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We investigate the quantum squeezing of matter-wave solitons in atomic Bose–Einstein condensates. By

calculating quantum fluctuations of the solitons via solving the Bogoliubov–de Gennes equations, we show that

significant quantum squeezing can be realized for both bright and dark solitons. We also show that the squeezing

efficiency of the solitons can be enhanced and manipulated by atom–atom interaction and soliton blackness. The

results reported here are beneficial not only for understanding quantum property of matter-wave solitons, but

also for promising applications of Bose-condensed quantum gases.
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Solitons, fascinating nonlinear wave packets, can form

in extended media through the balance between non-

linearity and dispersion (and/or diffraction). [1] Among

solitons found in various physical systems, matter-wave

solitons have attracted tremendous attention and stud-

ied extensively since the remarkable experimental realiza-

tion of Bose–Einstein condensates (BECs) of cold atomic

gases. [2–23]

Most researches on matter-wave solitons carried out

up to date [2–23] are based on 𝑐-number Gross–Pitaevskii

(GP) equation, which is obtained by using the mean-

field approximation (MFA). [24] With such an approach,

effects of quantum fluctuations around solitons are dis-

regarded. However, in many cases quantum fluctuations

can induce significant quantum diffusion of matter-wave

solitons, [25–28] and hence the MFA is invalid.

In this Letter, we develop a quantum theory of matter-

wave solitons in a quasi one-dimensional (1D) BEC beyond

the MFA. In our scheme, the quantum fluctuations around

the solitons display significant effects and hence cannot be

neglected. Based on such a scheme, we consider the possi-

bility of quantum squeezing of bight and dark solitons.

By analytically calculating quantum fluctuations of the

solitons via exactly solving the non-Hermitian eigenvalue

problem of the Bogoliubov–de Gennes (BdG) equations de-

scribing the quantum fluctuations, we find that significant

quantum squeezing for both the bright and dark solitons

can occur in the system.

Moreover, we demonstrate that for the bright soliton

(which can be obtained in the BEC with attractive atom–

atom interaction) the squeezing efficiency can be enhanced

by the atom–atom interaction, while for the dark soliton

(which can be obtained in the BEC with repulsive atom–

atom interaction) the squeezing efficiency can not only be

enhanced by the atom–atom interaction but also be con-

trolled by the soliton blackness. The results given here are

useful not only for a deep understanding of the quantum

property of matter-wave solitons, but also for practical ap-

plications of BECs with significant quantum fluctuations.

Model. We start to consider a cigar-shaped ultracold

quantum gas with a local (two-body) atom–atom inter-

action, trapped by an external simple harmonic oscillator

potential 𝑉ext(𝑟) = (𝑚/2)[𝜔2
⊥(𝑥

2 + 𝑦2) + 𝜔2
𝑧𝑧

2], with 𝑚

the atomic mass, 𝜔⊥ (𝜔𝑧) the transverse (axial) trapping

frequency (𝜔⊥ ≫ 𝜔𝑧). The Hamiltonian of the system

reads

𝐻̂ =

∫︁
𝑑𝑟𝛹 †(𝑟, 𝑡)

[︁
− ~2

2𝑚
∇2 + 𝑉ext(𝑟)

]︁
𝛹(𝑟, 𝑡)

+
𝐺

2

∫︁
𝑑𝑟𝛹 †(𝑟, 𝑡)𝛹 †(𝑟, 𝑡)𝛹(𝑟, 𝑡)𝛹(𝑟, 𝑡),

where 𝑑𝑟 = 𝑑𝑥𝑑𝑦𝑑𝑧, 𝛹 is atomic annihilation opera-

tor obeying the commutation relation [𝛹(𝑟, 𝑡), 𝛹 †(𝑟′, 𝑡)] =

𝛿(𝑟 − 𝑟′), parameter 𝐺 = 4𝜋~2𝑎s/𝑚 characterizes the

strength of the atom–atom interaction, with 𝑎s being the

s-wave scattering length. [24] The symbol of 𝑎s can be ad-

justed by using the technique of Feshbach resonance. [24]

Based on the above Hamiltonian, one can obtain the

Heisenberg equation of motion as follows:

𝑖~ 𝜕
𝜕𝑡
𝛹(𝑟, 𝑡) =

[︁
− ~2

2𝑚
∇2 + 𝑉ext(𝑟)

]︁
𝛹(𝑟, 𝑡)

+𝐺𝛹 †(𝑟, 𝑡)𝛹(𝑟, 𝑡)𝛹(𝑟, 𝑡). (1)

Since the trapping of the gas in the axial direction is much

smaller than that in the transverse directions, one can take

𝛹(𝑟, 𝑡) = 𝑤(𝑥, 𝑦)𝜓(𝑧, 𝑡), where 𝑤(𝑥, 𝑦) satisfies

− ~2

2𝑚

(︁ 𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2

)︁
𝑤(𝑥, 𝑦) +

𝑚

2
𝜔2
⊥(𝑥

2 + 𝑦2)𝑤(𝑥, 𝑦)

= 𝜈𝑤(𝑥, 𝑦),

i.e., the eigen equation of 2D harmonic oscillator. The

normalized ground-state solution to this eigen equation

is given by 𝑤0(𝑥, 𝑦) = [𝑚𝜔⊥/(𝜋~)]1/2𝑒−𝑚𝜔⊥(𝑥2+𝑦2)/(2~),

with the eigenvalue 𝜈 = ~𝜔⊥. If the energy of the

atom–atom interaction is much smaller than the atomic

kinetic energy in the transverse directions, one can take
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𝑤(𝑥, 𝑦) = 𝑤0(𝑥, 𝑦). Multiplying 𝑤0(𝑥, 𝑦) on the left side

of Eq. (1) and then carrying out the integration on the

variables 𝑥 and 𝑦, Eq. (1) becomes

𝑖~ 𝜕
𝜕𝑡
𝜓(𝑧, 𝑡) =

(︁
− ~2

2𝑚

𝜕2

𝜕𝑧2
+
𝑚

2
𝜔2
𝑧𝑧

2 + ~𝜔⊥

)︁
𝜓(𝑧, 𝑡)

+ 𝑔1D𝜓
†(𝑧, 𝑡)𝜓(𝑧, 𝑡)𝜓(𝑧, 𝑡), (2)

with 𝑔1D = 2𝑎s~𝜔⊥. In this way, the system is effectively

reduced to a quasi-1D one. [23]

For convenience of later calculations, it is better con-

vert Eq. (2) to a dimensionless form. This can be real-

ized by taking the transformation 𝜓 =
√
𝑁𝜌0𝑒

−𝑖𝜇𝜏𝜑(𝜁, 𝜏),

𝜁 = 𝑧/𝑙⊥, 𝜏 = 𝜔⊥𝑡, and 𝛺 = 𝜔𝑧/𝜔⊥, with 𝑁 be-

ing the total atomic number, 𝜌0 the 1D atomic density,

and 𝑙⊥ =
√︀

~/(𝑚𝜔⊥) the transverse harmonic-oscillator

length. Then Eq. (2) becomes

𝑖
𝜕𝜑

𝜕𝜏
=
[︁
− 1

2

𝜕2

𝜕𝜁2
+
𝛺2

2
𝜁2 − 𝜇+ 1

]︁
𝜑+ 𝑔𝜑†𝜑𝜑.

Here 𝑔 = 2𝑁𝑎s𝜌0 and 𝜇 = 𝜇′/(~𝜔⊥); 𝜇′ =∫︀
𝑑𝑟⟨𝛹𝐺|𝜓†𝜓|𝛹𝐺⟩ is chemical potential, with |𝛹𝐺⟩ repre-

senting the initial state of the system. Notice that quasi

1D BECs have been widely used to study the dynam-

ics of matter-wave solitons. [2–16,19–22] For example, in the

experiment [12] a cigar-shaped 87Rb BEC was used, with

(𝜔⊥, 𝜔𝑧) = 2𝜋 × (133, 5.9) Hz. Since 𝜔𝑧 ≪ 𝜔⊥, one has

𝛺 ≪ 1, and the trapping potential 𝑈ext(𝜁) = (𝛺2/2)𝜁2 for

finite 𝜁 is practically a high-order small quantity. [29] For

simplicity, we shall take 𝛺 = 0 in the following discussion.

As a result, we obtain the dimensionless quantum non-

linear Schrödinger (QNLS) equation

𝑖
𝜕

𝜕𝜏
𝜑(𝜁, 𝜏) +

(︁1
2

𝜕2

𝜕𝜁2
+ 𝜇− 1

)︁
𝜑(𝜁, 𝜏)

− 𝑔𝜑†(𝜁, 𝜏)𝜑(𝜁, 𝜏)𝜑(𝜁, 𝜏) = 0. (3)

The effective Hamiltonian for the system described by the

QNLS Eq. (3) is given by

𝐻̂eff =

∫︁
𝑑𝜁 𝜑†

(︁
− 1

2

𝜕2

𝜕𝜁2
− 𝜇+ 1 +

𝑔

2
𝜑†𝜑

)︁
𝜑, (4)

with the commutation relation [𝜑(𝜁, 𝜏), 𝜑†(𝜁′, 𝜏)] = 𝛿(𝜁 −
𝜁′).

BdG Equations for Quantum Fluctuations. We are

interested in the quantum fluctuations around a soliton-

like BEC in the system. To this end, we assume that

the atomic number in the condensate is large, so that

the quantum fluctuations, though they can display signifi-

cant effect, are still weaker compared with the condensate.

Thereby one can make the Bogoliubov decomposition [30]

𝜑(𝜁, 𝜏) = 𝜑0(𝜁, 𝜏) + 𝛿𝜑(𝜁, 𝜏), (5)

where 𝜑0 is wavefunction (complex 𝑐-number) describing

the condensate, 𝛿𝜑 is an operator representing the quan-

tum fluctuations around the condensate background. [24]

Substituting the Bogoliubov decomposition (5) into

the QNLS Eq. (3) and keeping only linear terms of 𝛿𝜑,

we obtain the following equations:

𝑖
𝜕

𝜕𝜏
𝜑0 +

(︁1
2

𝜕2

𝜕𝜁2
+ 𝜇− 1

)︁
𝜑0 − 𝑔|𝜑0|2𝜑0 = 0, (6a)

𝑖
𝜕

𝜕𝜏
𝛷(𝜁, 𝜏) + 𝒯 𝛷(𝜁, 𝜏) = 0. (6b)

Here 𝛷(𝜁, 𝜏) = (𝛿𝜑, 𝛿𝜑†)T (the superscript T means

transpose), and 𝒯 is a matrix operator, defined by

𝒯 =

(︃
𝒜 ℬ
−ℬ −𝒜

)︃
, (7)

with 𝒜 = (1/2)𝜕2/𝜕𝜁2 − 2𝑔|𝜑0|2 + 𝜇− 1 and ℬ = 𝑔|𝜑0|2.
To understand the property of the quantum fluctua-

tions from the condensate described by 𝜑0, we must first

find 𝜑0 (e.g., soliton solution) via solving the GP Eq. (6a),

and then seek the eigenmodes of the matrix operator 𝒯
through solving the operator Eq. (6b). In order to be

able to express (expand) all possible quantum fluctuations,

these eigenmodes must be complete. Note that operator 𝒯
is not Hermitian, but pseudo-Hermitian, i.e., 𝒯 † = 𝜎3𝒯 𝜎3,

with 𝜎3 =
(︁ 1 0

0 −1

)︁
(Pauli matrix). In recent years,

tremendous efforts have been paid to the research of non-

Hermitian physics, and it has been proved that a pseudo-

Hermitian operator can possess all-real spectrum. [31,32]

Thus, if one can find all the eigenmodes of 𝒯 (and 𝒯 †),

the set of complete and bi-orthonormal eigenmodes can be

constructed, by which the effective Hamiltonian (4) can be

diagonalized.

For this aim, we adopt the method developed recently

in Refs. [33–37] to acquire the complete and bi-orthogonal

eigenmodes of the BdG Eq. (6b) through making the Bo-

goliubov transformation

𝛿𝜑(𝜁, 𝜏) =
∑︁
𝑛

[𝑢𝑛(𝜁)𝑎̂𝑛(𝜏) + 𝑣*𝑛(𝜁)𝑎̂
†
𝑛(𝜏)]

+

∫︁
𝑑𝑘
[︀
𝑢𝑘(𝜁)𝑎̂𝑘(𝜏) + 𝑣*𝑘(𝜁)𝑎̂

†
𝑘(𝜏)

]︀
. (8)

Here the indices 𝑛 and 𝑘 are quantum numbers charac-

terizing respectively the discrete and continuous modes;

𝑎̂𝑛(𝜏) and 𝑎̂𝑘(𝜏) are respectively atomic annihilation oper-

ators for the discrete and continuous modes, satisfying re-

spectively the commutation relations [𝑎̂𝑛(𝜏), 𝑎̂
†
𝑚(𝜏)] = 𝛿𝑚𝑛

and [𝑎̂𝑘(𝜏), 𝑎̂
†
𝑘′(𝜏)] = 𝛿(𝑘 − 𝑘′); 𝑢𝑛(𝜁), 𝑣𝑛(𝜁), 𝑢𝑘(𝜁), and

𝑣𝑘(𝜁) are eigenmode functions for the discrete and contin-

uous spectra, respectively. Taking 𝛷(𝜁, 𝜏) = 𝛷(𝜁)exp(𝑖𝜆𝜏)

and substituting it into Eq. (6b), we obtain the eigenvalue

equations (i.e., BdG equations)

𝒯 𝛷(𝜁) = 𝜆𝛷̂(𝜁). (9)

Next, we shall consider two particular cases in which 𝜑0

takes forms of bright and dark solitons, respectively.

Quantum Fluctuations of Bright Solitons. For the case

of attractive atom–atom interaction (i.e., 𝑔 < 0 [6,7]), the

GP Eq. (6a) admits bright soliton solution

𝜑BS
0 = 𝜂0

√
𝑔 sech(𝑍) 𝑒𝑖[𝑣0(𝜁−𝜁0)−𝑣2

0𝜏/2+𝜃0]. (10)

Here 𝑍 = 𝜂0𝑔(𝜁 − 𝑣0𝜏 − 𝜁0), 𝜇 = −𝜂20𝑔2/2 + 1, BS means

“bright soliton”; 𝜂0, 𝜃0, 𝑣0, and 𝜁0 are free real param-

eters, related to the soliton amplitude, initial phase, ve-

locity, and initial position, respectively. Substituting the

solution (10) into the expression of 𝒯 and solving the BdG

Eq. (9), we can obtain all the eigenmodes of 𝒯 , including

the continuum modes (with eigenvalues 𝜆𝑘 = −𝑘2 − 1)

100504-2
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and discrete modes (with two degenerate eigenvalues 𝜆1 =

𝜆2 = 0, called zero modes). In addition, using the relation

𝒯 † = 𝜎3𝒯 𝜎3, we can also acquire all the eigenmodes of 𝒯 †.

It can be shown that these eigenmodes constitute a com-

plete set, and they are bi-orthogonal in the dual spaces of

𝒯 and 𝒯 †. For detailed expressions and their completeness

and bi-orthogonality of these eigenmodes, see Refs. [35,37].

Based on the above results and the Bogoliubov trans-

formation (8), the effective Hamiltonian (4) can be diago-

nalized into the form

𝐻̂BS
eff =

2𝜂30𝑔
2

3
+
𝜂20𝑔

2

2

[︁
𝑃 2
2 − 𝑄̂2

1

+

∫︁ +∞

−∞
𝑑𝑘𝜆𝑘𝑎̂

†
𝑘(𝜏)𝑎̂𝑘(𝜏)

]︁
. (11)

Here 𝑄̂𝑛 = (𝑎̂𝑛 + 𝑎̂†
𝑛)/

√
2 and 𝑃𝑛 = (𝑎̂𝑛 − 𝑎̂†

𝑛)/(
√
2𝑖)

are respectively the position and momentum operators re-

lated to the zero modes, satisfying commutation relations

[𝑄̂𝑛, 𝑃𝑛′ ] = 𝑖𝛿𝑛𝑛′ (𝑛, 𝑛′ = 1, 2).

Based on the diagonalized Hamiltonian Eq. (11) and

the Heisenberg equations of motion for 𝑄̂𝑛, 𝑃𝑛, and 𝑎̂𝑘,

we obtain the following solutions:

𝑄̂1(𝜏) = 𝑄̂1(0), (12a)

𝑃1(𝜏) = 𝜂20𝑔
2𝜏𝑄̂1(0) + 𝑃1(0), (12b)

𝑃2(𝜏) = 𝑃2(0), (12c)

𝑄̂2(𝜏) = 𝐴2
0𝑔

2𝜏𝑃2(0) + 𝑄̂2(0), (12d)

𝑎̂𝑘(𝜏) = 𝑎̂𝑘(0)𝑒
𝑖𝜂2

0𝑔
2𝜆𝑘𝜏/2, (12e)

where 𝑄̂𝑗(0), 𝑃𝑗(0), and 𝑎̂𝑘(0) are values of 𝑄̂𝑗(𝜏), 𝑃𝑗(𝜏),

and 𝑎̂𝑘(𝜏) at 𝜏 = 0, respectively. From this result we can

see that the quantum fluctuations of the bright soliton

are contributed mainly by two zero modes, which induce

quantum phase diffusion and atomic number fluctuations

as well as position and momentum fluctuations.

Quantum Fluctuations of Dark Solitons. For the case

of repulsive atom–atom interaction (i.e., 𝑔 > 0 [2,4]), the

GP Eq. (6a) admits dark soliton solution

𝜑DS
0 (𝜁, 𝜏) = 𝜂0

√
𝑔(cos𝜗tanh𝜍 + 𝑖 sin𝜗)𝑒𝑖𝜃0 . (13)

Here 𝜍 = 𝜂0𝑔 cos𝜗(𝜁 − 𝜁0 − 𝜂0𝑔𝜏 sin𝜗), 𝜇 = 𝜂20𝑔
2 + 1, DS

means “dark soliton”; 𝜂0 and 𝜃0 are constants character-

izing the amplitude and the overall phase of the soliton; 𝜗

(0 ≤ 𝜗 ≤ 𝜋/2) is a constant characterizing the blackness

of the dark soliton, defined by 𝜂2𝑔 cos2 𝜗 (i.e., the differ-

ence between the minimum of the soliton intensity and the

background intensity 𝜂2𝑔); 𝜂𝑔 sin𝜗 and 𝜁0 are the veloc-

ity and initial position of the soliton, respectively. When

𝜗 = 0, Eq. (13) reduces to a black soliton.

Similar to bright soliton, we can obtain all the eigen-

modes of the matrix operator 𝒯 by solving the BdG

Eq. (9), including continuum modes with eigenvalues 𝜆𝑘 =

|𝑘|[−2 tan𝜗+
√︀
𝑘2 + 4(1 + tan2 𝜗)] and unique zero mode

with eigenvalue 𝜆1 = 0. For detailed expressions of these

eigenmodes and their completeness and bi-orthogonality,

see Ref. [36]. With these results the Hamiltonian (4) can

be diagonalized as

𝐻̂DS
eff =

𝜂20𝑔
2

2
cos2 𝜗

[︁
𝑃 2
1 +

∫︁ +∞

−∞
𝑑𝑘𝜆𝑘𝑎̂

†
𝑘(𝜏)𝑎̂𝑘(𝜏)

]︁
. (14)

Based on this diagonalized Hamiltonian, by using

Heisenberg equations we can obtain the solution

𝑃1(𝜏) = 𝑃1(0), (15a)

𝑄̂1(𝜏) = 𝜂20𝑔
2𝜏 cos2 𝜗𝑃1(0) + 𝑄̂1(0), (15b)

𝑎̂𝑘(𝜏) = 𝑎̂𝑘(0)𝑒
𝑖𝜂2

0𝑔
2(𝜆𝑘𝜏/2) cos

2 𝜗. (15c)

This result shows that the quantum fluctuations of the

dark soliton originate mainly from the zero mode, which

generates the diffusion of the position and momentum of

the dark soliton. It should be pointed out that no fluc-

tuations of phase and atom-number occur here. This is

due to the reason that, in the present approach, the dark

soliton has a non-zero boundary at infinity, which means

that the system contains infinite-many atoms. Practically

the BEC has a finite size, and the dark soliton is excited

on a finite background. In such a case, it is possible to

obtain the second zero mode of quantum fluctuations, and

hence a phase diffusion of the dark soliton may occur, an

interesting topic deserving to be explored further.

Quantum Squeezing of Bright and Dark Solitons. In

recent years, quantum squeezing has attracted much at-

tention and found a wealth of important applications, es-

pecially in quantum precision measurements. [38–40] Based

on the results given above, we can explore the possibility

of quantum squeezing of the matter-wave solitons. Be-

cause the quantum fluctuations from continuous spectra

are much smaller than those from the zero modes, [41] in

the following calculation we shall neglect the contribution

from the continuous spectra.

To investigate the quantum squeezing, we introduce

quadrature operators related to 𝑎̂𝑛 at the angle 𝛩, [42]

𝑋̂𝑛,𝛩(𝜏) =
1√
2
[𝑎̂𝑛(𝜏) 𝑒

−𝑖𝛩 + 𝑎̂†
𝑛(𝜏) 𝑒

𝑖𝛩]

= 𝑄̂𝑛(𝜏) cos𝛩 + 𝑃𝑛(𝜏) sin𝛩, (16)

satisfying the commutation relation [𝑋̂𝑛,𝛩, 𝑋̂𝑛′,𝛩+𝜋
2
] =

𝑖𝛿𝑛,𝑛′ , where 𝛩 is the detection angle. The quantum fluc-

tuations can be expressed by 𝑋̂𝑛,𝛩(𝜏) in the form

𝛿𝜑(𝜁, 𝜏) =
∑︁
𝑛

{︂
𝑈𝑛(𝜁)

[︁
cos𝛩𝑋̂𝑛,𝛩(𝜏)− sin𝛩𝑋̂𝑛,𝛩+𝜋

2
(𝜏)
]︁

+ 𝑖𝑉𝑛(𝜁)
[︁
sin𝛩𝑋̂𝑛,𝛩(𝜏) + cos𝛩𝑋̂𝑛,𝛩+𝜋

2
(𝜏)
]︁}︂
, (17)

where 𝑈𝑛(𝜁) = [𝑢𝑛(𝜁) + 𝑣𝑛(𝜁)]/
√
2 and 𝑉𝑛(𝜁) = [𝑢𝑛(𝜁) −

𝑣𝑛(𝜁)]/
√
2. In order to make difference between the cases

of the bright and dark solitons, we write the above formula

as the form of 𝑋̂𝛼
𝑛,𝛩(𝜏) =

1√
2
[𝑎̂𝛼𝑛(𝜏) 𝑒

−𝑖𝛩 + (𝑎̂𝛼𝑛)
†(𝜏) 𝑒𝑖𝛩] =

𝑄̂𝛼
𝑛(𝜏) cos𝛩 + 𝑃𝛼

𝑛 (𝜏) sin𝛩, with 𝛼 = BS (𝛼 = DS) for

bright (dark) soliton. The quantum squeezing of the soli-

tons can be characterized by using quadrature variance

⟨(𝑋̂𝛼
𝑛,𝛩)

2⟩ ≡ ⟨𝛹𝐺|(𝑋̂𝛼
𝑛,𝛩)

2|𝛹𝐺⟩ (i.e., the average under the

initial state |𝛹𝐺⟩, which contains the soliton with no quan-

tum fluctuation [35–37]).

Figure 1 shows the result of ⟨(𝑋̂𝛼
𝑛,𝛩)

2⟩ as functions of

𝜏 and 𝛩/(2𝜋), by taking 𝜂0 = 𝑔 = 1 and 𝜗 = 𝜋/4. Plots in

Figs. 1(a) and 1(b) are the quadrature variances ⟨(𝑋̂BS
1,𝜃)

2⟩
and ⟨(𝑋̂BS

2,𝜃)
2⟩ of the bright soliton, while Fig. 1(c) is the

quadrature variance ⟨(𝑋̂DS
1,𝜃)

2⟩ of the dark soliton. We can

see that three quadrature variances are sensitive to the
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selection of 𝛩. When 𝜏 = 0, all the variances take the

vacuum value 1/2. However, when 𝛩 and 𝜏 locate in the

blue domains, the quadrature variances are much smaller

than their vacuum values, which means that the matter-

wave solitons can be significantly squeezed by the quantum

fluctuations contributed by the zero modes. These solitons

can also be made to be anti-squeezed, indicated by the do-

mains with red color.
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Fig. 1. Quantum squeezing of matter-wave solitons.
[(a), (b)] Quadrature variances ⟨(𝑋̂BS

1,𝜃)
2⟩, ⟨(𝑋̂BS

2,𝜃)
2⟩ of the

bright soliton as functions of 𝜏 and 𝛩/(2𝜋), for 𝜂0 = 𝑔 = 1
and 𝜗 = 𝜋/4. (c) Quadrature variance ⟨(𝑋̂DS

1,𝜃)
2⟩ of the

dark soliton, also for 𝜂0 = 𝑔 = 1 and 𝜗 = 𝜋/4.

The degree of the quantum squeezing can be character-

ized by the squeezing ratio, i.e., the ratio of the quadrature

variance between the value at time 𝜏 and that at 𝜏 = 0, [41]

𝑅𝛼
𝑛 =

⟨[𝑋̂𝛼
𝑛,𝛩(𝜏)]

2⟩
⟨[𝑋̂𝛼

𝑛,𝛩(0)]
2⟩
. (18)

By minimizing the quadrature variance ⟨(𝑋̂𝛼
𝑛,𝛩)

2⟩ with re-

spect to 𝛩, we can obtain the optimum squeezing by select-

ing 𝛩 = 𝛩opt. Then one can take the optimum detection

angle 𝛩opt to acquire the minimum and maximum values

of the quadrature for angle 𝛩 = 𝛩opt and 𝛩 = 𝛩opt+𝜋/2,

respectively.

Shown in Fig. 2(a) are minimum squeezing ratios

(𝑅𝛼
𝑛)min (𝛼 = BS, DS are for the bright, dark solitons,

respectively) as functions of 𝜏 for 𝜂0 = 𝑔 = 1. In the

figure, the dashed blue line is for the bright soliton; the

lines with red squares, yellow crosses, and purple dots are

for the dark soliton with blackness parameter 𝜗 = 0, 𝜋/6,

and 𝜋/3, respectively. We see that for both the bright and

dark solitons (𝑅𝛼
𝑛)min increases as 𝜏 increases. Plotted in

Fig. 2(b) is the minimum squeezing ratio (𝑅BS
1 )min of the

bright soliton with 𝜂0 = 1, as a function of 𝜏 for 𝑔 = 0.8,

1, and 1.2, respectively. One can see that the value of the

squeezing ratio has a strong dependence on the strength

of atom–atom interaction (characterized by the parameter

𝑔); the larger the atom–atom interaction, the stronger the

quantum squeezing.
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Fig. 2. Squeezing ratio for soliton squeezing. (a) Mini-
mum squeezing ratio (𝑅𝛼

𝑛)min (𝛼 = BS,DS) as a function
of 𝜏 for 𝜂0 = 𝑔 = 1. BS means the result for the bright soli-
ton; DS means the result for dark soliton, with blackness
parameter 𝜗 = 0, 𝜋/6, and 𝜋/3, respectively. (b) Mini-
mum squeezing ratio (𝑅BS

1 )min of the bright soliton with
𝜂0 = 1, as a function of 𝜏 for 𝑔 = 0.8, 1, and 1.2, respec-
tively.

In summary, we have studied the quantum squeezing

of matter-wave solitons in atomic BECs with both the at-

tractive and repulsive interactions. Through the calcula-

tion of the quantum fluctuations of the solitons by solving

the related BdG equations, we have shown that significant

quantum squeezing can reach both bright and dark soli-

tons. We have also shown that the squeezing efficiency

of the solitons can be enhanced and adjusted by atom–

atom interactions and soliton blackness. The theoretical

approach developed here can be extended to the BEC with

multiple spin components; the results obtained are helpful

not only for a deep understanding on the quantum prop-

erty of matter-wave solitons, but also for promising appli-

cations for quantum precision measurements.
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