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Nonlinear modulation of multidimensional lattice waves

Guoxiang Huang,1,2 Vladimir V. Konotop,3 Hon-Wah Tam,4 and Bambi Hu2,5

1Key Laboratory for Optical and Magnetic Resonance Spectroscopy and Department of Physics, East China Normal Univers
Shanghai 200062, China

2Centre for Nonlinear Studies and Department of Physics, Hong Kong Baptist University, Hong Kong, China
3Departamento de Fı´sica and Centro de Fı´sica da Mate´ria Condensada, Universidade de Lisboa, Complexo Interdisciplinar,

Avenida Professor Gama Pinto, 2, Lisbon P-1649-003, Portugal
4Department of Computer Science, Hong Kong Baptist University, Hong Kong, China

5Department of Physics, University of Houston, Houston, Texas 77204
~Received 7 November 2000; revised manuscript received 20 June 2001; published 26 October 2001!

The equations governing weakly nonlinear modulations ofN-dimensional lattices are considered using a
quasidiscrete multiple-scale approach. It is found that the evolution of a short wave packet for a lattice system
with cubic and quartic interatomic potentials is governed by the generalized Davey-Stewartson~GDS! equa-
tions, which include mean motion induced by the oscillatory wave packet through cubic interatomic interac-
tion. The GDS equations derived here are more general than those known in the theory of water waves because
of the anisotropy inherent in lattices. The generalized Kadomtsev-Petviashvili equations describing the evolu-
tion of long-wavelength acoustic modes in two- and three-dimensional lattices are also presented. Then the
modulational instability of anN-dimensional Stokes lattice wave is discussed based on theN-dimensional GDS
equations obtained. Finally, the one- and two-soliton solutions of two-dimensional GDS equations are provided
by means of Hirota’s bilinear transformation method.
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I. INTRODUCTION

Since the pioneering work of Fermi, Pasta, and Ulam@1#
on the nonlinear dynamics in lattices, the understanding
the dynamical localization in ordered, spatially extended d
crete systems has experienced considerable progress. In
ticular, one-dimensional~1D! lattice solitons, which are lo-
calized nonlinear excitations due to the balance betw
nonlinearity and dispersion, are shown to exist@2#. Similar to
the cases in fluid physics and nonlinear optics, most of
analytical approaches on lattice solitons are based on we
nonlinear theory. The basic idea of the weakly nonline
theory is that linearized lattice equations are assumed to
vide a satisfactory first approximation for those finit
amplitude disturbances which are, in some sense, sufficie
small. Successive approximations may then be develope
an asymptotic expansion in ascending powers of a chara
istic wave amplitude. The weakly nonlinear theory has be
shown to be very successful in revealing many import
physical processes, e.g., resonant wave-wave interact
modulational instability, the formation of solitons, etc., in
clear-cut way. A very useful method for the asymptotic e
pansion is the method of multiple scales, which in the cas
lattices reduces the system to a set of partial differen
equations for the slowly changing envelope~or amplitude!
while the original system is a set of differential-differen
equations, and usually cannot be solved exactly. There
two basic advantages of the multiple-scale expansion:~i! it
contains a unique explicit small parameter, and hence is c
trollable, and~ii ! it allows us to obtain solutions in an ex
plicit form. It is well known that, for a 1D lattice wave with
a large spatial extension, the envelope of the lattice wav
governed by the nonlinear Schro¨dinger~NLS! equation for a
short-wavelength packet@3# and the Korteweg–de Vrie
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~KdV! equation for a long-wavelength acoustic mode@4#.
In recent years, much attention has been paid to cohe

structures in multidimensional lattices~see, e.g., Ref.@5#!. In
particular, we mention a generalization of the KdV equati
in a 2D lattice with only a cubic interatomic potential, i.e
the Kadomtsev-Petviashivili~KP! equation, derived for a lat-
tice wave traveling in a given direction@6# and coupled 2D
NLS equations describing quadratic solitons due to
second-harmonic generation in a 2D lattice of the tw
component dipoles@7#. However, to the best of our knowl
edge, up to now 2D and 3D generalization of the NLS eq
tion with a mean motion induced by oscillatory wave pack
in lattice systems~i.e., due to long-wavelength acoust
mode! has not been developed. Meanwhile, such motion
troduces dramatic changes in the lattice dynamics.

In the present paper, using a quasidiscrete multiple-s
approach@3,8–10#, we derive generalized Davey-Stewarts
~GDS! equations in multidimensional lattices with cubic an
quartic interatomic potentials. Because of the anisotropy
herent in lattice systems~i.e., without continuous translation
and rotation symmetries!, in the case of two dimensions th
GDS equations presented here are more general than t
obtained in water waves@11#, which are physically isotropic
We also derive a generalized KP equation governing the e
lution of a long-wavelength acoustic excitation traveling
any direction.

The organization of the paper is as follows. In Sec. II, w
formulate the model and deduce the equations for slo
varying amplitudes in anND lattice. In Sec. III, we concen-
trate on excitations in a 2D lattice. The dynamic equations
the long-wavelength limit are presented in Sec. IV. In S
V, we discuss modulational instability of anN-dimensional
Stokes lattice wave on the basis of the GDS equations. S
tion VI provides some one- and two-soliton solutions for t
©2001 The American Physical Society19-1
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2D GDS equations based on Hirota’s bilinear transformat
method and demonstrates the effect of anisotropy on the
ton formation. The outcomes are summarized in the fi
section.

II. MODEL AND ASYMPTOTIC EXPANSION

The system we consider is a monatomic scalar lattice w
nearest-neighbor interatomic interactions. The equation
motion describing the system are given by

d2

dt2
u~n!5(

j 51

d

J2 j@u~n1aj !1u~n2aj !22u~n!#

1(
j 51

d

J3 j$@u~n1aj !2u~n!#22@u~n2aj !

2u~n!#2%1(
j 51

d

J4 j$@u~n1aj !2u~n!#3

1@u~n2aj !2u~n!#3%. ~1!

Hereu(n) is the displacement from its equilibrium positio
of the particle having the massM and located at the siten
5( j 51

d njaj , nj being integers,aj being the lattice vectors
and d being the dimension of the lattice,Ja j5Ka, j /M (a
52,3,4), K2,j ,K3,j , andK4,j are harmonic, cubic, and qua
tic nearest-neighbor force constants, respectively. Notice
the anisotropy of the lattice is included in the considerat
~i.e., in a generic caseKa, jÞKa,i for iÞ j ). We include the
cubic potential here since most of the realistic interatom
potentials~such as the potentials of Born-Mayer-Coulom
Lennard-Jones, Morse, Toda, etc.! display strong cubic non
linearity ~i.e., Ja,3Þ0) @8,9#. In the most direct physical ap
plications~namely, to atomic crystals!, the dimensiond can
be either 2 or 3, although more formal lattices withd being
bigger than 3 are available. In the present section, we
with the last, more general, case.

In order to investigate weakly nonlinear modulation of
lattice wave packet, we use the quasidiscrete multiple-s
method@3,8–10# to derive the envelope equations describi
the development of the modulation of the packet along
line of Davey and Stewartson for water waves@11#. Namely,
we set

u~n!5 (
n51

enun„r ,t;f~n,t !… ~2!

with

r5e~n2vt !, t5e2t, f~n,t !5q•n2vt, ~3!

wheree is a formal small parameter representing the relat
amplitude of the excitation,q is the wave vector:q
5( j 51

d qjbj , bj being the vectors of the reciprocal lattic
bi•aj5d j i , and v is the frequency of the respective ha
monic. The constant vectorv as well as the link betweenv
and q, i.e., the dispersion relation, are to be determined
solvability conditions.
05661
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There are some comments to be made here. In a gen
case, the entries of the expansion~2! depend on the whole
hierarchy of ‘‘slow’’ variables, i.e., one should consider th
set of variables$r n ,tn% (n51,2, . . . ), where r n5en(n
2vnt) and tn5ent, which are regarded as independent.
the case of the effect of quadratic and cubic nonlinear
only the scales up tor2 andt2 turn out to be relevant. In the
present paper we restrict our consideration to the soluti
independent ofr2. For this reason, we introduce only th
‘‘lowest-order’’ slow variablesr5r1 andt5t2.

Substituting Eqs.~2! and~3! into Eq.~1! and equating the
coefficients of the same powers ofe, we obtain the hierarchy
of equations as follows:

Lun[v2
]2un

]f2
2(

j
J2 j~un

( j )1un
(2 j )!5M n ,

n51,2, . . . . ~4!

Hereun
(6 j )[un„r ,t;f(n,t)6qj…2un„r ,t;f(n,t)…,

M150, ~5a!

M2522v~v•¹!
]u1

]f
1(

j
J2 jaj

]

]xj
~u1

( j )2u1
(2 j )!

1(
j

J3 j@~u1
( j )!22~u1

(2 j )!2#, ~5b!

M352~v•¹!2u122v~v•¹!
]u2

]f
12v

]2u1

]f]t

1(
j

J2 jaj

]

]xj
~u2

( j )2u2
(2 j )!1(

j

J2 j

2 S aj

]

]xj
D 2

3~u1
( j )1u1

(2 j )12u1!12(
j

J3 j S ~u2
( j )u1

( j )

2u2
(2 j )u1

(2 j )!1u1
( j )aj

]

]xj
~u1

( j )1u1!

2u1
(2 j )aj

]

]xj
~u1

(2 j )1u1! D1(
j

J4 j@~u1
( j )!3

1~u1
(2 j )!3#, ~5c!

¹[]/]r , aj5uaj u, andxm is themth coordinate of the vecto
r , r5(mxmam /am .

For further consideration we have to specify the effect
are looking for and this will determine the form of th
lowest-order (j 51) solution of Eq.~4!. Namely, we will be
interested in the weakly nonlinear modulation of a latti
wave originated by the interaction between a lon
wavelength acoustic mode and a high-frequency mode. T
we choose

u15A0~r ,t!1$A1~r ,t!exp@ if~n,t !#1c.c.%, ~6!
9-2
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where the real functionA0 stands for a mean motion induce
by the oscillatory wave packet, which has the complex
velope functionA1, and c.c. denotes the corresponding co
plex conjugate term. Then

u1
(6 j )5@exp~6 iq j !21#A1eif(n,t)1c.c.,

and in the first order@see Eqs.~4! and~5a!# we immediately
arrive at the dispersion relation of the underline linear latt

v2[@v~q!#252(
j

J2 j~12cosqj !. ~7!

Next we take into account that

vg[
dv

dq
5

1

v (
j

J2 jsin~qj !aj /aj , ~8!

which is the group velocity of the linear wave. Then, subj
to assumption~6! the second-order equation of system~4!
takes the form

Lu252iv$@~vg2v!•¹#~A1eif2Ā1e2 if!1x (2)~A1
2e2if

2Ā1
2e22if!% ~9!

where

x (2)5(
m

J3m

v
~cosqm21!sinqm ~10!

is the effective quadratic nonlinearity.
The solvability condition for the system~9! ~in other

words the conditions of the absence of secular terms inu2)
means the orthogonality of the right-hand side of Eq.~9! to
the kernel of the operatorL, i.e., to Eq.~6!. Hence the right
hand side of Eq.~9! must not contain the terms proportion
to exp(6if) and we conclude thatv5vg , i.e., v introduced
in Eq. ~3!, is merely the group velocity of the carrier wav
Next we can look for the solutionu2 ~it must be orthogona
to the first-order approximation, i.e., to the kernel of t
operatorL) in a form of the expansion over the eigenfun
tions of the operatorL. Having done this, one ensures th
the only nonzero term of such an expansion is given by

u25 iaA1
2exp~2if!1c.c.,

a52
2vx (2)

4@v~q!#22@v~2q!#2
. ~11!

Formula ~11! is valid unless the conditionv(2q)
52v(q) is satisfied. As is evident, this is the condition
the resonant second-harmonic generation@10,14#. It can be
satisfied in a lattice with a complex cell, but it is not difficu
to ensure thatv(2q)Þ2v(q) for all q in a monatomic lat-
tice with the nearest-neighbor interactions.

Passing to the third order of the multiple scale expans
we introduce the~symmetric! group velocity dispersion ten
sor ~GVDT! by the formula (v j5]v/]qj )
05661
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v i j [
1

v
@J2 jcos~qj !aiajd i j 2v iv j #, ~12!

and the~symmetric! effective GVDTV i j ,

V i j [
1

v
@J2 jaiajd i j 2v iv j #. ~13!

The solvability condition for the third-order terms give
rise to the closed system of equations forA0 andA1:

(
l ,m

V lm

]2

]xl]xm
A0522(

m
dm

]

]xm
uA1u2, ~14!

i
]A1

]t
1

1

2 (
l ,m

v lm

]2

]xl]xm
A15xuA1u2A11A1(

m
dm

]

]xm
A0 ,

~15!

where

dm5
2am

v
J3m~12cosqm!, ~16!

x5
2

v (
m

@2aJ3m~12cosqm!sinqm13J4m~12cosqm!2#.

~17!

We call Eqs.~14! and ~15! the ND GDS equations.

III. GENERALIZED DAVEY-STEWARTSON EQUATIONS

Let us now focus our attention on a special case of a
lattice @i.e., r5(x1 ,x2)#. For the sake of simplicity, the lat
tice will be considered symmetric,Ja, j5Ja (a52,3,4 and
j 51,2), and orthogonal:a1•a250, with the lattice constan
equal to unity,uaj u51. In order to diagonalize the effectiv
GVDT V lm in a general case, we rotate the original Car
sian system@with the coordinate basis~1, 0! and~0, 1!# to a
new one with the coordinate basise15(l1 ,l2) and e25
(2l2 ,l1), where

l j5
v j

vg
5

sinqj

Asin2q11sin2q2

~18!

andv j is the j th component of the group velocity defined
Eq. ~8! ~as is evident,ei•ej5d i j ). In this way one of the
directions of the new basis, namelye1, coincides with the
direction of the group velocity of the carrier wave, i.e.,vg
5vge1. The other direction is orthogonal to it. As a result,x1
and x2 in Eqs. ~14! and ~15! take the form x15e(n1
2l1vgt) andx25e(n22l2vgt), and the envelope equation
~14! and ~15! are reduced to

a11

]2A0

]j2
1a22

]2A0

]h2
522S b1

]

]j
1b2

]

]h D uA1u2, ~19!

i
]A1

]t
1LA15A1S b1

]

]j
1b2

]

]h DA01xuA1u2A1 , ~20!
9-3
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where

L5g11

]2

]j2
1g22

]2

]h2
1g12

]2

]j]h
, ~21!

j5r•e15l1x11l2x25e~l1n11l2n22vgt !, ~22!

h5r•e252l2x11l1x25e~2l2n11l1n2!, ~23!

a115
1

v
~J22vg

2!, a225
J2

v
, ~24!

b15
2J3

v
@l1~12cosq1!1l2~12cosq2!#,

b25
2J3

v
@l1~12cosq2!2l2~12cosq1!#, ~25!

g115
1

2v
@2vg

21J2~l1
2cosq11l2

2cosq2!#,

g225
J2

2v
~l2

2cosq11l1
2cosq2!, ~26!

g125
J2

v
l1l2~cosq22cosq1!, ~27!

x5
2

v
$2J3a@sinq1~12cosq1!1sinq2~12cosq2!#

13J4@~12cosq1!21~12cosq2!2#%, ~28!

a5
4J3@sinq1~12cosq1!1sinq2~12cosq2!#

4@v~q!#22@v~2q!#2
. ~29!

Equations~19! and ~20! represent a generalized form o
the conventional DS equations. They include the dispers
diffraction, and nonlinearity of the system. One of their im
portant features is that there exists a coupling between
mean field~denoted byA0) and the envelope of the carrie
wave~denoted byA1). The mean fieldA0 generates a strain
field in the system. IfJ350, a case for a symmetric inter
atomic potential, we haveA050, thus the mean motion an
hence the strain field vanish. Another important feature
Eqs.~19! and~20! is their property of anisotropy. For differ
ent wave vectorq5(q1 ,q2), the coefficients of the equation
take different values and some of these coefficients may
come vanishing for some particular directions ofq.

The conventional DS equations were derived first in s
face water waves@11# and now are a well-known 2D solito
model in soliton theory@12#. Note that for water waves, th
system is isotropic~i.e., it possesses a continuous rotati
symmetry!. The envelope equations are the same for
propagating directions of the waves and hence the co
cients appearing in the equations are independent ofq1 and
q2, and correspondinglyb2 and g12 vanish @11# ~see also
Ref. @13#!. However, for the lattice system the modulatin
05661
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equations take a more general form because the lattice
anisotropic (without the continuous rotation symmetry). We
mention that although the coefficientsa i j ( i 51,2) areboth
positive, signs of the coefficientsg i j may change dependin
on the choice of the wave vector in the first Brillouin zon

We now discuss several particular cases for the 2D G
equations derived above. In the following circumstanc
~i.e., in some special points and lines of the Brillouin zon
see Fig. 1!, the 2D GDS equations reduce to the conventio
DS equations:

~i! q1q250 ~thenl1l250 andb25g1250),
~ii ! q15q25q ~thenl15l25221/2 andb25g1250),
~iii ! q152q25q ~then l152l25221/2 and b15g12

50).
More precisely, sincea11.0 and a22.0 for any q, at

g11g22,0, Eqs.~19! and~20! can be classified as DSII equa
tions, while forg11g22.0 they form a dynamic system tha
can be identified neither with DSI nor DSII equations a
pearing in the theory of water waves~see, e.g.,@12#!.

In the case of a pure quadratic potential,J350, we have
that the evolution equations forA1 and A0 are decoupled.
Then the GDS equations reduce to a generalized 2D N
equation@i.e., the NLS equation plus a cross-derivative te
]2A1 /(]j]h)#. Finally, if q250 and]/]h50, the 2D GDS
equations~19! and ~20! recover the envelope equations d
rived in Refs.@8,10#, which gives rise to standard 1D lattic
solitons@8,10#.

In the 3D case, Eqs.~19! and~20! are replaced by the3D
GDS equations:

a118
]2A0

]j2
1a228

]2A0

]h2
1a338

]2A0

]z2

522S b18
]

]j
1b28

]

]h
1b38

]

]z D uA1u2, ~30!

FIG. 1. The first Brillouin zone for the 2D quadratic lattice. Th
filled-in and empty polygons correspond to the operatorL @it is
defined by Eq.~21!# of the elliptic and hyperbolic types, respec
tively. Along the intervals shown by the bold lines~i.e., in the

directions@100#, @010#, @110#, and @11̄0#), the system~19! and
~20! is reduced to the conventional DSII equation.
9-4
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i
]A1

]t
1g118

]2A1

]j2
1g228

]2A1

]h2
1g338

]2A1

]z2
1S g128

]2

]j]h

1g238
]2

]h]z
1g318

]2

]z]j DA1

5A1S b18
]

]j
1b28

]

]h
1b38

]

]z DA01x8uA1u2A1 , ~31!

wherea j j8 , b j8 , g i j8 ( j 51,2,3), andx8 are constants depen
dent onq5(q1 ,q2 ,q3) and the parameters of the syste
which are not needed here and not written down explici
The definitions ofj,h, andz are given by

j5e~l1n11l2n21l3n32vgt !, ~32!

h5e~2l2n11l1n2!, ~33!

z5e~2l3n11l1n3!, ~34!

wherev andl j are defined by Eqs.~7! and ~18!.

IV. LONG-WAVELENGTH LIMIT

Note that the envelope equations~14! and~15! are invalid
for q50 since in this case there is a divergence in th
coefficients. From the physical point of view, this happe
because vanishingq corresponds to a long-waveleng
acoustic mode in the lattice. In this case a differe
asymptotic expansion must be used to obtain divergence
envelope equations. For simplicity, we consider the case
symmetric 2D square lattice. In this situation, the asympto
expansion~2! must be replaced by

u5u01eu11e2u21•••, ~35!

with

un5un~j,h,t! n50,1,2, . . . , ~36!

j5e~l1n11l2n22ct!, ~37!

h5e2~2l2n11l1n2!, ~38!

t5e3t, ~39!

wherec5AJ2 is the speed of sound andl l( l 51,2) are de-
termined by the solvability conditions required atO(e2) or-
der. A solvability condition in the fourth order of the expa
sion yields thegeneralized KP equation,

]

]j F ]v
]t

1
c

24
~l1

41l2
4!

]3v

]j3
1

J̃3

c
~l1

31l2
3!v

]v
]j

1
3J4

2c
~l1

41l2
4!v2

]v
]j G1

c

2

]2v

]h2
50, ~40!
05661
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where v5]u0 /]j. In deriving Eq.~40!, we have assumed
that J35e J̃3 with J̃3 of order unity. The parametersl l ( l
51,2) are direction-dependent and we find that their val
can be obtained by using Eq.~18! but taking the limitq
→0. Thus the values of the coefficients in Eq.~40! are de-
pendent on the ways ofq approaching zero. For instance,

~i! l151, l250 if q250, q1→0;
~ii ! l15l251/A2 if q15q25q→0.
The reason for the different values of the coefficients c

responding to different directions is also due to the anis
ropy of the system. It is easy to see that the KP equa
obtained in Ref.@6# is our particular case with quartic non
linearity being absent~i.e., J450). Equation ~40! admits
solitary-wave solutions@12#.

It is relevant to mention here that the coefficient of t
term ]2v/]h2 is positive, which means that the line~i.e.,
h-independent! solitons of Eq. ~40! are stable while this
equation does not admit any kind of lump~i.e., decaying
whenj21h2→0) solution.

In the same way, in 3D case Eq.~40! is generalized to

]

]j F ]v
]t

1a1

]3v

]j3
1a2v

]v
]j

1a3v2
]v
]j G1a4

]2v

]h2
1a5

]2v

]z2
50,

~41!

where j,h, and z are the same as Eq.~32!–~34!. al( l
51,2,3,4,5) are real constants dependent onl j ( j 51, 2, 3)
@given by Eq.~18!# with q→0.

V. MODULATIONAL INSTABILITY OF A PLANE
LATTICE WAVE WITH A MEAN MOTION

In recent years, the use of nonlinear envelope~or ampli-
tude! equations for studying the stability of patterns a
waves in systems in and outside of equilibrium is wide
employed@15,16#. The modulational stability of a plane wa
ter wave ~e.g., a uniform Stokes wave! was analyzed by
Davey and Stewartson based on the DS equations they
rived @11#. In the same way, theND GDS equations~14! and
~15! obtained here can be used to study the modulatio
stability of a uniform Stokes lattice wave inN dimensions. A
Stokes lattice wave here means a linear plane lattice w
with the wave vectorq.

Note that the uniform vibrating solution of Eqs.~14! and
~15! reads

A050, A15U0exp~2 iVt!, ~42!

which, when incorporating the carrier wave@see Eq.~6!#,
corresponds to a plane lattice wave with the wave vectoq
and the modified frequencyv(q)1V, whereU0 is a con-
stant andV5xU0

2. Assume that a perturbation is added in
the uniform vibrating solution~42!, i.e.,

A0~x1 ,x2 , . . . ,t!5k̂1expS i(
m

QmxmD
1k̂2expS 2 i(

m
QmxmD , ~43!
9-5



c
f

s
f

po-

f

re
ce

lled
of

the
the
n.
nt
lat-

e
c

ar
ua-
o-
d,
ns

HUANG, KONOTOP, TAM, AND HU PHYSICAL REVIEW E64 056619
A1~x1 ,x2 , . . . ,t!5U0exp~2 iVt!F11 «̂1expS i(
m

QmxmD
1 «̂2expS 2 i(

m
QmxmD G , ~44!

with k̂6(t)5k6(0)exp@(sR6isI)t# and «̂6(t)
5«6(0)exp@(sR6isI)t#, where Q5(Q1 ,Q2 , . . . ,QN) and
s I5s I(Q) are, respectively, the wave vector and frequen
of the perturbation,sR5sR(Q) denotes the growth rate o
the perturbation, andk6(0) and«6(0) are small constant
with the conditionk̂2* (0)5k1(0) because of the reality o
A0. Substituting Eqs.~43! and ~44! into Eqs.~14! and ~15!,
we obtain a set of linear equations onk6(0) and«6(0):

2~a11Q1
21a22Q2

2!k1~0!12iU 0
2~b1Q11b2Q2!

3@«1~0!1«2* ~0!#50, ~45!

~a11Q1
21a22Q2

2!k2~0!12iU 0
2~b1Q11b2Q2!

3@«2~0!1«1* ~0!#50, ~46!

~V1 is2g11Q1
22g22Q2

22g12Q1Q222xU0
2!«1~0!

2xU0
2«2* ~0!2 i ~b1Q11b2Q2!k1~0!50, ~47!

~V1 is* 2g11Q1
22g22Q2

22g12Q1Q222xU0
2!«2~0!

2xU0
2«1* ~0!1 i ~b1Q11b2Q2!k2~0!50, ~48!

where s5sR1 is I . A solvability condition of Eqs.~45!–
~48! results in

~sR1 is I !
25S (

l ,m
v lmQlQmD H U0

2F 2x

1

2S (
m

dmQmD 2

(
l ,m

V lmQlQm

G2
1

4 (
l ,m

v lmQlQmJ .

~49!

Note that the right side of Eq.~49! is real. Thus when

S (
l ,m

v lmQlQmD H U0
2F 2x1

2S (
m

dmQmD 2

(
l ,m

V lmQlQm

G
2

1

4 (
l ,m

v lmQlQmJ .0, ~50!
05661
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one hass I50. As a result, if the condition~50! is satisfied,
we have the growth rate

sR56H S (
l ,m

v lmQlQmD H U0
2F 2x1

2S (
m

dmQmD 2

(
l ,m

V lmQlQm

G
2

1

4 (
l ,m

v lmQlQmJ J 1/2

. ~51!

Thus one always has a positivesR branch if the condition
~50! is satisfied. In this case, the perturbation grows ex
nentially and hence the uniform vibrating solution~42! is
modulationally unstable.

For the 2D GDS equations~19! and~20!, the condition of
the modulational instability~50! reads

~g11Q1
21g22Q2

21g12Q1Q2!

3H U0
2F2x1

2~b1Q11b2Q2!2

a11Q1
21a22Q2

2 G
2

1

2
~g11Q1

21g22Q2
21g12Q1Q2!J .0. ~52!

Thus due to the anisotropy of the lattice~i.e., b2g12Þ0), the
criterion ~52! gives much richer behavior for the stability o
the Stokes wave than that in isotropic systems~e.g., water
waves!. In particular, for a given Stokes lattice wave the
exist two ~or maybe four, depending on the Stokes latti
wave! wave vectorsQ for which the instability evolves with
the biggest increment. This phenomenon recalls the so-ca
strengthening of inhomogeneities, known in the theory
beam propagation in the Kerr medium@19#. There is, how-
ever, an essential difference originated by the anisotropy:
biggest exponent is characterized by the amplitude of
value of the wave vector and also by the lattice directio
The position of the points providing the largest increme
depends on the choice of the wave vector of the Stokes
tice wave.

The outcome of this type of instability may result in th
formation of solitons@2# or the appearance of homoclini
structures~see Sec. 3.3 of Ref.@12#!.

VI. SOLITON SOLUTIONS

We now consider the soliton solutions of the nonline
evolution equations derived above. Taking 2D GDS eq
tions ~19! and ~20! as an example, to obtain the soliton s
lutions we employ Hirota’s bilinear transformation metho
an ingenious technique of finding exact multisoliton solito
for nonlinear evolution equations@17,18#. Introducing the
dependent variable transformation
9-6
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A0524S b1

]

]j
1b2

]

]h D ln F, A15G/F ~53!

with F ~real! and G ~complex! being the functions oft, j,
andh, Eqs.~19! and~20! are transformed into the following
bilinear form:

~a11Dj
21a22Dh

2 !FF5uGu2, ~54!

~ iD t1g11Dj
21g22Dh

21g12DjDh!GF50, ~55!

@~g1122b1
2!Dj

21~g2222b2
2!Dh

21~g1224b1b2!DjDh#FF

1xuGu250, ~56!

whereDt , Dj , and Dh are Hirota’s bilinear operators de
fined by @17,18#

Dj
mDh

nDt
pGF[S ]

]j
2

]

]j8
D mS ]

]h
2

]

]h8
D nS ]

]t
2

]

]t8
D p

3G~j,h,t!F~j8,h8,t8!uj85j,h85h,t85t .

~57!

In order to get a one-soliton solution, we assume

F511L exp~F1F* !, G5exp~F! ~58!

with

F5~pR1 ipI !j1~qR1 iqI !h1~sR1 isI !t1F0R1 iF0I ,

~59!

whereL,pR ,pI ,qR ,qI ,sR ,sI ,F0R , andF0I are real, yet to
be determined constants. Substituting Eq.~58! into Eqs.
~54!–~56!, we obtain the set of algebraic equations

8L~a11pR
21a22qR

2 !2150, ~60!

g11~pR
22pI

2!1g12~pRqR2pIqI !1g22~qR
22qI

2!2sI50,
~61!

2~g11pRpI1g22qRqI !1g12~pRqI1pIqR!1sR50,
~62!

x18L@~g1122b1
2!pR

21~g2222b2
2!qR

2

1~g1224b1b2!pRqR#50. ~63!

From Eq.~60! we get

L5
1

8~a11pR
21a22qR

2 !
. ~64!

Equations~61! and ~62! give rise to the ‘‘dispersion rela
tions’’

sI5g11~pR
22pI

2!1g12~pRqR2pIqI !1g22~qR
22qI

2!,
~65!

sR522~g11pRpI1g22qRqI !2g12~pRqI1pIqR!, ~66!
05661
with pR ,pI ,qR , andqI being arbitrary constants. Equation
~63! gives a condition for the one-soliton solution.

From Eq.~53! and the results given above, we have

A0524~b1pR1b2qR!@11tanh~u2d0!#, ~67!

A15@2~a11pR
21a22qR

2 !#1/2sech~u2d0!exp~ iw!, ~68!

with u5pRj1qRh1sRt1F0R , w5pIj1qIh1sIt1F0I ,
and d05(1/2)ln@8(a11pR

21a22qR
2)# (F0R and F0I are arbi-

trary constants!. Thus the single-soliton solution obtained
a line soliton, which consists of two parts, a vibrating wa
packet (A1, an envelope soliton! and a mean displacemen
field (A0, a kink!.

The two-soliton solutions of Eqs.~19! and ~20! can be
obtained by choosing

F511L1exp~F11F1* !1L2exp~F21F2* !1~L31 iL 4!

3exp~F11F2* !1~L32 iL 4!exp~F1* 1F2!

1L5exp~F11F21F1* 1F2* !, ~69!

G5exp~F1!1exp~F2!1~M11 iM 2!exp~F11F21F1* !

1~M31 iM 4!exp~F11F21F2* !, ~70!

with F j5(pjR1 ip jI )j1(qjR1 iq jI )h1(sjR1 isjI )t1F jR
0

1 iF j I
0 ( j 51, 2), wherepjR , pjI , qjR , qjI , sjR , sjI , F jR

0 ,
and F j I

0 are real constants. When Eqs.~69! and ~70! are
substituted into the bilinear equations~54!–~56!, we obtain a
set of nonlinear algebraic equations for the real coefficie
L j ( j 51,2, . . . ,5) andM j ( j 51,2,3,4) appearing in Eqs.~69!
and~70!. Solving these equations one can get the express
of L j and M j , as well as the ‘‘dispersion relations’’sjR,I
5sjR,I(pjR ,pjI ,qjR ,qjI )( j 51,2), which have been given in
Appendix A. To guarantee Eqs.~69! and~70! are two-soliton
solutions, the following conditions must be imposed:

g1254b1b2 , ~71!

a11

g1122b1
2

5
a22

g2222b2
2

52
1

x
. ~72!

In addition, forp2R andq2R , there is a constraint

a22~a11p2R
2 1a22q2R

2 !x5~a11b2
21a22b1

2!p2R
2 12a22b2

2q2R
2 .

~73!

It is easy to show that the integrable conditions of the st
dard DS equations~i.e., the ones amenable to being solv
by the inverse-scattering transform! derived in the water
wave problem are the particular case of the conditions~71!
and ~72! ~see Appendix B!. This fact implies that the GDS
equations~19! and ~20! may be integrable under the cond
tions ~71! and ~72!.

We note that different equalities in these conditions, ho
ever, reflect different physical properties. In particular, E
~71! and the first equality in Eq.~72! result in an equation for
the wave vector only@i.e., having the formf (q1 ,q2)50,
9-7
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where f (q1 ,q2) does not depend on the lattice paramete
i.e., on J2# for which the existence of solitons is possibl
Then the second equality in Eq.~72! allows one to find the
particular values of the nonlinear coefficients. In oth
words, the above conditions specify the set of points in
first Brilloun zone and necessary values of the nonlin
forces. What is important for the next consideration is t
such points in the Brillouin zone do exist. Indeed, as
example we mention that the above conditions are satis
for all pointsq5(q1,0) andq5(0,q2).

Equations~69! and ~70! describe two obliquely interact
ing solitons in the (j,h) space. The interaction results in
phase shift~i.e., position shift! for each soliton.

It is possible to getN-soliton solutions of the 2D GDS
equations~19! and ~20! using their bilinear representation
Eqs. ~54!–~56!, under the integrable conditions~71! and
~72!. We note that due to the anisotropy inherent in the
tice system~i.e., b2g12Þ0), the existence of the two-solito
solution requires the conditiong1254b1b2 @Eq. ~71!#, which
is absent for isotropic systems~e.g., water waves!.

VII. CONCLUSION

Using a quasidiscrete multiple-scale method, we have
rived the envelope equations of weakly nonlinear modu
tions of N-dimensional lattice waves. The equations are
tained for the case of interaction of a high-frequency mo
with a long-wavelength acoustic one~also called mean field!
and can be classified as generalized Davey-Stewartson e
tions. In the case at hand, due to the anisotropy of the la
system, the GDS equations in two dimensions are redu
either to the DS equations or to a form that does not app
in the theory of water waves@11#. The mean field coupled to
the oscillatory short wave packet results from the cubic
teratomic potential in the lattice. Additionally, generaliz
Kadomtsev-Petviashvili equations describing the evolut
of a long-wavelength acoustic mode in the lattice are a
presented. We have also studied the modulation instabilit
Stokes waves and provided some exact soliton solutions
the two-dimensional GDS equations based on Hirota’s bi
ear transformation method.

The results reported here recover the known ones in o
dimensional systems, which give rise to standard lattice s
tons. On the other hand, the method can also be used to s
the weakly nonlinear modulations of the wave packets
vector lattices or in lattices with a complex cell. The deriv
tion procedure involves more cumbersome calculation,
the envelope equations obtained still take a form similar
Eq. ~14! and~15! for high-frequency wave packets and Eq
~40! and ~41! for long-wavelength acoustic modes.
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APPENDIX A

The expressions ofL j and M j for two-soliton solutions
appearing in Eqs.~69! and ~70! are given by

L15
1

8~a11p1R
2 1a22q1R

2 !
,

L25
1

8~a11p2R
2 1a22q2R

2 !
,

L352
1

2

a11G21
2 1a22S21

2

@a11G21
2 1a22S21

2 #214@a11D21
p 1a22D21

q #2
,

L452
a11D21

p 1a22D21
q

@a11G21
2 1a22S21

2 #214@a11D21
p 1a22D21

q #2
,

L55
1

64

A5n

A5d
,

M15
1

8

M1n

M1d
, M252

1

2

M2n

M2d
, M35

1

8

M3n

M3d
,

M452
1

2

M4n

M4d
,

L5n5a11
2 ~G22

1 !21a22~S22
1 !212a11a22~G22

2 S22
2

14D22
p D22

q !,

L5d5~a11p1R
2 1a22q1R

2 !~a11p2R
2 1a22q2R

2 !@a11
2 ~G21

1 !2

1a22
2 ~S21

1 !212a11a22~S21
2 G21

2 24D21
p D21

q !#,

M1n5a11
2 $~p1R

2 2p2R
2 !21~p1I2p2I !

2@~p1I2p2I !
222~3p1R

2

2p2R
2 !#%1a22

2 $~q1R
2 2q2R

2 !21~q1I2q2I !
2@~q1I

2q2I !
222~3q1R

2 2q2R
2 !#%12a11a22$@~p1I2p2I !

2

2~p1R
2 1p2R

2 !#@~q1I2q2I !
22~q1R

2 1q2R
2 !#

24~p1I2p2I !~q1I2q2I !~p1Rq1R2p2Rq2R!

24q1Rq2Rp1Rp2R%,

M1d5M2d5~a11p1R
2 1a22q1R

2 !@a11
2 ~G21

1 !21a22~S21
1 !2

12a11a22~G21
2 S21

2 14D21
p D21

q !#,
9-8
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M2n5a11
2 p1R~p1I2p2I !@~p1I2p2I !

22p1R
2 1p2R

2 #

1a22q1R~q1I2q2I !@~q1I2q2I !
22q1R

2 1q2R
2 #

1a11a22$~q1I2q2I !@q1RG21
2 12p1Rp2R~q1I1q2R!#

1~p1I2p2I !@p1RS21
2 12q1Rq2Rp2R#%,

M3n5a11
2 $~p1R

2 2p2R
2 !21~p1I2p2I !

2@~p1I2p2I !
222~3p2R

2

2p1R
2 !#%1a22

2 $~q1R
2 2q2R

2 !21~q1I2q2I !
2@~q1I

2q2I !
222~3q2R

2 2q1R
2 !#%12a11a22$@~p1I2p2I !

2

2~p1R
2 1p2R

2 !#@~q1I2q2I !
22~q1R

2 1q2R
2 !#24~p1I

2p2I !~q1I2q2I !~p1Rq1R2p2Rq2R!

24q1Rq2Rp1Rp2R%,

M3d5M4d5~a11p2R
2 1a22q2R

2 !@a11
2 ~G21

1 !21a22~S21
1 !2

12a11a22~G21
2 S21

2 14D21
p D21

q !#,

M4n52a11
2 ~p1I2p2I !p2R@~p1I2p2I !

21p1R
2 2p2R

2 #

2a22
2 ~q1I2q2I !q2R@~q1I2q2I !

21q1R
2 2q2R

2 #

2a11a22$~q1I2q2I !@q2RG21
2 12p1Rp2R~q1I1q2R!#

1~p1I2p2I !@p2RS21
2 12q1Rq2Rp1R#%,

where

Gs1s2

6 5~p1I1s1p2I !
26~p1R1s2p2R!2,

Ss1s2

6 5~q1I1s1q2I !
26~q1R1s2q2R!2,

Ds1s2

p 5~p1I1s1p2I !~p1R1s2p2R!,

Ds1s2

q 5~q1I1s1q2I !~q1R1s2q2R!,

with s j561( j 51,2).
The ‘‘dispersion relations’’ are given by

s1R524b1b2~p1Rq1I1p1Iq1R!12b2
2S a11p1I p1R

a22

2q1Iq1RD12b1
2S a22q1Iq1R

a11
2p1I p1RD ,

s1I5
1

a11a22
$@2a11

2 b2
2~p1R

2 2p1I
2 !2a22

2 b1
2~q1R

2 2q1I
2 !

1a11a22@b1
2~p1R

2 2p1I
2 !14b1b2~p1Rq1R2p1Iq1I !

1b2
2~q1R

2 2q1I
2 !#%,
05661
s2R524b1b2~p2Rq2I1p2Iq2R!12b2
2S a11p2I p2R

a22

2q2Iq2RD12b1
2S a22q2Iq2R

a11
2p2I p2RD ,

s2I5
1

a11a22
$@2a11

2 b2
2~p2R

2 2p2I
2 !2a22

2 b1
2~q2R

2 2q2I
2 !

1a11a22@b1
2~p2R

2 2p2I
2 !14b1b2~p2Rq2R2p2Iq2I !

1b2
2~q2R

2 2q2I
2 !#%,

wherepjR , pjI , qjR , andqjI ( j 51,2) are arbitrary constants

APPENDIX B

One type of the standard DS equations which can
solved by the inverse scattering transform is~see p. 240 in
Ref. @12# for the case ofr 52q* )

]2f

]x2
2s2

]2f

]y2
522

]2

]x2
~ uq2u!,

i
]q

]t
1

1

2
s2

]2q

]x2
1

1

2

]2q

]y2
5qf1uqu2q

with s2561. Taking the transformationx→j, y→h, t
→(2/s2)t, q→(1/A2)A1, and f→2(s2/2)(]A0 /]j), the
above equations become

s2
]2A0

]j2
2

]2A0

]h2
52

]

]j
~ uA1u2!,

i
]A1

]t
1

]2A1

]j2
1s22

]2A1

]h2
5s22uA1u2A12A1

]A0

]j
.

Comparing with Eqs.~19! and ~20!, for the last two equa-
tions we have

a115s2, a22521, b1521, b250,

g1151, g1250, g225s22,

x5s22,

which satisfy the integrable conditions~71! and ~72!.
9-9
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