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A new type of nonlinear excitations, i.e. three simultaneous lattice solitons (simultons), in
a nonlinear diatomic lattice is predicted. We show that three-wave resonance condition
can be fulfilled in the diatomic lattice. Using a quasi-discrete multi-scale method we
derive nonlinear amplitude equations for the three-wave resonance with the dispersion
of the system taken into account. We provide several types of exact lattice simultons
solutions and show that the lattice simultons can be non propagating and their oscillating
frequencies may be within the gap of phonon spectrum bands.

1. Introduction

In recent years, the interest in localized excitations in nonlinear lattices has been

renewed due to the identification of a new type of anharmonic localized modes.1

These modes can be taken as a discrete analog of lattice solitons with their spatial

extension only a few lattice spacing and the vibrating frequencies above the upper

cutoff of phonon spectrum bands. Much recent attention has been paid to the

nonlinear excitations in diatomic lattices. New types of nonlinear localized modes,

in particular the gap solitons, have been studied in detail both in theory2,3 and in

experiment.4
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On the other hand, recent years have shown considerable progress for solitons

in nonlinear optical media. Recently, the study of optical parametric processes,

particularly the second harmonic generation (SHG), has generated a great deal of

new interest. It was suggested that a cascaded second-order parametric process may

support simultaneous solitons (called simultons or quadratic solitons) under general

phase-matching conditions.5 The concept of the simultons has been generalized to

the nonlinear optical media with periodically varying refractive index.6 Since the

eigenspectrum of linear electromagnetic waves consists of many photonic bands and

the vibrating frequencies of the simultons may be in the gaps between these bands,

the name band-gap simulton has been given by Drummond et al.6 Different from

the self-trapping mechanism of Kerr solitons, the formation of optical simultons

is due to the energy transfer and mutual self-trapping between fundamental and

second harmonic waves.

However, for a long time little attention has been paid to the parametric

processes in nonlinear lattices. In recent years effort has been made along this

direction.7,8 The two-wave parametric simultons related to a SHG in nonlinear lat-

tices have also been considered by several authors.7,8 In this paper we show that a

three-wave resonance (TWR) can appear in a one-dimensional (1D) nonlinear di-

atomic lattice. New types of nonlinear localized excitations, i.e. three-wave lattice

simulton, are possible when the dispersion of the system is taken into account.

We consider a 1D diatomic lattice with an inter- and an on-site atomic poten-

tials. The equations of motion for describing the system are given by

d2vn

dt2
= −ω2

0vn + I2(wn − vn) + I ′2(wn−1 − vn)

+ I3(wn − vn)2 − I ′3(wn−1 − vn)2 − αmv2
n, (1)

d2wn

dt2
= −ω2

0wn + J2(vn − wn) + J ′

2(vn+1 − wn)

− J3(vn − wn)2 + J ′

3(vn+1 − wn)2 − αMw2
n , (2)

where Ij = Kj/m, I ′j = K ′
j/m, Jj = Kj/M, J ′

j = K ′
j/M (j = 2, 3), αm = V3/m

and αM = V ′
3/M (j = 2, 3). vn (wn) is the displacement from equilibrium position

of the nth particle with mass m (M). n is the index of the nth unit cell with a

lattice constant a = 2a0, a0 is the equilibrium lattice spacing between two adjacent

particles. ω0 is the natural frequency for the linear oscillators without any coupling.

For simplicity we assume that for the inter-site potential the nearest-neighbor force

constants Kj(j = 2, 3) in the same cells are different from the nearest-neighbor force

constants K ′
j(j = 2, 3) in different cells. V3 and V ′

3 are the force constants related

to the on-site cubic potential for different particles. Without loss of generality we

assume m < M , K ′
j ≤ Kj(j = 2, 3), and V ′

3 ≤ V3.

The linear dispersion relation of the system is given by

ω±(q) = [ω2
0 + (1/2)(I2 + I ′2 + J2 + J ′

2 ± D(q)1/2)]1/2
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with

D(q) = (I2 + I ′2 + J2 + J ′

2)
2 − 16I2J

′

2 sin2(qa/2) ,

where the minus (plus) sign corresponds to the lower (upper) branch of the eigen-

frequency spectrum. Because of the periodic property of ω±(q), the phase-matching

condition for a TWR reads q3 = q1 + q2 + Q and ω3 = ω1 + ω2, where q1 (ω1) and

q2 (ω2) are the wave vectors (frequencies) of two fundamental waves. q3 (ω3) is the

wave vector (frequency) of the sum-frequency harmonic wave. Q = 2jπ/a (j is an

integer) is the reciprocal lattice vectors.

It is possible to choose suitable wavevectors and corresponding frequencies to

fulfil the phase-matching condition. One of examples is that one selects Q = 0,

q1 = 0 and ω1 = ω−(0) = ω0, q2 = π/a and ω2 = ω−(π/a), and q3 = π/a and

ω3 = ω+(π/a) if the parameters of the system satisfy the constraint 4(I2
2 + J2

2 −
I2J2)

1/2 − 2(I2 + J2) − 3ω2
0 = 0.

We are interested in possible three-wave simultons in the system. For such exci-

tations one requires an additional condition, i.e. the group-velocity matching con-

dition vg(q1) = vg(q2) = vg(q3), where vg(qj) is the group velocity of the mode

qj . Obviously, for the band-edge modes (i.e. qj = 0, or qj = π/a, j = 1, 2) cho-

sen above, all group velocities are vanishing and hence such condition is satisfied

automatically.

To derive the nonlinear amplitude equations for the TWR in the system, we

employ the quasi-discreteness approach (QDA) developed in Ref. 2. We make the

asymptotic expansion un(t) = ε(u
(0)
n,n+ε1/2u

(1)
n,n+εu

(2)
n,n+· · ·), where un(t) represents

vn(t) or wn(t), ε is a smallness and ordering parameter denoting the relative ampli-

tude of the excitation and u
(ν)
n,n = u(ν)(ξn, τ ; φn(t)), with ξn = ε1/2(na−λt), τ = εt,

and φn = qna − ω(q)t with λ a parameter yet to be determined by a solvability

condition. With these notations Eqs.(1) and (2) are transfered into the linear but

inhomogeneous equations on v
(j)
n,n and w

(j)
n,n, (j = 0, 1, 2, . . .). At the leading order

(j = 0) the solution including above mentioned three cutoff modes reads

w(0)
n,n = A1(τ, ξn) exp(−iω1t) + A2(τ, ξn)(−1)n exp(−iω2t)

+ A3(τ, ξn)(−1)n exp(−iω3t) + c.c., (3)

v(0)
n,n = A1(τ, ξn) exp(−iω1t) + λ2(I2 − I ′2)A2(τ, ξn)(−1)n exp(−iω2t)

+ λ3(I2 − I ′2)A3(τ, ξn)(−1)n exp(−iω3t) + c.c. , (4)

where λj = 1/(−ω2
j + ω2

0 + I2 + I ′2)(j = 2, 3), A1, and A2 and A3 are undetermined

amplitude functions representing the two fundamental waves, (q1, ω1) and (q2, ω2),

and the harmonic wave, (q3, ω3), respectively.

The solvability condition in the next order (j = 1) requires λ = 0 and hence

ξn = ε1/2na. In the order j = 2, solvabilty conditions give rise to:

i

(

∂u1

∂t
+ v1

∂u1

∂xn

)

+
1

2
Γ1

∂2u1

∂x2
n

+ ∆1 u∗

2u3 exp(i∆ωt) = 0 , (5)
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i

(

∂u2

∂t
+ v2

∂u2

∂xn

)

+
1

2
Γ2

∂2u2

∂x2
n

+ ∆2 u3u
∗

1 exp(i∆ωt) = 0 , (6)

i

(

∂u3

∂t
+ v2

∂u3

∂xn

)

+
1

2
Γ2

∂2u3

∂x2
n

+ ∆2 u1u2 exp(−i∆ωt) = 0 , (7)

where uj = εAj(j = 1, 2, 3), xn = na. v1, v2 and v3 are the group velocities of

two fundamental waves near at q1 = 0 and q2 = π/a, and the harmonic wave near

at q3 = π/a, respectively. We have included a small frequency mismatch ∆ω, i.e.

we allow ω3 = ω1 + ω2 + ∆ω. The expressions of the coefficients in Eqs. (5)–(7)

are cumbersome and omitted here. Equations (5)–(7) are the three-wave interac-

tion equations including the dispersion (represented by the second-order derivative

terms) of the system.

We now provide some exact soliton solutions of Eqs. (5)–(7). Assuming uj =

Uj(ζ) exp(iφj) with ζ = kxn −Ωt and φj = kjxn −Ωjt, Eqs. (5)–(7) are transfered

into a set of ordinary differential equations on Uj . Because we are interested in the

simultaneous three-wave soliton solutions we make the ansatz

Uj = Aj + Bj sech ζ tanh ζ + Cj sech2 ζ ,

where Aj , Bj and Cj are constants. Substituting this ansatz into the equations of

Uj we obtain a set of nonlinearly coupled algebraic equations for Aj , Bj and Cj .

We assume Bj = ibj with Aj , bj and Cj real constants left to be determined. Then

solving the equations for Aj , bj and Cj we obtain different types of three-wave

simulton solutions.

One of them reads

U1 =
6s1√
α2α3

sech2 ζ , (8)

U2 = −
6s2√
α3α1

sech2 ζ , (9)

U3 = −
6s1s2√
α1α2

sech2 ζ , (10)

with sj = ±1, αj = 2∆j/(Γjk
2). We see that all fundamental and harmonic wave

components are simultaneously one-hump solitons with the same central position

and the same travelling velocity (bright simulton). In this case the lattice displace-

ment takes the form

wn(t) =
12s1√
α2α3

sech2(kna − Ωt) cos[k1na − (ω1 + Ω1)t]

+
12s2√
α3α1

sech2(kna − Ωt) cos[k2na − (ω2 + Ω2)t]

+
12s1s2√

α1α2
sgn(α3) sech2(kna − Ωt) cos[k3na − (ω3 + Ω3)t] , (11)
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vn(t) =
12s1√
α2α3

sech2(kna − Ωt) cos[k1na − (ω1 + Ω1)t]

+
I2 − I ′2

−ω2
2 + I2 + I ′2

12s2√
α3α1

sech2(kna − Ωt) cos[k2na − (ω2 + Ω2)t]

+
I2 − I ′2

−ω2
3 + I2 + I ′2

12s1s2√
α1α2

sgn(α3) sech2(kna − Ωt) cos[k3na − (ω3 + Ω3)t] ,

(12)

with

Ωj = vjkj + Γjk
2
j /2 − 2Γjk

2 ,

k2 =
v3k3 − v1k1 − v2k2 + (1/2)Γ3k

2
3 − (1/2)Γ1k

2
1 − (1/2)Γ2k

2
2 − ∆ω

2(Γ3 − Γ2 − Γ1)
.

When vj = 0, we have Ω = 0 and Ωj = −2Γjk
2 (j = 1, 2, 3). Since Γ1 > 0, Γ2 < 0

and Γ3 > 0, we obtain ω1 + Ω1 < ω1, ω2 + Ω2 > ω2, and ω3 + Ω3 < ω3. Therefore,

the vibrating frequencies of all three wave components locate within the bottom or

mid gap of the phonon spectrum bands.

One can also obtain the following dark simulton solution

U1 = −
6s1√
α2α3

(

2

3
− sech2 ζ

)

, (13)

U2 = −
6s2√
α3α1

(

2

3
− sech2 ζ

)

, (14)

U3 = −
6s1s2√
α1α2

sgn(α3)

(

2

3
− sech2 ζ

)

(15)

with

Ωj = vjkj +
1

2
Γjk

2
j + 2Γjk

2 ,

k2 = [v1k1 + v2k2 − v3k3 + (1/2)Γ1k
2
3 + (1/2)Γ2k

2
2

− (1/2)Γ3k
2
3 + ∆ω]/[2(Γ3 − Γ2 − Γ1)] .

When vj = 0(j = 1, 2, 3), the excitation is a standing wave and the vibrating

frequency of each component is in the phonon spectrum bands.

Another type of simulton solution reads

U1 = i
6s1√
−α2α3

sech2 ζ tanh ζ , (16)

U2 = i
6s2√
−α3α1

sech ζ tanh ζ, (17)

U3 =
6s1s2√
α1α2

sgn(α3) sech2 ζ , (18)
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with

Ωj = vjkj +
1

2
Γj(k

2
j − k2)

k2 = [v1k1 + v2k2 − v3k3 + (1/2)Γ1k
2
1 + (1/2)Γ2k

2
2

−(1/2)Γ3k
2
3 + ∆ω]/[Γ3 + (1/2)(Γ1 + Γ2)] .

It denotes a bright three-wave simulton with both the fundamental waves U1 and

U2 two maxima but the harmonic wave one maximum.

2. Discussion and Summary

We have investigated the three-wave lattice simultons in a 1D nonlinear diatomic

lattice. We have shown that, due to the multi-branch and periodic properties of

the phonon spectrum, the phase- and group velocity-matching conditions can be

fulfilled by suitably choosing the wavevectors and frequencies of the fundamental

waves and a sum-frequency wave. Using a quasi-discrete method of multiple-scales,

the nonlinear amplitude equations for a TWR have been derived with the disper-

sion of the system taking into account. We have also presented several types of

three-wave lattice simulton solutions. The results show that these parametric lat-

tice simultons may be nonpropagating excitations with their vibrating frequencies

within the bottom and mid band gaps of the phonon spectrum bands.

The physical mechanism for the formation of the three-wave lattice simultons

is due to the cascading effect between several lattice wave components. In this pro-

cess, two fundamental waves and the sum-frequency wave interact with themselves

through repeated wave-wave interactions. For instance the energies of the funda-

mental waves are first upconverted to the sum-frequency wave and then downcon-

verted, resulting in a mutual self-trapping of each wave and hence the formation of

three simultaneous lattice solitons.

Cubic nonlinear potential appears in most of realistic atomic potentials. Thus

it is possible to observe the 1D lattice simultons reported here. It must be empha-

sized that the multi-value property of the linear dispersion relation is important

for obtaining the three-wave parametric simulton solutions. Thus a diatomic or

multi-atomic lattice is necessary for generating such nonlinear excitations.
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