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Superluminal surface polaritonic solitons at weak light level via coherent population oscillation
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We investigate the possibility of generating nonlinear surface polaritons at the interface between a negative-
index metamaterial and a dielectric doped with two-level quantum emitters by means of coherent population
oscillation (CPO) working at room temperature. Based on the CPO and the strong confinement of the optical
field near the interface, we find that the system can possess a giant Kerr nonlinearity. We demonstrate that it is
possible to obtain a type of surface polaritonic solitons which is not only robust during propagation but also has
ultraweak generation power and superluminal propagating velocity.
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I. INTRODUCTION

In recent years, much attention has been paid to the study
of electromagnetically induced transparency (EIT), which is
a typical quantum interference effect occurring in three-level
atomic systems resulting from a control field. Up to now, many
experiments on EIT have been reported and various potential
applications, including slow light, have been proposed [1,2].

Most of the previous investigations on EIT have been
performed only in gaseous media. Obviously, a transfer of
relevant techniques to solid materials is of great interest due
to the requirement of practical applications. However, EIT
in conventional solid media is not easy to realize because it
suffers from fast decoherence processes, especially for systems
involving metals where Ohmic loss is quite significant.

Recently, Kamli et al. [3] proposed a scheme to realize
an all-optical control of a linear, slow surface polariton (SP)
by placing an EIT medium (three-level quantum emitters)
doped at the interface between a dielectric and a negative-
index metamaterial (NIMM). SPs are polarized light waves
propagating along the NIMM-dielectric interface, whose fields
are coupled to charge density oscillations in the NIMM. It
has been shown that due to large suppression of Ohmic loss
and strong transverse confinement of the optical field, the
SPs obtained have very small attenuation during propagation.
Lately, Moiseev et al. [4] extended the work of Ref. [3]
by using a double EIT (five-level quantum emitter) scheme
and proved that a large, low-loss, cross-phase modulation
(CPM), and hence a mutual π phase shift between two SPs,
can be achieved. However, in order to get the low-loss SPs
and the large CPM predicted in Refs. [3,4], a very low
room-temperature condition is needed.

In this article, we investigate the possibility of generating
nonlinear SPs at the interface between a NIMM and a
dielectric doped with two-level quantum emitters by means
of coherent population oscillation (CPO) working at room
temperature. We find that the SPs can have superluminal
propagating velocity due to the unsaturation feature of the
system. Based on the CPO and the strong confinement of the
optical field near the interface, the system can possess giant
Kerr nonlinearity. We demonstrate that it is possible to obtain
a type of surface polaritonic solitons which is not only robust

*gxhuang@phy.ecnu.edu.cn

during propagation but also has ultraweak generation power
and superluminal propagating velocity.

Before proceeding, we note that slow light (i.e., group
velocity of the optical pulse is much smaller than c, the light
speed in vacuum) can also be generated by using CPO, a
quantum coherence effect usually produced in a two-level
atomic system interacting with a probe and a control laser
field. In the process of CPO, the periodic modulation of the
ground-state population at the beat frequency between the
control and the probe fields sharing a common transition may
produce scattered light from the control field into the probe
field, resulting in a hole in the absorption spectrum of the
probe field [5–9]. Since the pioneering work by Bigelow et al.
[10], CPO has been shown to be a useful physical mecha-
nism for the production of slow light at room temperature
[11–19].

In addition to slow light, in recent years there has been
great interest in the study of superluminal light (also called
fast light, for which the group velocity of the optical pulse is
large than c and even negative) [20,21]. The research effort
for superluminal light lies at the level of both the fundamental
understanding of physical laws that govern how fast an optical
pulse can be made to propagate and the promise of many
practical applications [22–26].

Our work is different from that explored in Refs. [10–19],
where only linear slow or superluminal lights via CPO
were considered. It is also different from that discussed in
Refs. [22–26], where the systems involved are gaseous media
and no CPO mechanism was used. Here we report on superlu-
minal surface polaritonic solitons produced at the interface
between a NIMM and a dielectric doped with two-level
quantum emitters via CPO. The results presented here may
have potential applications for nonlinear and quantum optics
based on superluminal light, including all-optical switching,
rapidly responded Kerr nonlinearity, enhanced four-wave
mixing, and so on.

The rest of the article is arranged as follows. In the next
section, we describe the theoretical model under study. In
Sec. III, we discuss superluminal SPs via CPO at the linear
level. In Sec. IV, we investigate the nonlinear dynamics of the
superluminal SPs, and show that the system possesses giant
Kerr nonlinearity and supports surface polaritonic solitons
with superluminal propagating velocity. Finally, in the last
section, we summarize the main results obtained in this
work.
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FIG. 1. (Color online) Surface polariton excited at the planar
interface between a NIMM (with permittivity ε1 and permeability
μ1) in the lower half plane (z < 0) and a dielectric (with permittivity
ε2 and permeability μ2) in the upper half space (z > 0). Two-level
quantum emitters (denoted by black dots) are doped in the thin layer
of the dielectric near the interface. Surface polaritons propagate in
the positive x direction. The inset shows the energy-level diagram
and excitation scheme of the quantum emitters. ωp (ωc) is the angular
frequency of the probe (control) field. �p (�c) is the detuning of
the probe (control) field. � = �p − �c, �2 is the decay rate of the
excited state |2〉.

II. MODEL

The system we consider consists of two superposed planar
materials, i.e., NIMM and dielectric, with a planar dielectric-
NIMM interface (Fig. 1). The NIMM in the lower half plane
(z < 0) has permittivity ε1 and permeability μ1 (which are
frequency dependent), and the dielectric in the upper half plane
(z > 0) has permittivity ε2 and permeability μ2 (which can be
taken as frequency independent). Two-level quantum emitters
denoted by black dots (atoms, quantum dots, nitrogen-valence
centers in diamond, rare-earth ions in crystals, etc.) are doped
in the thin layer of the dielectric near the interface and SPs
propagate in the positive x direction. The inset shows the
energy-level diagram and excitation scheme of the two-level
quantum emitters.

As shown in Ref. [3], the system supports both transverse-
electric (TE) and transverse-magnetic (TM) modes, but here
we focus only on the TM modes for simplicity. By solving
Maxwell equations in the absence of the quantum emitters, we
can obtain the eigenmodes of the electric field (see Appendix
A for details),

E(r,t) =
⎧⎨⎩(kez − ik2ex) c

ε2ωl

√
�ωl

ε0LxLyLz
â(ωl)e−k2z+i(kx−ωl t) + c.c., z > 0

(kez + ik1ex) c
ε1ωl

√
�ωl

ε0LxLyLz
â(ωl)ek1z+i(kx−ωl t) + c.c., z < 0,

(1)

where ωl is optical oscillating frequency, and k2
j = k2 −

ω2
l εjμj/c

2 (j = 1 for the NIMM and j = 2 for the dielectric)
satisfies the condition k1ε2 = −k2ε1. The linear dispersion
relation of the system is given by

k(ωl) = ωl

c

√
ε1ε2(ε1μ2 − ε2μ1)

ε2
1 − ε2

2

. (2)

In Eq. (1), eα (α = x,y,z) is the unit vector along the α

direction, Lx and Ly are, respectively, the lengths of the
NIMM-dielectric interface in the x and y directions, the
expression of Lz is given by (A5), and â(ωl) is the creation
operator of TM surface plasmons. We assume that the photon
numbers in both the probe and control fields interacting with
the quantum emitters are much larger than one, so that â(ωl)
can be taken by c-number a(ωl).

We choose the Drude model to describe the dielectric
permittivity and magnetic permeability of the NIMM, i.e., ε1 =
ε1(ωl) ≡ ε∞ − ω2

e/[ωl(ωl + iγe)] and μ1 = μ1(ωl) ≡ μ∞ −
ω2

m/[ωl(ωl + iγm)]. Here, ωe and ωm are the electric and
magnetic plasma frequency, respectively, γe and γm are the
corresponding decay rates, and ε∞ and μ∞ are background
constants. This model is known to be adequate in the optical
region.

Shown in Fig. 2 is the imaginary part of k, i.e., Im(k)
(blue solid line, which characterizes the absorption of the SP)
and the real part of (1/k2), i.e., Re(1/k2) (red dashed line,
which characterizes the confinement of the optical field in the
dielectric near the interface), as functions of optical oscillating
frequency ωl . Parameters are given by [3] ε2 = 1.3, μ2 = 1,

ε∞ = 5, μ∞ = 5, ωe = 1.37 × 1016 s−1, γe = 2.37 × 1013 s−1

(as for Ag), ωm = 1015 s−1, and γm = 1012 s−1. We see that
a nearly complete suppression of SP loss [i.e., Im(k) = 0]
can be achieved at some particular value of ωl . The physical
reason is as follows. Because the real parts of ε1 and μ1 can
take negative values, the optical absorption due to Ohmic loss
is largely suppressed by the destructive interference between
the electric and magnetic absorption responses [3]. However,
the suppression of SP loss is unfortunately accompanied by a

FIG. 2. (Color online) Im(k) of SP (blue solid line) and Re(1/k2)
of the electric field in the dielectric (red dashed line) as functions of
optical oscillating frequency ωl .
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deconfinement of the SP in the dielectric [i.e., Re(1/k2)→ ∞
when Im(k)→ 0]. In order to obtain an acceptable suppression
of Ohmic loss and a required SP confinement, we must choose
the optical frequency ωl to have a small deviation from the
lossless point [i.e., the point with Im(k) = 0 in Fig. 2]. As a
result, a small absorption still exists for the SP [3,4,27,28].
However, this small absorption can be avoided in our system
which may have gain due to the far-off saturation feature of
our CPO excitation scheme, as will be shown in Sec. III B.

Our aim is to investigate the resonant interaction between
the TM mode of the electromagnetic field and the quantum
emitters that are embedded in the thin layer of the dielectric.
As shown in the inset of Fig. 1, two laser fields with central
angular frequencies ωp (probe) and ωc (control) couple to the
same transition |1〉 ↔ |2〉, with �p and �c, respectively, their
detunings. For simplicity, we assume that both the probe and
control fields belong to the TM mode given by Eq. (1). Thus
we have

E(r,t) =
∑
l=p,c

Elul(z)ei[k(ωl )x−ωl t] + c.c., (3)

with El = [�ωl/(ε0LxLyLz)]1/2a(ωl) (the amplitude
of the electric field) and ul(z) = c[k(ωl)ez −
ik2(ωl)ex]e−k2(ωl )z/(ε2ωl) (the mode function in the z

direction resulting from the dielectric-NIMM interface). In
the following, as in Refs. [29,30], for simplicity we take
the same mode function for the electric field [31] when the
nonlinear effect occurs in the system [32].

The Hamiltonian of the system under electric-dipole and
rotating-wave approximations reads

Ĥ =
2∑

j=1

Ej |j 〉〈j | − �[ζc(z)
∗
ce

−i(kcx−ωct)

+ ζp(z)
∗
pe−i(kpx−ωpt)]|1〉〈2| + H.c., (4)

where kp,c = k(ωp,c), Ej is the eigenenergy of the j th
levels, ζc(z) ≈ ζp(z) = e12 · up(z) ≡ ζ (z) (because ωc ≈ ωp),

p,c = |p12|Ep,c/� is the half Rabi frequency of the probe
(control) field, and e12 is the unit vector of the electric-dipole
matrix element p12 associated with the transition from |1〉 to
|2〉, i.e., p12 = e12p12. In the interaction picture, the dynamics
of the two-level quantum emitters is governed by the Bloch
equation,

i
∂

∂t
σ11 − i�2σ22 + ζ ∗(z)(
∗

c + 
∗
pe−i
)σ21

− ζ (z)(
c + 
pei
)σ ∗
21 = 0, (5a)

i
∂

∂t
σ22 + i�2σ22 − ζ ∗(z)(
∗

c + 
∗
pe−i
)σ21

+ ζ (z)(
c + 
pei
)σ ∗
21 = 0, (5b)

(
i

∂

∂t
+ d21

)
σ21 − ζ (z)(
c + 
pei
)(σ22 − σ11) = 0,

(5c)

with 
 = (kp − kc)x − �t , � = ωp − ωc, and d21 =
−�ω21 + �c + iγ21. Here, γ21 = �2/2 + γ

dph
21 , γ

dph
21 is the

dephasing rate due to processes that are not associated with
population transfer, and �ω21 is the energy-level shift due
to the inhomogeneous broadening resulting from the solid
environment.

The propagation of electromagnetic waves is described
by the Maxwell equation ∇2E − (1/c2)∂2E/∂t2 =
(1/ε0c

2)∂2P/∂t2, with the electric polarization intensity
given by

P(r,t) = Phost + Na

∫ ∞

−∞
d(�ω21)f (�ω21)

× [
p12σ21e

i(kcx−ωct) + c.c.
]
, (6)

where Na is the emitter density (Na = 0 for z < 0), Phost =
ε0χhostE is the electric polarization intensity in the absence of
the emitters, and f (�ω21) is the inhomogeneous broadening
distribution function, which, for simplicity, is assumed to have
a Lorentzian form, i.e., f (�ω21) = W21/[π (�ω2

21 + W 2
21)],

with 2W21 being the full width at half maximum (FWHM)
[33]. Under the slowly varying envelope approximation, the
Maxwell equation is reduced to

i

(
∂

∂x
+ 1

c

n2
2

neff

∂

∂t

)
(
pei
)

+ κ12

∫ ∞

−∞
d(�ω21)f (�ω21)〈σ21〉 = 0, (7)

where κ12 = Naωp|p12|2/(2�ε0c), n2 is the refraction index
of the dielectric, and neff = ckp/ωp is the effective refrac-
tion index. In writing Eq. (7), we have defined 〈ψ(z)〉 ≡∫ +∞
−∞ dzζ (z)∗ψ(z)/

∫ +∞
−∞ dz|ζ (z)|2.

III. SUPERLUMINAL SURFACE POLARITONS VIA CPO

A. Base state

We first study the linear excitations, i.e., SPs, of the system.
To this end, we must know the base state of the Maxwell-Bloch
(MB) Eqs. (5) and (7). The base state is the state in the absence
of the probe field (i.e., 
p = 0). We obtain

σ
(0)
11 = �2|d21|2 + 2γ21|ζ (z)
c|2

�2|d21|2 + 4γ21|ζ (z)
c|2 , (8a)

σ
(0)
22 = 2γ21|ζ (z)
c|2

�2|d21|2 + 4γ21|ζ (z)
c|2 , (8b)

σ
(0)
21 = −ζ (z)
c

d21

�2|d21|2
�2|d21|2 + 4γ21|ζ (z)
c|2 . (8c)

It is helpful to make a detailed analysis on the property of
the base state and its implication for SP propagation. Define

σ̄jj = 1∫ +∞
−∞ dz|ζ (z)|2

∫ +∞

−∞
d�ω21f (�ω21)

×
∫ +∞

−∞
dz|ζ (z)|2σ (0)

jj (z,�ω21), (9)

which is the average population in |j 〉 (j = 1,2) at the base
state. Obviously, in the absence of the inhomogeneous broad-
ening [i.e., f (�ω21) = δ(�ω21)] and the mode modulation
[i.e., ζ (z) = 1], we have σ̄jj = σ

(0)
jj ; while in the presence of
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FIG. 3. (Color online) Populations σ̄11 (blue solid line) and σ̄22 (red dashed line) as functions of 
c (a) without and (b) with the
inhomogeneous broadening and the mode modulation.

the inhomogeneous broadening and the mode modulation, we
obtain σ̄11 ≈ σ̄22 if |
c|2 � γ 2

21 and �c = 0.
Figure 3(a) shows σ̄11 (blue solid line) and σ̄22 (red

dashed line) as functions of 
c without the inhomogeneous
broadening and the mode modulation. System parameters
are �2 = 10 kHz, γ

dph
21 = 0.1 kHz, and �c = 0. We see that

σ̄11 and σ̄22 are getting close and both equal to 0.5 with

c ≈ 40 kHz. That is to say, for a not large 
c, the system
can be saturated and the probe field may propagate without
absorption.

However, the above conclusion is no longer valid when
the inhomogeneous broadening and the mode modulation are
present. Shown in Fig. 3(b) are results of σ̄11 (blue solid
line) and σ̄22 (red dashed line) as functions of 
c with the
inhomogeneous broadening and the mode modulation taken
into account. System parameters of the dielectric adopted
here are chosen from Pr:YSO [33], i.e., �2 = 10 kHz and
W21 = 2 GHz. Note that to have a significant confinement
of light field, we have taken ωp = 0.0322ωe (slightly off the
lossless point), corresponding to the transition 3H4 →1D2 of
Pr:YSO. The other parameters used are the same as that in
Fig. 2. We find that σ̄11 is different from σ̄22. Although σ̄11 and
σ̄22 may get close, this situation occurs only for a very large 
c

(around 10 GHz). Thus, a significant saturation of the system
is not possible in realistic experiments (
c is usually less than
950 kHz [34]).

B. Linear dispersion relation of SP via CPO

Assuming σjj = σ
(0)
jj + εσ

(1)
jj , (j = 1,2), σ21 = σ

(0)
21 +

εσ
(1)
21 , and 
p = ε
(1)

p , where ε is a dimensionless small
parameter characterizing typical amplitude of the probe field,
and substituting them into the MB Eqs. (5) and (7), we obtain
the solution in linear approximation,


(1)
p = Feiφ, (10a)

σ
(1)
11 = Aζ (z)Fei(
+φ) + A∗ζ (z)∗F ∗e−i(
+φ), (10b)

σ
(1)
21 = B1ζ (z)Fei(
+φ) + B2ζ (z)∗F ∗e−i(
+φ), (10c)

with φ = K(ω)x − ωt [35], and 
 = (kp − kc)x − �t . The
explicit expressions of A, B1, and B2 are given in Appendix B.

The above solution has two features. First, the population
in the ground state |1〉, i.e., σ

(1)
11 , has an oscillation with the

beat frequency � = ωp − ωc. Such oscillation is called CPO,
first predicted by Schwartz and Tan [5]. Second, σ

(1)
21 contains

two terms proportional to exp(i
) and exp(−i
). As a result,
a new field may be generated via a four-wave mixing process,
as shown in Ref. [7]. However, due to the unsaturation feature,
the new field has very significant absorption and hence can be
neglected safely in our system.

The linear dispersion relation of the system is given by

K(ω) = ω

c

n2

neff
+ κ12

∫
d�ω21f (�ω21)

〈
ζ (z)

(ω + � + d21)

{(
1 − 2σ

(0)
11

)
− 2ζ (z)
c

[
σ

∗(0)
21 − ζ ∗(z)
∗

c (ω + � + d21)−1
(
σ

(0)
22 − σ

(0)
11

)]
(ω + � + i�2) − 2|ζ (z)
c|2[(ω + � + d21)−1 + (ω + � − d∗

21)−1]

}〉
. (11)

The first term proportional to 1 − 2σ (0)
11 in the bracket charac-

terizes the saturation effect. For free atomic gases, a saturation
can be realized easily (i.e., 1 − 2σ (0)

11 = 0). But for our present
solid system, 1 − 2σ

(0)
11 has a nonzero value, i.e., saturation

cannot be achieved, as analyzed in the last section. The second
term proportional to 
c in the bracket describes the CPO effect

of the system. Thus, in order to have a CPO, the control field
is indispensable.

Figure 4(a) shows the probe-field absorption spectrum
Im(K) as a function of ω. System parameters are chosen
as Na = 5 × 1018 cm−3, |p12| = 2.6 × 10−30 C cm [36], and
κ12 ≈ 3 × 1010 cm−1 s−1. The blue solid, red dashed, and
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FIG. 4. (Color online) Linear dispersion relation and superluminal group velocity of SPs via CPO. (a) Im(K) as a function of ω. (b) Re(K)
as a function of ω. In both panels, the blue solid, red dashed, and black dash-dotted lines are for 
c = 0, 10 kHz, and 20 kHz, respectively. For
a better visibility, Im(K) and Re(K) in panels (a) and (b) for the case of 
c = 0 have been reduced ten times. (c) Ṽg/c as a function of ω for

c = 20 kHz.

black dash-dotted lines in the figure are for 
c = 0, 10 kHz,
and 20 kHz, respectively. Other parameters are the same as
those used in Fig. 3. From Fig. 4(a), we see that Im(K) has a
large single peak for 
c = 0. When 
c = 10 kHz, it displays
a large absorption peak near ω = 0 and two transparency
windows beside the peak. Interestingly, a gain occurs [i.e.,
Im(K) becomes negative] when 
c is increased, as shown by
the case 
c = 20 kHz. Such gain can be used to compensate
the Ohmic loss near the lossless point of Im(k) described in
the last section.

Shown in Fig. 4(b) is Re(K) as a function of ω. The
blue solid, red dashed, and black dash-dotted lines in the
figure are for 
c = 0, 10 kHz, and 20 kHz, respectively.
We know that Re(K) is proportional to the real part of the
first-order susceptibility, i.e., Re(χ (1)). Thus, it is related to
the linear refractive index and the group velocity of the
probe field, defined by Ṽg = [∂Re(K)/∂ω)]−1. One sees that
near ω = 0, the system always has an anomalous dispersion.
For a more detailed illustration of the group velocity, we
plot Ṽg/c as a function of ω with 
c = 20 kHz, shown in
Fig. 4(c). We see that Ṽg/c can be larger than 1 (i.e., Ṽg > c)
or even negative (Ṽg < 0). Consequently, one can realize a

superluminal propagation of SPs (i.e., Ṽg > c or Ṽg < 0) in
the present system. The physical reason for the appearance of
the gain and the superluminal propagating velocity is due to
the unsaturation feature [as shown in Fig. 3(b)] of the system.

IV. GIANT KERR NONLINEARITY AND SUPERLUMINAL
SURFACE POLARITONIC SOLITONS VIA CPO

We now turn to investigate the nonlinear excitations in
the system. We first derive the nonlinear envelope equa-
tion controlling the evolution of the probe field. To this
end, we take the following asymptotic expansion: σjj =
σ

(0)
jj + εσ

(1)
jj + ε2σ

(2)
jj + ε3σ

(3)
jj + · · · , (j = 1,2), σ21 = σ

(0)
21 +

εσ
(1)
21 + ε2σ

(2)
21 + ε3σ

(3)
21 + · · · , and 
p = ε
(1)

p + ε2
(2)
p +

ε3
(3)
p + · · · . To obtain a divergence-free expansion, all quan-

tities on the right-hand sides of the expansion are considered
as functions of the multiscale variables xl = εlx (l = 0,1,2)
and tl = εlt (t = 0,1).

Substituting these expansions into the MB Eqs. (5) and (7),
we obtain a series of linear but inhomogeneous equations for
σ

(l)
ij and 
(l)

p (l = 1,2,3):

i

(
∂

∂t0
+ �2

)
σ

(l)
11 + ζ ∗(z)

(

∗

cσ
(l)
21 + 
∗(l)

p e−i
σ
(0)
21

) − ζ (z)
(

cσ

∗(l)
21 + 
(l)

p ei
σ
∗(0)
21

) = M (l), (12a)(
i

∂

∂t0
+ d21

)
σ

(l)
21 + ζ (z)

[
2
cσ

(l)
11 − 
(l)

p ei

(
1 − 2σ

(0)
11

)] = N (l), (12b)

i

(
∂

∂x0
+ 1

c

n2
2

neff

∂

∂t0

) (

(l)

p ei

) + κ12

∫ ∞

−∞
d(�ω21)f (�ω21)

〈
σ

(l)
21

〉 = P (l), (12c)

which can be solved order by order. Explicit expressions of
M (l), N (l), and P (l) are given in Appendix C.

At the leading order (l = 1), the solution is just the linear
excitations of the system, which has been provided in Sec. III B
[see Eqs. (10) and (11), but with φ = K(ω)x0 − ωt0 and

 = (kp − kc)x0 − �t0 by the notations used here].

At the second order (l = 2), a divergence-free condition for

(2)

p yields

i

(
∂F

∂x1
+ 1

Vg

∂F

∂t1

)
= 0, (13)
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with the complex group velocity given by

Vg =
[

1

c

n2
2

neff
− κ12

∫ ∞

−∞
d(�ω21)f (�ω21)

×
〈
ζ (z)

B1 − 2i
cD1J1

ω + � + d21

〉]−1

. (14)

Explicit expressions of the second-order solution and the
quantities B1, D1, J1 are presented in Appendix D.

With the first- and second-order solutions, we go to the third
order (l = 3). A divergence-free condition for 
(3)

p requires

i
∂F

∂x2
− 1

2
K∂2F

∂t2
1

− W|F |2Fe−2ᾱx2 = 0, (15)

where α = Im(K) = ε2ᾱ and

K = 2κ12

∫ ∞

−∞
d(�ω21)f (�ω21) 〈iQ1 + 2ζ (z)
cD1G1〉 ,

(16a)

W = 2κ12

∫ ∞

−∞
d(�ω21)f (�ω21) 〈D1J5 + ζ (z)
cD1G2〉 ,

(16b)

with

G1 = −iD1J1 + iQ1ζ
∗(z)
∗

c

ω + � + d21
+ iQ∗

2ζ (z)
c

ω + � − d∗
21

, (17a)

G2 = ζ (z)Q∗
5 − ζ ∗(z)Q3 + 2|ζ (z)|2
∗

cD1J3

ω + � + d21

+ 2|ζ (z)|2
cD1J2

ω + � − d∗
21

. (17b)

D1,J1,J2,J3,Q1,Q2,Q3, andQ5 are defined in Appendix D.
The third-order optical susceptibility χ (3)

pp is proportional to
the self-phase modulation coefficient W in Eq. (15) via the
relation

χ (3)
pp = 2c

ωp

|p12|2
�2

W. (18)

Shown in Fig. 5 is Re(χ (3)
pp ) as a function of the beat frequency

� = ωp − ωc when there is confinement [i.e., with the mode
modulation ζ (z); blue solid line] and when there is no
confinement [i.e., ζ (z) = 1; red dashed line]. Note that for
visibility, the result for the case of no confinement has been
amplified 50 times. System parameters are the same as those
used in Fig. 3, but here 
c = 20 kHz. We see that Re(χ (3)

pp ) is
significantly enhanced due to the light confinement near the
NIMM-dielectric interface. Typically, we have

Re
(
χ (3)

pp

) = 2.82 × 10−10 cm2 V −2 (19)

for � = 2.0 × 104 s−1. Thus, the Kerr effect of the system
is very large, which is very essential for the formation and
propagation of surface polaritonic solitons in the system.

0 0.5 1 1.5 2
x 10

4

0

0.6

1.2

1.8

2.4

3

(s−1)

R
e(
χ pp(3

) ) 
(c

m
2 V

−
2 )

with confinement
without confinement

× 50

×10−10

Δ

FIG. 5. (Color online) Giant Kerr nonlinearity. Third-order opti-
cal susceptibility Re(χ (3)

pp ) as a function of the beat frequency � =
ωp − ωc with confinement (blue solid line) and with no confinement
[i.e., ζ (z) = 1; red dashed line]. For visibility, the result for the case
of no confinement has been amplified 50 times.

Combining Eqs. (13) and (15) and returning to the original
variables, we obtain

i
∂

∂x
U − 1

2
K∂2U

∂τ 2
− W|U |2Ue−2αx = 0, (20)

with τ = t − x/Vg and U = εF .
The key for the formation and robust propagation of a

surface polaritonic soliton requires two basic conditions. The
first is the balance between the dispersion and nonlinearity in
the system, and the second is that the probe-field absorption
must be small. Note that generally the coefficients of the
nonlinear Schrödinger (NLS) Eq. (20) are complex, which
means that a soliton, even if it is produced initially, may be
highly unstable during propagation. However, as shown below,
a realistic set of physical parameters can be found in our
system so that the imaginary part of the coefficients in the NLS
Eq. (20) can be made much smaller than its corresponding real
part. Thus we are able to obtain a shape-preserving, localized
nonlinear solution that can propagate a rather long distance
without a significant distortion.

Neglecting the small imaginary part of the coefficients and
taking ω = 0, Eq. (20) can be written into the dimensionless
form i∂u/∂s + ∂2u/∂σ 2 + 2|u|2u = 0, with s = −x/(2LD),
σ = τ/τ0, and u = U/U0. Here τ0 is typical pulse duration,
LD = τ 2

0 /K̃ is a typical dispersion length [which is assumed
to equal the typical nonlinearity length LNL ≡ 1/(U 2

0 W̃)], and

U0 = (1/τ0)
√
K̃/W̃ is a typical Rabi frequency of the probe

field. Note that the tilde symbol above K and W means taking
the real part, i.e., K̃ = Re(K) and W̃ = Re(W). Then one can
obtain various soliton solutions for u. A single-soliton solution
in terms of the half Rabi frequency reads


p = 1

τ0

√
K̃
W̃

sech

[
1

τ0

(
t − x

Ṽg

)]
exp

{
i

[
K(ω) + 1

2LD

]
x

}
,

(21)
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FIG. 6. (Color online) Propagation and interaction of superluminal surface polaritonic solitons. (a) Wave shape |
p/U0|2 for the
superluminal surface polaritonic soliton as a function of x/LD and t/τ0. (b) Collision between two superluminal surface polaritonic solitons.

which describes a bright surface polaritonic soliton traveling
with velocity Vg . The corresponding probe field reads

Ep(r,t) = �

|p12|τ0

√
K̃
W̃

up(z)sech

[
1

τ0

(
t − x

Ṽg

)]
× exp

(
i

{ [
k(ωp) + K(ω) + 1

2LD

]
x

− (ωp + ω)t

})
+ c.c. (22)

Note that in our system, both Im[k(ωp)] and Im[K(ω)] can be
made very small and, in fact, k(ωp) + K(ω) can be made to
be nearly vanishing. The physical reasons are the following.
On the one hand, the strong confinement of SP requires the
probe-field frequency ωp to have a small deviation from the
lossless point, thus Im[k(ωp)] has a small positive value which
results in a decay for the surface polaritonic soliton. But,
on the other hand, we can choose the control field to make
Im[K(ω)] negative, which (i.e., gain) can suppress the decay
caused by the positive Im[k(ωp)]. That is to say, we can choose
suitable probe-field detuning �p and the control-field half Rabi
frequency 
c to make Im[k(ωp) + K(ω)] ≈ 0. Consequently,
the problem between the confinement and the absorption of the
probe field which is usually needed to trade off [3,4,27,28] can
be avoided in our system. As a result, the surface polaritonic
soliton obtained here is very robust during propagation.

We now give a realistic parameter set for the formation
and propagation of the surface polaritonic soliton. For a
Pr:YSO doped at the NIMM-dielectric interface, we may
select 
c = 25 kHz, ωp = 4.87 × 1014 s−1, �c = 6.0 × 103

s−1, � ≈ −4.02 × 104 s−1, τ0 = 5.0 × 10−8 s, and other
parameters are the same as those given above. Then we obtain
Im(k) = 0.811 cm−1 and Im(K) = −0.812 cm−1, and hence
Im(k + K) = −0.001 cm−1. Furthermore, we have U0 =
6.31 × 106 s−1, LD = LNL = 0.25 cm,K = (1.01 + 0.19i) ×
10−14 cm−1 s2, andW = (2.54 + 0.05i) × 10−14 cm−1 s2. The
characteristic absorption length is found to be LA = 1/|α| =
1.23 cm. Thus, as expected, the imaginary parts of K and
W are, indeed, much smaller than their corresponding real
parts. In addition, the probe-field absorption can be neglected
because LA is one order of magnitude larger than LD and LNL.

With these parameters, we obtain the group velocity of the
probe field,

Ṽg ≈ −2.59 × 10−9c. (23)

Consequently, the surface polaritonic soliton obtained travels
with a superluminal propagating velocity.

It is easy to calculate the threshold of the optical power
density Pmax for generating the superluminal surface polariton
soliton predicted above by using Poynting’s vector [37]. We
obtain

P̄max = 76.60 μW. (24)

Thus, very low input power is needed for generating the
superluminal surface polaritonic solitons in the system.

The stability of the superluminal surface polaritonic soliton
described above can be checked by using numerical simula-
tions. Figure 6(a) shows the wave shape |
p/U0|2 for a single
superluminal surface polaritonic soliton as a function of x/LD

and t/τ0. The solution is obtained by numerically solving
Eq. (20) with full complex coefficients taken into account.
The initial condition is given by 
p(0,t) = U0sech(t/τ0 − 5).
We see that the soliton keeps its shape for a long propagating
distance (up to 1 cm), and the amplitude of the soliton
undergoes only a slight decrease and its width undergoes a
slight increase due to the influence of the imaginary part of
the coefficients in Eq. (20). Note that in Ref. [3] a linear SP
can propagate only for a shorter distance (several millimeters).
The reason for the improvement of the propagating distance of
the surface polaritonic soliton in our system is due to the fact
that the absorption of the NIMM can be totally compensated
by the gain of the two-level quantum emitters. A simulation
of the collision between two superluminal surface polaritonic
solitons is also carried out by inputting two identical solitons
[Fig. 6(b)]. The initial condition in the simulation is 
p(0,t) =
U0sech(t/τ0 − 5) + U0sech(t/τ0 + 5). As time goes on, the
solitons collide, pass through, and depart from each other. We
see that two solitons recover their initial wave forms after the
collision.

V. SUMMARY

In this article, we have investigated the formation and
propagation of linear and nonlinear SPs at the interface
between a negative-index metamaterial and a dielectric doped
with two-level quantum emitters via CPO. We have found that
the SPs can have superluminal propagating velocity due to
the unsaturation feature of the system. Based on the CPO
and the strong confinement of the optical field near the
interface, the system may possess a giant Kerr nonlinearity.
We have predicted the possibility for obtaining a type of
surface polaritonic solitons which is not only robust during
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propagation but also has ultraweak generation power and su-
perluminal propagating velocity. The results reported here may
have potential applications for nonlinear and quantum optics
based on superluminal linear and nonlinear optical pulses.
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APPENDIX A: TM MODE OF THE
ELECTROMAGNETIC FIELD

The NIMM-dielectric interface (Fig. 1) supports both
the TE and TM modes. Here we consider only the TM
mode. For simplicity, we assume that the SP propagates in
the positive x direction, and the form of electromagnetic
(EM) field reads H(r,t) = −eyH (z)eiθ + c.c. and E(r,t) =
E(z)eiθ + c.c., where θ = kx − ωlt . Substitution of these
expressions of the EM field into Maxwell equations yields

E(r,t) = i

ε0εωl

[
dH (z)

dz
ex − ikH (z)ez

]
eiθ + c.c., (A1)

with H (z) satisfying the equation ∂2H (z)/∂z2 + (ω2
l εμ/c2 −

k2)H (z) = 0. Using Eq. (A1) combined with the boundary
conditions of the EM field, we obtain [3]

E(r,t) =
{

(kez + ik1ex) A
ε0ε1ωl

ek1z+iθ + c.c., z < 0

(kez − ik2ex) A
ε0ε2ωl

e−k2z+iθ + c.c., z > 0,

(A2a)

H(r,t) =
{−eyAek1z+iθ + c.c., z < 0
−eyAe−k2z+iθ + c.c., z > 0,

(A2b)

where A is an arbitrary constant, eα (α = x,y,z) is the unit
vector along the α direction, and k2

j ≡ k2 − ω2
l εjμj/c

2 (j = 1
for the NIMM; j = 2 for the dielectric) satisfies the relation
k1ε2 = −k2ε1. The linear dispersion relation of the SP is given
by k(ωl) = ωl[ε1ε2(ε1μ2 − ε2μ1)/(ε2

1 − ε2
2)]1/2/c.

Pulsed EM-field energy can be expressed as [20]

U = 1

2

∫∫∫
dxdydz(ε0ε̃|E|2 + μ0μ̃|H|2), (A3)

with ε̃ ≡ Re[∂(ωlε)/∂ωl] and μ̃ ≡ Re[∂(ωlμ)/∂ωl]. Based on
the above formula, we obtain the quantized electric field with
the form

E(r,t) =
⎧⎨⎩(kez + ik1ex) c

ε1ωl

√
�ωl

ε0LxLyLz
â(ωl)ek1z+iθ + c.c., z < 0

(kez − ik2ex) c
ε2ωl

√
�ωl

ε0LxLyLz
â(ωl)e−k2z+iθ + c.c., z > 0,

(A4)

where â(ωl) is the creation operator of TM photons, Lx and Ly are, respectively, the lengths of the NIMM-dielectric interface in
the x and y directions, and Lz reads

Lz ≡ 1

2

[
ε̃1

|k1|
c2

ω2
l

(|k|2 + |k1|2)

|ε1|2 + ε̃2

|k2|
c2

ω2
l

(|k|2 + |k2|2)

|ε2|2
]

+ 1

2

(
μ̃1

|k1| + μ̃2

|k2|
)

, (A5)

which is the mode length characterizing EM-field confinement in the z direction.

APPENDIX B: EXPRESSIONS OF A AND B

A = σ
∗(0)
21 − ζ ∗(z)
∗

c (ω + � + d21)−1
(
1 − 2σ

(0)
11

)
(ω + � + i�2) − 2|ζ (z)
c|2[(ω + � + d21)−1 + (ω + � − d∗

21)−1]
,

B1 = (ω + � + d21)−1

{(
1 − 2σ

(0)
11

) − 2ζ (z)
c

[
σ

∗(0)
21 − ζ ∗(z)
∗

c (ω + � + d21)−1
(
1 − 2σ

(0)
11

)]
(ω + � + i�2) − 2|ζ (z)
c|2[(ω + � + d21)−1 + (ω + � − d∗

21)−1]

}
,

B2 = 2ζ (z)
c(ω + � − d21)−1
[
σ

(0)
21 − ζ (z)
c(ω + � + d∗

21)−1
(
1 − 2σ

(0)
11

)]
(ω + � − i�2) − 2|ζ (z)
c|2[(ω + � + d∗

21)−1 + (ω + � − d21)−1]
.

APPENDIX C: EXPRESSIONS OF M (l), N (l), AND P (l)

Explicit expressions of M (l), N (l), and P (l) are given by

M (1) = 0, N (1) = 0, P (1) = 0, (C1)

M (2) = −i
∂

∂t1
σ

(1)
11 + ζ (z)
(1)

p ei
σ
∗(1)
21 − ζ (z)∗
∗(1)

p e−i
σ
(1)
21 , (C2)

M (3) = −i
∂

∂t1
σ

(2)
11 + ζ (z)ei


(

(2)

p σ
∗(1)
21 + 
(1)

p σ
∗(2)
21

) − ζ ∗(z)e−i

(

∗(2)

p σ
(1)
21 + 
∗(1)

p σ
(2)
21

)
, (C3)
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N (2) = −i
∂

∂t1
σ

(1)
21 − 2σ

(1)
11 
(1)

p ζ (z)ei
, (C4)

N (3) = −i
∂

∂t1
σ

(2)
21 − 2

(
σ

(2)
11 
(1)

p + σ
(1)
11 
(2)

p

)
ζ (z)ei
, (C5)

P (2) = −i

(
∂

∂x1
+ 1

c

n2
2

neff

∂

∂t1

)

(1)

p ei
, (C6)

P (3) = −i

(
∂

∂x1
+ 1

c

n2
2

neff

∂

∂t1

)

(2)

p ei
 − i
∂

∂x2

(1)

p ei
. (C7)

APPENDIX D: EXPRESSIONS OF THE SECOND-ORDER SOLUTIONS

The second-order solution reads

σ
(2)
11 = J1

∂

∂t1
Fei(
+φ) − J ∗

1
∂

∂t1
F ∗e−i(
+φ) + J2

∂

∂t1
F 2e2i(
+φ) − J ∗

2
∂

∂t1
F ∗2e−2i(
+φ) + J3|F |2e−2ᾱx2 , (D1a)

σ
(2)
21 = Q1

∂

∂t1
Fei(
+φ) + Q2

∂

∂t1
F ∗e−i(
+φ) + Q3

∂

∂t1
F 2e2i(
+φ) + Q4

∂

∂t1
F ∗2e−2i(
+φ) + Q5|F |2e−2ᾱx2 , (D1b)

with

J1 = −iζ (z)A + i|ζ (z)|2B1

∗
c (ω + � + d21) − iζ 2(z)B∗

2
c(ω + � − d∗
21)−1, (D2a)

J2 = [ζ (z)B∗
2 + 2|ζ (z)|2A
∗

c (2ω + 2� + d21)−1]ζ (z), (D2b)

J3 = [
B∗

1 + 2ζ ∗(z)A∗
∗
cd

−1
21 − c.c.

]|ζ (z)|2, (D2c)

Q1 = (ω + � + d21)−1ζ (z)(−iB1 − 2
cD1J1), (D2d)

Q2 = (−ω − � + d21)−1[−iζ ∗(z)B2 + 2ζ (z)
cD−1J ∗
1 ], (D2e)

Q3 = (2ω + 2� + d21)−1ζ (z)(−iA − 2
cD2J2), (D2f)

Q4 = 2ζ (z)
cD−2J ∗
2 (−2ω − 2� + d21)−1, (D2g)

Q5 = d−1
21 [−2ζ ∗(z)A∗ − 2ζ (z)
cD0J4], (D2h)

where Dj = [j (ω + �) + i�2 − 2|ζ (z)
c|2{[j (ω + �) + d21]−1 + [j (ω + �) − d∗
21]−1}]−1.
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