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We predict that a different type of second-harmonic generation(SHG) in nonlinear optical fibers is possible
for the waves excited from a continuous-wave background. We show that in a normal dispersion regime and
near the zero-dispersion point of a single-mode optical fiber the phase-matching condition of the SHG can be
satisfied by suitably choosing the wave vectors and frequencies of fundamental and second-harmonic waves.
Using a multiscale method the nonlinearly coupled envelope equations for the SHG are derived and their
explicit solutions are provided and checked by numerical simulation.
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Since its first observation the second-harmonic generation
(SHG) in optical fibers[1] has attracted much attention(see
Ref. [2] and references therein). SHG (as well as other
second-order parametric processes) was unexpected theoreti-
cally in an electrodipole approximation because the second-
order susceptibilityxs2d vanishes for centrosymmetric mate-
rials such as silica. The phenomenon observed may be due to
the quadrupole interaction or processes near the material sur-
face where the centrosymmetry is broken. Experimentally
the SHG in a Ge-doped silica optical fiber with conversion
efficiency up to 10% after irradiation by a laser beam for
several hours has been realized[3]. There are numerous
works devoted to the experimental and theoretical study on
this phenomenon, but up to now the physical mechanism of
the SHG in optical fibers remains unclear[4].

In this work we propose a different type of SHG in optical
fibers. Such SHG can be realized based on excited waves on
a continuous-wave(cw) background without need of any
breaking of the centrosymmetry. The idea is as follows. If we
consider a nonlinear optical fibersxs2d=0d working in the
normal dispersion regime, a plane wave(i.e., the cw back-
ground) is modulationally stable. An excitation created from
the background obeys a set of equations with a second-order
nonlinearity. Assuming that the system works near the zero-
dispersion(ZD) point, the third-order dispersion makes the
linear dispersion relation of the excitation display two
branches, which provides the possibility for satisfying the
phase-matching condition of the SHG by suitably choosing
the wave vectors and frequencies of fundamental and
second-harmonic waves. We note that although the nonlinear
dynamics of dark solitons generated from a cw background
in optical fibers near the ZD point has been investigated
intensively [5,6], a possible resonant interaction between
these excitations has been overlooked.

Using slowly varying envelope and paraxial approxima-
tions, the dimensionless envelope amplitudeusz,td of the
electric field pulse in the neighborhood of the ZD point in a
single-mode optical fiber satisfies the modified nonlinear
Schrödinger equation[5,6]

iuz − 1
2autt + uuu2u = ibuttt s1d

where the subscriptsz and t mean the partial derivatives.
Time t in the reference frame moving with group velocity is
measured with the unit of pulse durationT and the longitu-
dinal coordinatez is measured by the unitT/ks1d. The param-
etersa=ks2d / sTks1dd andb=ks3d / s6T2ks1dd denote the dimen-
sionless second- and third-order dispersions of the fiber,
respectively. Herek=ksvd is the propagation constant and
ks jd=] jk/]v j s j =1,2,3d.

Equation(1) has the cw solutionu=u0expsi uu0u2zd with u0

being an arbitrary constant. Without loss of generality we
take u0 to be real. Assuming thatu=u0f1+asz,tdgexpfiu0

2z
+ ifsz,tdg, whereasz,td andfsz,td denote an excitation from
the cw background, Eq.(1) becomes
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This set of nonlinear coupled equations are ofquadraticnon-
linearity, a property already used in the derivation of a
Korteweg–de Vries equation for studying the dynamics of
dark solitons in optical fibers[5,6].

Based on Eqs.(2) and(3), an analysis of the linear stabil-
ity of the cw solution against a small perturbation shows that
the cw solution is modulationally stable if the fiber is work-
ing in the normal dispersion regime(i.e., a.0). Assuminga
andf varying with the form,expsivt− ikzd we get the lin-
ear dispersion relationk=ksvd=bv3±vfasu0

2+av2/4dg1/2.
We see that the dispersion curves of the excitation display
two branchesk+svd and k−svd; both of them are acoustic,
i.e., k±s0d=0 (see Fig. 1).

We are interested in a possible SHG for the excitations
created on the cw background. A necessary condition for the*Corresponding author.
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SHG is to satisfy the phase-matching conditionv2=2v1,
k2=2k1, wherev1 andk1 (v2 andk2) are the frequency and
wave vector of the fundamental(second-harmonic) wave.
We find that this is indeed possible if we choose the point
sv1,k1d from the curvek+svd and the pointsv2,k2d from the
curve k−svd with 2k+sv1d=k−s2v1d, which means that the
fundamental wave frequency should be selected asv1
=s1/6bdf5a2+4sa4+36ab2u0

2d1/2g1/2.
Figure 1 shows the linear dispersion relation and the

phase-matching condition for the SHG. The parameters are
provided from standard single-mode optical fibers, i.e., the
ZD point wavelength lZD=1.27mm. Near lZD, ks1d=5
310−9 sm−1, ks2d=93 f1.27−l0 smmdg310−26 s2 m−1, ks3d

=2.33Îl0 smmdfl0 smmd−1g310−40 s3 m−1, the Kerr co-
efficient n2=1.2310−22 sm/V2d. The wavelength of the
carrier wave and the pulse duration of the electric field are
chosen asl0=1.064mm andT=10−12 s, respectively. Thus
we geta=1.8310−6, b=5.06310−10, v1=2.13453104 s−1,
and k1=10.5 m−1. In the figure the dimensionless ampli-
tude of the electric-field background is taken asu0=1.25,
which corresponds to the dimensional electric fieldE0
=2suks1d uc/Tv0n2d1/2u0=1.23104 V/m when taking the ef-
fective cross areaAef f of the fiber as 20mm2, wherec is the
speed of light in vacuum andv0=2pc/l0.

We now derive the nonlinear envelope equations control-
ling the SHG. By introducing the asymptotic expansiona
=«as1d+«2as2d+«3as3d+¯, f=«fs1d+«2fs2d+«3fs3d+¯,
with « being a small ordering parameter anda andf being
the functions of the fast variablessz,td and the slow variables
s«z,«td, Eqs.(2) and (3) are transformed into

az
s jd − battt

s jd − sa/2dftt
s jd = ms jd, s4d

2u0
2as jd − sa/2datt

s jd − fz
s jd + bfttt

s jd = ns jd. s5d

The explicit expressions ofms jd and ns jd s j =1,2, . . .d are
omitted here.

In the leading orders j =1d, Eqs. (4) and (5) are linear
equations which admit the solutionfs1d=f1jexpsiu jd+c.c.
and as1d=a1jexpsiu jd+c.c. with u j =v jt−kjx. In the case of
SHG we take the leading solution as a superposition of two
components(i.e., the fundamental and the second harmonic
waves):

fs1d = f11 expsiu1d + f12 expsiu2d + c.c., s6d

as1d = a11 expsiu1d + a12 expsiu2d + c.c., s7d

where c.c. represents the corresponding complex conjugate,
and the frequency and wave vector of the fundamental
[second-harmonic] wave sk1,v1d fsk2,v2dg are selected ac-
cording to the phase-matching condition shown in Fig. 1.
The envelopesa1j = ibjf1j with bj =−av j / skj −bv j

3d (j =1,2)
are functions of the slow variables«z and«t.

In the next order, we can get the wave equations govern-
ing the envelopes of the fundamental and second-harmonic
waves. For simplicity we first consider a simple case called
the quasistationary approximation, i.e., the fundamental and
the second-harmonic waves are infinite plane waves with
their envelopes being slowly modulated with the coordinate
z. Making the transformation«f11=f1,«f12=f2, the enve-
lope equations read

] f1

] z
= l1f1

*f2exps− iDkzd, s8d

] f2

] z
= l2f1

2expsiDkzd, s9d

where Dk=2k1−k2 is the phase mismatch and the coeffi-
cientsl1,l2 are given by
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The envelope equations(8) and(9) can be solved exactly
[7]. Let f1= f expsiw fd andf2=h expsiwhd with f andwh two
real functions; Eqs.(8) and (9) become]f /]z=l1fh cosu,
]h/]z=l2h

2cosu, f ]w f /]z=l1gh sin u, and h]wh/]z
=−l2f2sin u with the relative phase angle defined byu=wh
−2w f +Dkz. One of the conservative quantities for these
equations readsf2/l1−h2/l2=m, wherem is the integration
constant. We can seel1 andl2 determine the rate of energy
transfer between the fundamental wave and the second-
harmonic wave. Another conservative quantity is given by
Gh=−Dkh2/2+l2f2h sin u. With these relations we obtain

E
z1

z

dz=
1

2
E

Hsz1d

Hszd dh2

hl2
2fm+ sl1/l2dh2g2h2 − sGh + Dkh2d2/2j1/2

s11d

where Hszd;h2szd. The integral equation(11) gives the
general solutionHszd at the distancez for arbitrary inputs
Fsz1d fFszd; f2szdg, Hsz1d at z1. If the power of the initial
second-harmonic wave is zero, i.e.,Hsz1d=0 and hence
leading to Gh=0, the integral (11) is simplified as
ez1

z dz=s1/2de0
Hszddh2hl2

2fFsz1d+l1h
2/l2g2h2−sDkh2/2d2j−1/2,
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whereFsz1d=m is the initial power of the fundamental wave.
Whenl1 andl2 have different signs, the general expression
for the magnitude of the second-harmonic wave reads

Hszd = − sl2/l1dFsz1dBs
2 sn2

„f− l1l2Fsz1dAs
2z2g,gs…, s12d

where gs is the modulus of the elliptic function sn, given
by gs=As−

2 /As+
2 with As±

2 =hs2−sd± fs2−sd2−4g1/2j /2, where
s=Dk/2d2/ fFsz1dl1l2g is responsible for the properties of
the fiber. The results for the energy conversion efficiency of
the second-harmonic wave,hH=Hszd /Fsz1d, and the funda-
mental wave,hF=Fszd /Fsz1d, have been plotted in Fig. 2,
from which we see that there is a periodic energy conversion
between two wave modes. The bold curves in the figure
show the generation ofhH with phase mismatchDk=1.0
from initial value of Hs0d=0. The dashed curves show the
effect of the increment ofDk=3.0. It is clear that the ener-
gy conversion efficiency decreases with increasing phase
mismatchDk. In the ideal case with zero phase matching,
i.e., Dk=0, Eq. (12) becomes H=−sl2/l1dFsz1dtanh2

3hf−l1l2 Fsz1dz2g1/2j. In this situation there is no back con-
version and the maximal conversion efficiencyhH can ap-
proach 97.9%.

The theoretical prediction of the SHG in optical fibers
presented above is verified numerically. The analytical solu-
tion obtained above is taken as an initial condition. We use a
split-step Fourier transform method to integrate Eq.(1) di-
rectly. We assume that when the optical field propagates over
a small distance, the dispersive and nonlinear effects act
independently. In the first step, the nonlinearity acts alone;
thus one hasu8sz,td=us0,tdexp fi uus0,tdu2zg. In the second
step the dispersion acts alone, so we haveusz,td
=F−1(exp hfsi /2dav2− ibv3gzjFfu8sz,tdg), where F−1 de-
notes an inverse Fourier transformation andv is the fre-
quency in the Fourier domain. We use a fast Fourier trans-
form algorithm to obtain numerical evaluation ofusz,td.
Because practically the actual background shape of a cylin-

drical optical beam is a super-Gaussian, we assume that the
background has the formu0 exph−fsz2+ t2d /L2g8j. In our
simulation, we useu0=1.25,L=75.0, andfs0d=4.0310−2.

Shown in Fig. 3 is our numerical result. We see that ini-
tially there is only a fundamental wave. Nearz=10 a second-
harmonic wave appears and its amplitude becomes larger and
larger as distanceszd increases. There is obvious energy con-
version between the fundamental wave and the second-
harmonic wave. This behavior agrees well with the analytical
result. In addition the numerical solution shows a nice sta-
bility and hence is promising for a practical experimental
observation.

We also get the frequency spectrum using the Fourier
transform ofusz,td. Shown in Fig. 4 is the evolution of the
frequency spectrum in the SHG process. For clearness the
contribution of the super-Gaussian background has been sup-
pressed. The fundamental wave(with frequencyv=2134.5)
and the second-harmonic wave(with frequencyv=4269)
can be seen clearly. Due to the higher-order nonlinearities of

FIG. 1. The linear dispersion relation and phase matching of a
SHG for the excitation on a cw background. The phase-matching
condition can be satisfied ifsv1,k1d and sv2,k2d are chosen from
different dispersion branchesk+svd and k−svd, respectively. The
parameters used in the figure area=1.854310−6, b=5.0612
310−10, u0=1.25.

FIG. 2. The energy conversion efficiency between the funda-
mental and the second-harmonic waves with the system parameters
a=1.854310−6, b=5.061310−10, u0=1.25, Hs0d=0, and phase
mismatchDk=1.0 (bold curve). The dashed curves show the effect
of increasing phase mismatchDk=3.0.

FIG. 3. The second-harmonic wave generated on a super-
Gaussian background in nonlinear optical fibers. The parameters
a ,b ,u0 are the same as those in Fig. 2 withL=75.0, fs0d=4
310−2.
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the system, small-amplitude third- and higher-harmonic
waves appear. The parametersa, b, u0 are chosen the same
as in Fig. 2. The inset shows the detailed structure of the
frequency spectrum nearv=4269.

Note that the quasistationary approximation used in deriv-
ing Eqs.(8) and (9) is valid only for infinitely large plane
waves. For narrower excitations the group velocity mismatch
between the fundamental and the second-harmonic waves
should be taken into account. Using a similar approach the
same as that for deriving the Eqs.(8) and (9) but now as-
suming that the envelopes depend also on the slowly varying
time variable«t, we obtain

s] f1/] zd + s1/vg1ds] f1/] td = l1f1
*f2 exps− iDkzd,

s13d

s] f2/] zd + s1svg2ds] f2/] td = l2f1
2 expsiDkzd, s14d

wherevg1=dv1/dk1 andvg2=dv2/dk2 are the group veloci-
ties of the fundamental wave and the second-harmonic wave,
respectively.l j (j =1,2) are the same as those given by Eq.
(10). If we usez andh= t−z/v1g instead ofz and t as inde-
pendent variables, the coupled amplitude equations Eqs.(13)

and (14) under the phase-matching conditionDk=0 become

s] f1/] zd = l1f1
*f2, s15d

s] f2/] zd + ns] f2/] hd = l2f1
2, s16d

with n=1/vg2−1/vg1. The walk-off parametern indicates the
separation between the two pulses. If atz=0, f1std=A/ s1
+ t2/t2d, the solution of Eqs.(15) and (16) has the form[7]

f1 =Î 1

l1l2

A

s1 + h̃d1/2f1 + sh̃ − z̃d2g
Hcoshj +

h̃

f
sinh jJ ,

s17d

f2 = −
Atcr

tl1f1 + sh̃ − z̃d2gH z̃coshj + ff − h̃sh̃ − z̃/fdgsinh j

coshj + sh̃/fdsinh j
J

s18d

with h̃=h /t, z̃=z/ ln, tcr=n /A, f =st2/tcr
2 −1d1/2, j

= fftanh−1h̃−tanh−1sh̃− z̃dg, whereln=t /n is the propagating
distance over which the overlapping fundamental and
second-harmonic pulses of widtht are clearly separated.

In conclusion, we have investigated the resonant interac-
tion between two exciting waves generated on a cw back-
ground in nonlinear optical fibers. We have shown that in
normal dispersion regime and near the zero-dispersion point
of a single-mode optical fiber the phase-matching condition
of a SHG can be satisfied by a suitable selection of the wave
vectors and frequencies of the fundamental and the second-
harmonic waves. Thus a different type of second-harmonic
generation with a different physical mechanism is possible in
optical fibers. Using a multiscale method we have derived
the nonlinearly coupled envelope equations for the SHG and
their explicit solutions are presented and checked numeri-
cally. Note that the SHG in optical fibers suggested in the
present work is based on a different mechanism and hence
does not need any breaking of the centrosymmetry of the
system. Because experimentally an infinitely extended cw
background is not realizable, to observe the SHG predicted
here one should consider the excitations on a background
with a large but finite extent, as in the case of the observation
for dark solitons in optical fibers[8].
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FIG. 4. Evolution of the frequency spectrum in the SHG process
on a super-Gaussian background. The fundamental wave(with fre-
quencyv=2134.5) and the second-harmonic wave(with frequency
v=4269) can be seen clearly. There appear small-amplitude third-
and higher-harmonic waves due to the higher-order nonlinearities of
the system. The parametersa, b, u0 are chosen the same as in Fig.
2. The inset is the frequency spectrum nearv=4269.
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