, j

= f0ftan−1z̃−tan−1sz̃− x̃dg with Ln=t0/n (walk-off or disper-
sion length) andLNL=A0

−1 (nonlinear length). If the walk-off

length is much larger than the nonlinear length, i.e.,Ln

@LNL, the walk-off effect can be neglected. In
this case the solution(24) and (25) is simplified into

w1sz ,xd=A0/ s1+z̃2dsechfA0x/ s1+z̃dg and w2sz ,xd=A0/ s1
+ z̃2dtanhfA0x/ s1+z̃dg. This situation corresponds to a quasis-
tationary SHG and only in this case the conversion efficiency
is significant.

In conclusion, we have made a theoretical prediction of
SHG for propagating nonlinear collective excitations in a
quasi-1D, two-component BEC. We have shown that the
phase-matching condition of the SHG can be satisfied if the
wave vectors and frequencies of fundamental and second-
harmonic waves are selected suitably from different branches
of the linear dispersion curve. We have derived the nonlinear
envelope equations for the SHG by using a method of mul-
tiple scales and presented the SHG solutions. The conversion
efficiency from the fundamental wave to the second-
harmonic wave has also been discussed. The results pre-
sented here can also be generalized to the quasi-1D BEC
with a slowly varying axial confining potential. In this case
the envelope equations(12) and (13) are still valid but their
coefficients will depend on the slow-variableX. Although
solving the SHG problem in such trap is a further topic, one
can expect that the main character of the solution will not be
changed. To experimentally test the prediction given above,
one can use the method developed in Ref.[17] to generate
high frequency and weak nonlinear excitations of small size
by suddenly modifying the trapping potential using optical
dipole force of a focused laser beam. To get a larger conver-
sion efficiency one can adjust the parameters of the trapping
potential. It is better to use a condensate long enough(as in
Ref. [17]) so that two wave modes can have a significant
energy transfer. Another way is to change the interspecies
interaction parameterG12 by using Feshbach resonance tech-
nique [1]. Inversely, the measurement of the conversion ef-
ficiencyh in the SHG may provide a possibility to determine
the interspecies interaction parameterG12 for a two-
component BEC.
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