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Second-harmonic generation in optical fibers on a continuous-wave background
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We predict that a different type of second-harmonic generg&si) in nonlinear optical fibers is possible
for the waves excited from a continuous-wave background. We show that in a normal dispersion regime and
near the zero-dispersion point of a single-mode optical fiber the phase-matching condition of the SHG can be
satisfied by suitably choosing the wave vectors and frequencies of fundamental and second-harmonic waves.
Using a multiscale method the nonlinearly coupled envelope equations for the SHG are derived and their
explicit solutions are provided and checked by numerical simulation.
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Since its first observation the second-harmonic generation iu,— %aun + |ufPu=iBuy (1)
(SHG) in optical fibers[1] has attracted much attentigsee
Ref. [2] and references therginSHG (as well as other where the subscriptg andt mean the partial derivatives.
second-order parametric proce9ssas unexpected theoreti- Time't in the reference frame moving with group velocity is
cally in an electrodipole approximation because the secondneasured with the unit of pulse duratidnand the longitu-
order susceptibilityy® vanishes for centrosymmetric mate- dinal coordinate is measured by the uriik. The param-
rials such as silica. The phenomenon observed may be due gersa=k@/(Tk?Y) and B=k®/(6T%™") denote the dimen-
the quadrupole interaction or processes near the material SWionless second- and third-order dispersions of the fiber,

face where the centrosymmetry is broken. Experimentallyegpectively. Herek=k(w) is the propagation constant and
the SHG in a Ge-doped silica optical fiber with conversiony ) = siy/ 5., (i=1,2,3.

- o e
Several hours has been realzedl. There are numerous EAUONC) has the G Solutioni=ugexpi o) with u
works devoted to the experimental and theoretical study ort?e'ng an arbitrary constar_n. Without loss of generglgy we
this phenomenon, but up to now the physical mechanism dfgke Uo to be real. Assuming thati=ug[1+a(z,t) Jex{iugz
the SHG in optical fibers remains unclg4i. +ig(z,1)], wherea(z,t) and ¢(z,t) denote an excitation from
In this work we propose a different type of SHG in optical the cw background, Eq1) becomes
fibers. Such SHG can be realized based on excited waves on a a
a continuous-wavecw) background without need of any ~ %z* 2uGa - P B —ad;+ §¢t2 +3uGa’ + 3Badh
breaking of the centrosymmetry. The idea is as follows. If we
consider a nonlinear optical fibéy'?=0) working in the
normal dispersion regime, a plane waiie., the cw back-
ground is modulationally stable. An excitation created from ?)
the background obeys a set of equations with a second-order u N
nonlinearity. Assuming that the system works near the zero- - Z . — - -= +
dispersion(yZD) point, gthe third-ori/jer dispersion makes the % 2(1)tt Bow = atedy Zad)n P
linear dispersion relation of the excitation display two 2 -
branches, which provides the possibility for satisfying the + 3Badi + 3paciy = 0. ®
phase-matching condition of the SHG by suitably choosindrhis set of nonlinear coupled equations argo&draticnon-
the wave vectors and frequencies of fundamental antinearity, a property already used in the derivation of a
second-harmonic waves. We note that although the nonlineatorteweg—de Vries equation for studying the dynamics of
dynamics of dark solitons generated from a cw backgroundlark solitons in optical fibergb,6].
in optical fibers near the ZD point has been investigated Based on Eq92) and(3), an analysis of the linear stabil-
intensively [5,6], a possible resonant interaction betweenity of the cw solution against a small perturbation shows that
these excitations has been overlooked. the cw solution is modulationally stable if the fiber is work-
Using slowly varying envelope and paraxial approxima-ing in the normal dispersion regingee., «>0). Assuminga
tions, the dimensionless envelope amplitudie,t) of the  and ¢ varying with the form~exp(iwt—ikz) we get the lin-
electric field pulse in the neighborhood of the ZD point in aear dispersion relatiok=k(w)=Bw’+ o a(Uj+ aw?/4)]"2.
single-mode optical fiber satisfies the modified nonlineaiwe see that the dispersion curves of the excitation display
Schrédinger equatiofb, 6] two branches,(w) and k_(w); both of them are acoustic,
i.e., k.(0)=0 (see Fig. 1
We are interested in a possible SHG for the excitations
*Corresponding author. created on the cw background. A necessary condition for the

Q& 2, 23 5,3 3_
+ 3Bay by + Badyt 2a¢t +Uga® = By — Bag; =0,
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SHG is to satisfy the phase-matching conditiep=2w,, In the leading orderj=1), Egs. (4) and (5) are linear
ko=2k;, wherew; andk; (v, andky) are the frequency and equations which admit the solutiop™=¢;;exp(i6;)+c.c.
wave vector of the fundamentgsecond-harmonjcwave.  and a<1):a1jexp(i g)+c.c. with g=w;t-kix. In the case of
We find that this is indeed possible if we choose the poinlsyg we take the leading solution as a superposition of two

(w1,ky) from the curvek,(w) and the pointw;,ky) fromthe o mponentgi.e., the fundamental and the second harmonic
curve k (w) with 2k,(w;)=k_ (2w;), which means that the waves:

fundamental wave frequezncy should be selected was

=(W6PISa* M+ 36ap g™ T 6= g explio) + doexpii) +ec,  (6)
Figure 1 shows the linear dispersion relation and the

phase-matching condition for the SHG. The parameters are

provided from standard single-mode optical fibers, i.e., the a =ay; expli6;) +aj, explify) + c.c., (7

ZD point wavelength\,p=1.27 um. Near \,p, k=5

X109 s, k@=9%[1.27-\g (um)]X 10262 m™1, kO where c.c. represents the corresponding complex conjugate,

=2.3% w/7\0 (um)[ Ao (um)—1]X 107°s® m™%, the Kerr co- and the frequency and wave vector of the fundamental

efficient n,=1.2x 1022 (m/V?. The wavelength of the [second-harmonjcwave (k;,w;) [(ky, w,)] are selected ac-

carrier wave and the pulse duration of the electric field arecording to the phase-matching condition shown in Fig. 1.

chosen as\,=1.064um andT=10"'?s, respectively. Thus The envelopesy;=ib;¢;; with bj=-aw;/(k;-Bw}) (j=1,2)

we geta=1.8xX10°, 8=5.06x101%, »;=2.1345<10* s1,  are functions of the slow variableg and &t.

and k;=10.5 nTk. In the figure the dimensionless ampli-  In the next order, we can get the wave equations govern-

tude of the electric-field background is taken @s=1.25, ing the envelopes of the fundamental and second-harmonic

which corresponds to the dimensional electric fidld  waves. For simplicity we first consider a simple case called

=2(|kY|c/Twgny)2up=1.2X 10* V/m when taking the ef-  the quasistationary approximation, i.e., the fundamental and

fective cross aredy; of the fiber as 2Qum?, wherecis the  the second-harmonic waves are infinite plane waves with

speed of light in vacuum angy=2mc/ \o. their envelopes being slowly modulated with the coordinate

We now derive the nonlinear envelope equations controly \aking the transformatios é;= ¢y, £ p1o= by, the enve-
ling the SHG. By introducing the asymptotic expansian lope equations read

:Sa(1)+82a(2)+83a(3)+. o d): 8¢(1)+82¢(2)+83¢ 3)+. o
with & being a small ordering parameter aacnd ¢ being PP
the functions of the fast variabl€s, t) and the slow variables L =\, pyhexp(— iAKD), (8)
(ez,et), Egs.(2) and(3) are transformed into 9z
2~ pai - (af2) gy =, @ 2% -\ drextinkg, ©
202 - (al2)a)) - ¢ + Bpd) =nb. (5) 9z
The explicit expressions om? and n¥) (j=1,2,..) are  where Ak=2k; -k, is the phase mismatch and the coeffi-
omitted here. cients\q,\, are given by
|
A ! [ (2u2+ awi)( b, + awgb + b, + Cm)ib +3Bwiw, - 3B 2)
= a2 |~ I - AW I amwqw I w1y — w1
1 2(k1—,8w:f) 0 2 1W2M1 2 1 122 2 2 12 1%2

+ (= ky + B[ (Ky + 3Bwiw, + 3Bwiw3 — Bw3)by— awiwy — BUdbib, — (K — 38w ws — 3Bwiw, + Bwl)by] |,

1 aw?\(3 aw?
Ny = M{(Zug + 72) <§ab1w% - 3,3(»2) +(—k,+ ,ng)<k1b1 - 5Bw§b1 + f)} . (10
[
The envelope equation8) and(9) can be solved exactly z 1 (H@ dh?
[7]. Let ¢>1.:f expie;) and ¢,=h expli¢p) with f andg;, two fz z= EL(Z : {)\%[m+ (A/N)hZ2h2 = (T, + AKK) Y2}
real functions; Eqs(8) and (9) becomedf/dz=\,fh cos 6, 1 1

ohlgz=\h’cos 6, fogildz=nghsing, and hde,/dz (1)

=-\,f?sin @ with the relative phase angle defined By ¢y, ) . ) _
~2¢:+Akz One of the conservative quantities for theseWhere H(z)=h%(z). The integral equatior(11) gives the

equations readf?/\;—h2/\,=m, wherem is the integration general solutiorH(z) at the distance for arbitrary inputs
constant. We can seg and\, determine the rate of energy F(z) [F(2=f2)], H(z) at z,. If the power of the initial
transfer between the fundamental wave and the secon@econd-harmonic wave is zero, i.éd(z))=0 and hence
harmonic wave. Another conservative quantity is given byleading to I';=0, the integral (11) is simplified as
I',=—Akh?/ 2 +\,f?h sin 6. With these relations we obtain fﬁldz:(1/2)fg'(z)dh2{)\§[F(zl)+)\1h2/)\2]2h2—(Akh2/2)2}‘1’2,
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FIG. 1. The linear dispersion relation and phase matching of a FIG. 2. The energy conversion efficiency between the funda-
SHG for the excitation on a cw background. The phase-matchingnental and the second-harmonic waves with the system parameters
condition can be satisfied ifw;,k;) and (w;,k,) are chosen from «=1.854x 1076, B=5.061x1071° uy,=1.25,H(0)=0, and phase
different dispersion branchds.(w) and k_(w), respectively. The mismatchAk=1.0 (bold curve. The dashed curves show the effect
parameters used in the figure are=1.854x10°% B=5.0612 of increasing phase mismatetk=3.0.

X 10710 uy=1.25.
drical optical beam is a super-Gaussian, we assume that the
whereF(z,)=mis the initial power of the fundamental wave. background has the fornuy exp{~[(z*+t?)/L?]%. In our
When\; and\, have different signs, the general expressionsimulation, we usei,=1.25,L=75.0, andf(0)=4.0X 10°%,
for the magnitude of the second-harmonic wave reads Shown in Fig. 3 is our numerical result. We see that ini-
tially there is only a fundamental wave. Ne&r10 a second-

H(2) = — (\/N)F(2)B2 srP([- MAF(2)A%2],v), (120 harmonic wave appears and its amplitude becomes larger and
larger as distanc&) increases. There is obvious energy con-

X version between the fundamental wave and the second-
by ys=AZL /AL, with A;:{(z—0)1[1(2—0)2—4]1/2}/2, where  parmonic wave. This behavior agrees well with the analytical
o=Ak/2)?/[F(z)\),] is responsible for the properties of yegyit. In addition the numerical solution shows a nice sta-
the fiber. The results for the energy conversion efficiency OBiIity and hence is promising for a practical experimental
the second-harmonic wavey;,=H(2)/F(z)), and the funda- gpservation.

mental wave,7:=F(2)/F(z), have been plotted in Fig. 2, \we also get the frequency spectrum using the Fourier
from which we see that there is a periodic energy conversiofransform ofu(z,t). Shown in Fig. 4 is the evolution of the
between two wave modes. The bold curves in the figurgrequency spectrum in the SHG process. For clearness the
show the generation ofyy with phase mismatci\k=1.0  contribution of the super-Gaussian background has been sup-
from initial value OfH(0)=0 The dashed curves show the pressed. The fundamental Wa6w|th frequencyw: 21345
effect of the increment oAk=3.0. It is clear that the ener- and the second-harmonic waveith frequency w=4269

gy conversion efficiency decreases with increasing phasgan be seen clearly. Due to the higher-order nonlinearities of
mismatchAk. In the ideal case with zero phase matching,

where v, is the modulus of the elliptic function sn, given

i.e., Ak=0, EQg. (12) becomes H=—(\,/\,)F(z;)tant? 18
X{[-N\1\, F(z)Z2]¥2. In this situation there is no back con- [u? 6l
version and the maximal conversion efficiengy can ap-
proach 97.9%. 4
The theoretical prediction of the SHG in optical fibers 1.2
presented above is verified numerically. The analytical solu- ;
tion obtained above is taken as an initial condition. We use a
split-step Fourier transform method to integrate ED.di- 08
rectly. We assume that when the optical field propagates over 0.6f
a small distance, the dispersive and nonlinear effects act 0.4l
independently. In the first step, the nonlinearity acts alone; ’
thus one hasi’(z,t)=u(0,t)exp[i|u(0,t)|?z]. In the second 0.2
step the dispersion acts alone, so we havé,t) 0 . . .
=F Y exp{[(i/2) aw?—i Bo|ZF[U'(z,1)]), where F1 de- 020 %0 40 N6z
notes an inverse Fourier transformation aads the fre- FIG. 3. The second-harmonic wave generated on a super-

quency in the Fourier domain. We use a fast Fourier transgaussian background in nonlinear optical fibers. The parameters
form algorithm to obtain numerical evaluation ofz,t). & B,u, are the same as those in Fig. 2 with=75.0, f(0)=4
Because practically the actual background shape of a cylinx 1072,

057602-3



BRIEF REPORTS PHYSICAL REVIEW E0, 057602(2004)

4*}:‘ and (14) under the phase-matching conditiak=0 become
mplitude
(0 119 2) = N1p1 ¢y, (15
(0 ol 2) + 13 ol 9 1) = NobF, (16)

with v=1/vg,—1/vy. The walk-off parameter indicates the
separation between the two pulses. Ifzat0, ¢,(t)=A/(1
+t?/7%), the solution of Eqs(15) and(16) has the forn{7]

= ! A cosh§+z7$inh &
PE NN @ L+ G- 2] ree)

(17)
b= ATy zcoshé+[f ="p(—Z/f)]sinh &
2T N[1+G-27 coshé+ (7/f)sinh &
FIG. 4. Evolution of the frequency spectrum in the SHG process (18)

on a super-Gaussian background. The fundamental \waitie fre-

quencyw=2134.5 and the second-harmonic wageith frequency ~ with 7=75/7, Z=2z/l,, 7,=vIA, f=(PI2-D)Y? ¢

w=4269 can be seen clearly. There appear small-amplitude third= f[tani *—tantt(7-2)], wherel ,= 7/ v is the propagating

and higher-harmonic waves due to the higher-order nonlinearities aflistance over which the overlapping fundamental and

the system. The parameters 38, Uy are chosen the same as in Fig. second-harmonic pulses of widthare clearly separated.

2. The inset is the frequency spectrum near4269. In conclusion, we have investigated the resonant interac-
tion between two exciting waves generated on a cw back-

the system, small-amplitude third- and higher-harmonicdround in nonlinear optical fibers. We have shown that in

waves appear. The parametersg, U, are chosen the same normal dispersion regime and near the zero-dispersion point
as in Fig. 2. The inset shows the detailed structure of th@f @ Single-mode optical fiber the phase-maiching condition

frequency spectrum near=4269 of a SHG can be satisfied by a suitable selection of the wave
Note that the quasistationary approximation used in derivﬁg(r:rtr?g‘:’]ignvc\j/;\r/igu?r?ﬂgsaogi?;éﬁ??a”;egftﬂeig%gjﬁa‘:‘;%%ri‘g'
ing Egs.(8) and (9) is valid only for infinitely large plane X P

waves. For narrower excitations the group velocity mismatdgeneratlon with a different physical mechanism is possible in

between the fundamental and the second-harmonic wav Oé)tical fibers. Using a multiscale method we have derived
Re nonlinearly coupled envelope equations for the SHG and

s b taken it scoount. Using  simiar sgprosch Lo i e e ana checken e
9 cally. Note that the SHG in optical fibers suggested in the

suming that the envelopes depend also on the slowly Varymgresent work is based on a different mechanism and hence

time variablest, we obtain does not need any breaking of the centrosymmetry of the

(0 3 2) + (Lo r) (9 bl I1) = Ny s by EXP(— 1AKD), system. Because experimentally an infinitely extended cw

& (9 & P12 €XR background is not realizable, to observe the SHG predicted

(13) here one should consider the excitations on a background

with a large but finite extent, as in the case of the observation
(0 ¢l 92) + (L(vg) (9 ol ) = )\quf explidkz), (14) for dark solitons in optical fiberg3].

wherevy; =dw;/dk; andvg,=dw,/dk; are the group veloci- This work was supported by the Chinese National Key
ties of the fundamental wave and the second-harmonic wav@asic Research Special FUGNKBRSP, by the National
respectively\; (j=1,2) are the same as those given by Eq.Natural Science Foundation of ChigbSFO, by the Hong
(10). If we usez and »=t-z/vyq4 instead ofz andt as inde-  Kong Research Grants Coun@®GC), and by a Hong Kong
pendent variables, the coupled amplitude equations®&8s. Baptist University Faculty Research GrafRG).
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