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We study the interaction of a soliton in a parity-time (PT ) symmetric coupler which has local perturbation of the
coupling constant. This defect does not change the PT -symmetry of the system, but locally can achieve the excep-
tional point. We found that the symmetric solitons after interaction with the defect either transform into breathers or
blow up. The dynamics of antisymmetric solitons are more complex, showing domains of successive broadening of
the beam and of the beam splitting in two outward propagating solitons, in addition to the single breather generation
and blowup. All the effects are preserved when the coupling strength in the center of the defect deviates from the
exceptional point. If the coupling is strong enough, the only observable outcome of the soliton-defect interaction is
the generation of the breather. © 2014 Optical Society of America
OCIS codes: (190.5940) Self-action effects; (190.6135) Spatial solitons.
http://dx.doi.org/10.1364/OL.39.003382

Two coupled waveguides, with gain and losses that are
mutually balanced are a parity-time (PT )-symmetric sys-
tem [1]. In the nonlinear case, [2] they represent a testbed
for various phenomena involving instabilities and optical
solitons. The couplers support stable propagation of
bright [3–5] and dark [6] solitons, breathers [7], and rogue
waves [8]. The dynamical properties of these systems are
determined by the relation between the strengths of the
coupling (κ) and the gain–loss coefficient (γ), splitting
the region of the parameters into two domains. One do-
main corresponds to the unbroken PT -symmetric phase,
where all linearmodes propagatewithout amplification or
attenuation, and the other one corresponds to the broken
PT -symmetric phase, where the linear modes is unstable.
The value of the relation γ∕κ separating these twodomains
is an exceptional point (for a discussion of the physical
relevance of exceptional points, see [9]).
When the coupling and gain/loss coefficient change

along the propagation distance, the properties of the
medium are affected and a new effect can be observed.
In particular, the PT -symmetry with an alternating sign
can stabilize solitons [4]; a PT -symmetric defect with
localized gain and loss results in switching solitons be-
tween the waveguides [10]. The “governing” ratio γ∕κ can
also be changed by varying the coupling coefficient. This
can be done by changing the properties of the medium
between the waveguides or by using curved waveguides
with varying distance between the waveguides. This sit-
uation was considered for conservative couplers in
[11,12], where the local change of the coupling constant
does not affect qualitatively the properties of the system.
In the case of a PT -symmetric coupler, however, if the
change of κ locally reaches (or crosses) the exceptional
point, the properties of the coupler are changed qualita-
tively. In this case, the PT -symmetric phase is broken
locally and we can speak about exceptional point defect.

We can expect that if the exceptional point defect is
long enough (compared to the wavelength of soliton in
the longitudinal direction), a soliton incident on it should
become unstable. Indeed, in the spatial domain of the de-
fect, a soliton cannot exist. Then we can expect different
scenarios of the soliton instability. These scenarios are
addressed in this Letter. More specifically, we study the
interaction of a vector soliton in a PT -symmetric coupler
with the localized defect of coupling and report four
possibilities of the soliton evolution interacting with
the defect: the excitation of a one-period breather, the
excitation of a breather with oscillating amplitude and
width, the splitting of a vector soliton in two breathers,
and the intensity blowup.

We consider two coupled waveguides described by
two nonlinear Schrödinger equations

iq1;z � −q1;xx � iγq1 − κ�z�q2 − jq1j2q1;
iq2;z � −q2;xx − iγq2 − κ�z�q1 − jq2j2q2; (1)

with the coupling κ � κ0 − �κ0 − κmin�e−z2∕l2
, character-

ized by the amplitude κ0 − κmin (i.e., it attains the minimal
value κmin at z � 0 and tends to κ0 at z → �∞) and by the
width l. To reduce the number of parameters, we set
γ � 1 and leave as the only controlling parameters, the
ones describing the coupling defect, i.e., κ0, κmin, and l.
Respectively, κmin � 1 corresponds to the exceptional
point defect.

In the limiting region where, κmin ≈ κ0, Eqs. (1) possess
a soliton solution [3]:

q�σ�1 �
���
2

p
η exp�i�η2 � σκ0 cos δ�z�

cosh�ηx� � σq�σ�2 e−iσδ; (2)

where δ � arcsin�γ∕κ0� such that 0 ≤ δ ≤ π∕2. The
soliton is parametrized by the positive parameter η,
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and represents symmetric (σ � 1) and antisymmetric
(σ � −1) solutions. Equation (2) at z � zinit is used below
for the initial data for vector solitons interacting with the
defect.
Starting with the interaction of a symmetric soliton

(σ � 1) with the exceptional point defect, κmin � 1, in
Fig. 1 we present the typical results. The figure reveals
the two different dynamical scenarios, which depend
on whether the length of the defect l is below or above
some critical value lcr . In Fig. 1(a), the soliton passes
through a relatively short defect transforming into a
breather. The defect width in this case, l � 1, is far below
the critical value: for η � 0.15, κ0 � 2, and κmin � 1 we
found lcr ≈ 7. The emergent breather solution is charac-
terized by the intensity oscillations between the two com-
ponents: minimum (maximum) in one component
corresponds to maximum (minimum) in the other
[Fig. 1(a)]. The frequency of these oscillations (after sol-

iton passed the defect) can be estimated at 2
��������������
κ20 − γ2

q
. For

theweak nonlinear limit, the estimatewas derived in [7]. It
stems from the difference of the eigenfrequencies of the
linearPT -symmetric coupler. At a finite amplitude the es-
timate for the frequency can be obtained from the follow-
ing arguments. Introducing the Stokes variables
s0 � jq1j2 � jq2j2, s1 � q1q�2 � q�1q2, s2 � −i�q1q�2 − q�1q2�,
and s3 � jq1j2 − jq2j2, as well as their integrals
Sj �

R
∞
−∞ sj�z; x�dx, we obtain:

dS0

dz
� 2γS3;

dS2

dz
� −2κ�z�S3 �

Z
∞

−∞
s1s3dx;

dS1

dz
� −

Z
∞

−∞
s2s3dx;

dS3

dz
� 2γS0 � 2κ�z�S2.

For η ≪ 1 we have
R jqjj4dx ∼ η2

R jqjj2dx and
j R s1s3dxj � j R jq1j4dx −

R jq2j4dxj ≪ jS3j. In this case,
η � 0.15 and κ0 � 2 and the nonlinear term in the equation
for S2 can be neglected with the accuracy η2∕κ0 ≈ 0.011.
As a result, the system for S0, S2 and S3 becomes closed

and linear. One of its eigenfrequencies is 2
��������������
κ20 − γ2

q
, giving

a period of oscillations π∕
��������������
κ20 − γ2

q
≈ 1.8; it agrees well

with the numerical results in Fig. 1(a).
In Fig. 1(b), the solution passes through the same de-

fect (l � 1) just below the critical value (for η � 0.5,
κ0 � 4, and κmin � 1 we found lcr ≈ 1.1) and is trans-
formed into a breather. Now the period of oscillations

is π∕
��������������
κ20 − γ2

q
≈ 0.8, which still agrees well with the

numerical results. The dependencies of the total energy
flow S0 and the solution amplitudes jq1;2j on z for each
case are shown in the lower panels. When the defect
width is close to the threshold value (Fig. 1), the depend-
ence S0�z� becomes quasiperiodic.
In Fig. 2, we show details of the evolution of the Stokes

components and phases of the emergent breathers. The
breathing character of the mode is evident from almost
periodic power imbalance S3 between the waveguides.
We also observe that the breathing solution is accompa-
nied by the oscillation of the “current” S2 (which is con-
stant for the soliton solution). These oscillations relate to

the lifting the phase locking between the components
(Fig. 2): the phase difference θ � arg q1 − arg q2, which
is constant for soliton (2), in the breather solution de-
pends periodically on the evolution coordinate. We also
confirmed that the Stokes component S1 remains much
smaller than the other ones, what corroborates with the
suppositions made in the estimates of the breather
period.

If the length of the defect exceeds a critical value lcr
for a given coupling constant, the soliton “cannot over-
come” it. The component with gain q1 (and hence S0)
grows infinitely. Thus the soliton after passing through
the defect blows up [Fig. 1(b)]. We performed a detailed
study of the dependence of the critical width of the defect
lcr as a function of the minimal coupling κmin [Fig. 3(a)].
The main qualitative result is that the exceptional point
κmin � 1 separates quasi-linear (at κmin < 1) and quasi-
exponential (at 1 < κmin < κ�min) dependencies lcr�κmin�.

Interestingly, when the PT -symmetry is locally broken
(κmin < 1) or even approaches zero, soliton still can pass
the coupling defect, provided the defect is narrow
enough. At the same time, the relatively strong coupling
prevents a blowup. For κmin > κ�min there is no critical

Fig. 1. Upper panels: field intensities with (a) η � 0.15 and
(b) η � 0.5 interacting with defect at z � 0. The coupling
κmin � 1, (a) κ0 � 2 and (b) 4. Lower panels: respective evolu-
tion of the total energy flow S0 for l � 1 (thick solid lines) and
soliton amplitudes jq1j and jq2j (thin solid and dashed lines, re-
spectively). The thick dotted line in (b) shows blowup at
l � 1.1. The local maxima (minima) of S0 [the vertical lines
in the lower panel (a)] happen where the powers in the wave-
guides are equal:

R jq1j2dx � R jq2j2dx. The simulations for
bounded solutions have been performed between zini � −10
and zfin � 100 and on the grid −40 < x < 40.

Fig. 2. (a) S0 (solid line) and S3 (dashed line) versus z, (b) S2
(solid line) and S1 (dashed line) versus z, and (c)”θ versus z.
The parameters are the same with those used in Fig. 1(a).
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width of a defect, and a soliton can pass a defect of any
width being transformed in a breather. In the inset of
Fig. 3(a) we show an example of strong coupling
κmin � 1.5, where the defect with a sufficiently long width
l � 10 results in the excitation of breathers. The blowup
can occur in the whole interval of weak coupling 0 <
κmin < κ�min [in Fig. 3(a), κ�min ≈ 1.5].
In Fig. 3(b), we show the dependence of lcr on the in-

verse soliton width η at κ0 � 4 and κmin � 1. For a given
defect width there exists a critical soliton amplitude
separating small amplitude solitons which pass the impu-
rity being transformed in breathers and large amplitude
solitons which blow up. We also observe an upper critical

amplitude η2cr � 2
�������������
κ20 − 1

q
∕3 ≈ 1.6, above which a soliton

blows up independently of the width of the defect. This
last effect is a manifestation of the instability of the large
amplitude solitons in a PT -symmetric coupler [3]. As in
the previous case, solitons with η < η� ≈ 0.1 are able to
pass the defect of any width without blowing up. In the
inset of Fig. 2(b), we show an example of the excitation
of a breather by small amplitude solitons.
Turning to the interaction of the antisymmetric soliton

σ � −1with an exceptional point defect we observe more
rich behavior, which is presented in Fig. 4. As in the case
of a symmetric soliton, we find that there exists a critical
defect length lcr above which the soliton blows up (for
the chosen parameters lcr ≈ 3.4). If the width of the de-
fect is below lcr , the soliton-defect interaction results in
the creation of breathers, although this occurs now ac-
cording to different scenarios. The effect of a relatively
short defect acts similarly on the symmetric and antisym-
metric solitons, cf. panels (a) in Figs. 1 and 4. Here one
observes that the antisymmetric breathers have a shorter
period (≈0.8) than that of the symmetric ones.
The increase of the defect lengths results in the broad-

ening of the soliton past the defect [Fig. 4(b)]. This broad-
ening is repeated along the propagation distance in
Fig. 4(b) the period ≈10. The further increase of l leads
to the splitting of the incident soliton in the two outward
propagating pulses, as it is shown in Fig. 4(c). It turns out
that the domain of the defect lengths leading to the split-
ting of the incident beam is finite (for the parameters of
Fig. 4 this is the domain 2.2 ≤ l ≤ 3.2). Interestingly, the
further increasing of the defect length stops soliton split-
ting and reintroduces the scenario when broadening of

the soliton is observed [Fig. 4(d)]. In spite of the reported
diversity of the behaviors, the total energy flow S0 is
increasing smoothly with the growth of l displaying
no reflection of the broadening or splitting dynamics.

In Fig. 5, we show (a) lcr versus κmin and (b) lcr versus
η for κmin � 1 for the case of antisymmetric soliton.
Comparing Figs. 5 and 3, we observe that the blowup
of a symmetric soliton occurs at lower amplitudes and
smaller defect lengths than the blowup of an antisymmet-
ric soliton.

The interactions of the solitons of both types with the
defect obey several common features. First, the soliton-
defect interaction starts with the local increase of the

Fig. 3. Dependencies of lcr versus κmin for η � 0.5 (a) and ver-
sus η for κmin � 1 (b). In both panels κ0 � 4. If κmin > κ�min ≈ 1.5
(a) and η < η� ≈ 0.1 (b) (the gray domains) no blowup is found
under the given values of the parameters. Insets show the dy-
namics of Stokes components (a) for a soliton interacting with a
strong coupling defect κmin � 1.5 and (b) for a small amplitude
soliton (η � 0.1) interacting with the exceptional point defect,
where a sufficiently long defect, l � 10, results in the excitation
of a breather.

Fig. 4. Upper panels: The dynamics of soliton-defect inter-
actions for (a) η � 0.5 and l � 1.1, (b) 2.2, (c) 2.7, and
(d) 3.2, respectively, for the coupling κ0 � 4 and κmin � 1. In
(a) and (b), the broadening is repeated along the propagation
distance with the period ≈10. Lower panels: The total energy
flow S0 (thick solid lines) and soliton amplitudes jq1j and
jq2j (thin solid and dashed lines, respectively) for each solution.
The thick dotted line in (d) corresponds to the blow up happen-
ing at l � 3.4.

Fig. 5. (a) lcr versus κmin for η � 0.5 and (b) lcr versus η for
κmin � 1. In both panels κ0 � 4. If (a) κmin > κ�min ≈ 1 and
(b) η < η� ≈ 0.2 (the gray domains), no blowup occurs for
the given parameters. The insets show the Stokes components
for the defect with (a) κmin � 1.1 and (b) for the small amplitude
soliton (η � 0.1) interacting with the exceptional point defect,
where the defect of the length l � 10 results in the excitation of
breathers.
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energy flow. Indeed, the initial (solitonic) values of
the Stokes parameters are given by: S�s�

0 � 8η,
S�s�
1 � 8ησ cos δ, S�s�

2 � −8η sin δ, S�s�
3 � 0 (s3 ≡ 0) and

thus (3) gives that at the initial stage of evolution S0
and S3 are growing independently of defect parameters.
Second, it follows from (3) that for an exact breathing,
i.e., L-periodic, solution hS3i � �1∕L� R z�L

z S3�z�dz � 0.
For a breather far from the defect, where κ�z� ≈ κ0, we
also find that hS2i � −�γ∕κ�hS0i < 0. Thus, the defect re-
sults in oscillations of S2�z� without changing the sign of
its average.
Finally, using the super-Gaussian defect κ � κ0−

�κ0 − κmin�e−z6∕l6
, we checked the sensitivity of our results

to the choice of the defect. We found that for the param-
eters as in Fig. 1(b) the critical value becomes lcr ≈ 0.5.
For the antisymmetric mode, the results are shown in
Fig. 6. We observe that there are the same scenarios
as those in Fig. 4 (although now lcr ≈ 2.3 for
η � 0.25). It is interesting that for η � 0.5, the critical
value lcr ≈ 1.1, i.e., considerably lower than the one es-
tablished in Fig. 4.

In conclusion, we considered the interaction of a dif-
fractive soliton in a PT -symmetric coupler with a cou-
pling defect, which locally achieves the exceptional
point of the underline linear system. Independent of
whether the incident beam (soliton) is symmetric or anti-
symmetric, at relatively small defect length the soliton
passes through the defect and transforms into a breather.
This occurs even if in the region of the defect the PT -
symmetry is broken. If the defect is long enough, the total
energy flow grows exponentially along the waveguides.
In the case of an antisymmetric soliton interacting with a
defect there domains van exist where successive broad-
ening of the beam and even beam splitting in two out-
ward propagating breathers occurs.
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