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We propose a scheme to generate high-dimensional self-trapped laser beams at a very low light intensity via
atomic coherence. The system we consider is a resonant four-level atomic ensemble, working in an active Raman
gain regime and at room temperature. We derive a high-dimensional nonlinear envelope equation for a signal
field with a specific saturable nonlinearity. We show that because of the quantum interference effect induced by a
control field, the imaginary part of the coefficients of the signal-field envelope equation can be much smaller than
their real part. We demonstrate that the system supports gain-assisted, stable, high-dimensional spatial optical

solitons and long-lifetime vortices, which can be produced with light power at the microwatt level.
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I. INTRODUCTION

Spatial optical solitons are special types of optical wave
packets appearing as a result of interplay between diffraction
and nonlinearity. Their study is of special interest because
of their rich nonlinear physics and important practical appli-
cations [1-5]. Up to now, most spatial optical solitons are
produced in passive optical media, in which far-off resonance
excitation schemes are employed in order to avoid significant
optical absorption. As a result, a very high light intensity is
usually needed to obtain enough nonlinearity for balancing the
diffraction effect.

In recent years, much interest has focused on the wave
propagation in highly resonant optical media via electromag-
netically induced transparency (EIT). EIT can be used not
only for suppressing optical absorption but also for acquiring
ultraslow group velocity, for enhancing Kerr nonlinearity [6],
and for temporal [7-9] and spatial [10-13] optical solitons
and vortices in resonant nonlinear systems. However, the
ElT-based schemes have some inherent drawbacks such as
the probe attenuation and spreading at room temperature and
the long response time because of the character of ultraslow
propagation.

Parallel to the study of EIT, much attention has also
been paid to the wave propagation in resonant optical media
with active Raman gain (ARG) [14-23]. Contrary to the
ElT-based scheme, which is absorptive in nature, the central
idea of the ARG scheme is that the signal field operates in
stimulated Raman emission mode, and hence attenuation of the
signal field can be completely eliminated and a superluminal
propagation of the signal field can be realized [14-23]. In
addition, it has been shown recently by Deng and Payne [24]
that a gain-assisted giant Kerr effect can also be obtained
by using ARG media. Based on these results, gain-assisted
temporal optical solitons of superluminal propagating velocity
have been predicted [25-27]. However, there has been no
report on the study of gain-assisted spatial optical solitons
and vortices in the ARG-based systems.
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In this article, we propose a scheme to generate high-D
spatial optical solitons and vortices in a four-level ARG
system. We derive a high-D nonlinear Schrodinger (NLS)
equation for the signal-field envelope and show that, by
means of the quantum interference effect induced by a control
field, the imaginary part of the coefficients of the envelope
equation can be much smaller than their real part. The high-D
NLS equation obtained has an interesting type of saturable
nonlinearity, which allows solutions of gain-assisted high-D
spatial optical solitons and vortices. Owing to the resonant
character of the system, the high-D self-trapped nonlinear laser
beams obtained can be produced by using very low light power.

The article is arranged as follows. Section II gives a simple
introduction of the theoretical model and derives the high-
D NLS equation. Section III investigates the formation and
propagation of high-D spatial optical solitons and vortices
and discusses their interaction and stability. The last section
summarizes the main results of our work.

II. MODEL AND ENVELOPE EQUATION

The model under consideration is shown in Fig. 1.
A weak signal field (with center angular frequency wyg),
a strong pump field (with center angular frequency wp),
and a strong control field (with center angular frequency
wc) interact resonantly with a N-type four-level system.
The electric-field vector in the system is given by E =
Y—ps.cerexpli(k - r — wt)] + c.c., where ¢ (k) is the
polarization direction (wave vector) of /th field with envelope
&;. The Hamiltonian of the system in the interaction picture
reads Hin = —h Z§=1 AT = R(2p[3) (1] + S2513) (2] +
Qc|4) (2| + HC) Here A3 = wp — (a)3 — a)l), Az = wp —
ws — (wy —wy) and Ay = wp — ws + wc — (w4 — wy) are,
respectively, the one-, two-, and three-photon detunings;
Qp = (ep-p13)Ep/h, Qs = (es5-p23)Es/h, and Qc = (ec -
pP2)Ec/h are, respectively, the half Rabi frequency of the
pump, signal, and control fields, with p;; being the electric
dipole matrix element associated with the transition from state
|i) to state |j).

Using the Schrodinger equation ih0|W(t))in/0t =
Hi W()ine With [W(1))ine = (A1,A2,A3,A9)" and under
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FIG. 1. (Color online) Excitation scheme of lifetime-broadened
four-state atomic system interacting with a strong pump field (with
half Rabi frequency 2p), a strong control field (with half Rabi
frequency 2¢), and a weak signal field (with half Rabi frequency
Q); |j) ( = 1,2,3,4) are bare atomic states; Aj, A,, and A4 are
one-photon, two-photon, and three-photon detunings, respectively.

electric dipole and rotating-wave approximations, we obtain
the equation of motion for A;:

d
(ia + dz) Ay + Q§A3 + Q*CA4 =0, (1a)
)
(’E + dg) Ay+QpAr+QsAy =0, (Ib)
)
i +dy | Ay +QcAry =0, (1¢)

with Y1 |42 = land d; = Aj +iy; (j = 2,3); y; is the
decay rate of the state | j).

Under slowly varying envelope approximation, the
Maxwell equation for the signal field is reduced to

(2 10 Yoo h S v teasat =0, @)
i|—+-— — K =0,
3z L cot) ST 2 S 3%

where V2 = 9%/0x? 4+ 982/3y*, k = Nwsles - pa|*/(2€ohic),
with N being atomic concentration. For simplicity, the signal
field has been assumed to propagate in the z direction, that is,
ks = ezks.

We assume that atoms are initially populated in the state
[1). Since the system works at room temperature, the Doppler
effect resulting from thermal motion of atoms is significant.
In order to suppress the large gain of the signal field and
the Doppler effect, we assume that one-photon detuning Aj
is large enough. The steady state solution of Eqgs. (1) and

(2) is given by AY = 1//1+ [Qp/ds% AL =0, AV =

—Qp/(d3y/1+Qp/d32), Ay’ = 0. By assuming A; — A
and Qg proportional to exp[i(Kz — wt)], it is easy to get the
linear dispersion relation of the signal field:

(©)
K= - PP —d)

— , 3
¢ 1P — (- —d) ©)

where @ and K are deviation of frequency and wave vector
of the signal field, respectively. Figure 2 shows the real
part ReK(w) (solid line) and the negative imaginary part
—ImK (w) (dashed line) of K as a function of @ with realistic
system parameters for 87Rb atoms [24]. We see that —ImK (w)
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FIG. 2. (Color online) Real part ReK (w) (solid line) and negative
imaginary part —ImK(w) (dashed line) of the linear dispersion
relation of the signal field as functions of .

displays a structure of a gain spectrum hole, where signal-field
gain is largely suppressed. The width of the gain spectrum
hole is proportional to the intensity of the control field. The
physical reason for the appearance of such a gain spectrum
hole is the quantum interference effect induced by the control
field [27,28].

We focus on the steady state regime of the system, in
which time-derivative terms in Eqs. (1) and (2) can be
neglected. Such a regime can be realized under the condition
|djlto > 1, where 79 is the pulse length of the signal field.
In this case, using Eq. (1), we obtain A} = DA3/(Q2pDy),
Ay = dyQiA3/ Dy, As = —QcQ5A3/Dy, with  |A3])2 =
[1+ |dsQs/D1|*> + |D/(QpD)* + |QcQs/Di1*17", Dy =
|Qc|> — dody, and D = —d3D; — d4|Qs|>. Then Eq. (2)
reduces to the (2+ 1)-D NLS equation with saturable non-
linearity:

. 895 KdIDl QS

C
PRl NI VY, Y =0,
3z @ 2wg LS G 1+a|Qs+ BlIQs]*
(4)

with o = [|ds|* 4 |Qc|* 4 2|ds/ Qp[*Re(d3 D1 /dy)]/ G, B =
ds/Qp?/ G, and G = |D1*(1 4 |d3/ Qp ).

In linear approximation, the signal beam spreads during
propagation because of the diffraction of the system. In order
to arrest such spreading and obtain a stable signal-beam
propagation, a natural way is to use the saturable nonlinear
effect of the system. To explore such a possibility, we write
Eq. (4) into the dimensionless form

,au+ ” + o + Re(8)
1 — — — lu (]
as 082 an?

= Plu],
&)

where s = z/Lp, (§,7) = (x,y)/R., and u = Qg/ Uy, with
Lp(= 2Ria)s /¢), R1, and Uy being, respectively, character-
istic diffraction length, beam radius, and half Rabi frequency
of the signal field. The function on the right-hand side (rhs) of
Eq. (5) is defined by P[u] = —iIm(8)u/[1 + o|u|® + ¢ |ul*].
The coefficients in Eq. (5) are given by o = Ule, ¢ =
BUg, and 8 = Re(8) + iIm(8), with Re(8) = AycDiLp/G
and Im(8) = —yskys D1 Lp/G. Notice that o and ¢ are real,
but § is complex. Notice that since Im§ < 0, the term P[u] in
Eq. (5) is not an absorption but a gain one.

u
L+oul+¢lul*
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Now we make an estimation of realistic values of the
coefficients appeared in Eq. (5). We consider a typical warm
atomic vapor of 3’Rb used in Ref. [24]. System parameters are
given by y, = 150Hz, y3 = 250MHz, y4 = 250kHz, « =
7.04 x 10°cm™'s™!, and wg = 2.37 x 10" s~!. Other param-
eters are chosen as A, =0, A3 = —2.0x 10° s, A, =
-3.0x 108 s7!, Qp =8.0x 10" s7!, Q¢ =6.0 x 107 s7,
and R, = 4.0 x 1073 cm. With these parameters, we obtain
Lp=253cm,Uy=1.04 x 10857, 0 = 1.0, ¢ =0.19,and
6§ = —11.66 — 0.01i. Because Im(§) < Re(8), the term P[u]
on the rhs of Eq. (5) can be taken as a perturbation. Con-
sequently, in leading-order approximation, Eq. (5) becomes a
NLS equation without gain. Such a result is interesting because
in usual undriven resonant systems, one obtains envelope
equations with very strong gain or dissipation, that is, the
coefficients of the envelope equations have imaginary parts that
are of the same order of corresponding real parts. The physical
reason for so small an imaginary part in the coefficients of the
envelope equation [Eq. (5)] is the quantum interference effect
induced by the control field.

NLS equations with saturable nonlinearity have been stud-
ied for many years [29-31]. In many cases investigated so far,
the term related to saturable nonlinearity is of the form f(/)u,
with I = |u|?. Usually, in nonresonant systems, f(I) takes
the form ng/(1 + 1/1y), or np 1 /(1 + 1 /1), with ng, no, and I
being constants [2,3,5,32]. In resonant EIT systems, f(/) takes
the formng /(1 + 1 /1) (three level) [12] or a very complicated
form (four level) [10]. However, the saturable nonlinearity we
obtained in the present four-level ARG system is very specific
and has the form f(I) =no/(1 4+ 1/1y + 12/112), with ng, Iy
and I, being constants.

III. HIGH-DIMENSIONAL SPATIAL OPTICAL
SOLITONS AND VORTICES

We now investigate the possibility of spatial optical solitons
and vortices supported by saturable nonlinearity, based on the
NLS equation [Eq. (5)]. Our strategy is as follows. We first get
soliton or vortex solutions in the leading-order approximation
(i.e., the perturbation P[u] is set to zero). Then we solve Eq. (5)
by taking the leading-order solutions as initial conditions to
obtain the soliton or vortex solutions of Eq. (5) numerically.
In fact, the solutions in the leading-order approximation are
already quite accurate because Im(8)/Re(8) ~ 1073,

In the leading-order approximation, the solution of Eq. (5)
has the form u = W(r) exp [i(u + Re(8))s + im¢]; here r> =
€2 + 1%, u is the propagation constant, and m(= 0) is the
winding number. The solution for m = 0 corresponds to a
soliton, while for m # 0, the solution corresponds to a vortex
with topological charge m. Boundary conditions are 0W /dr =
Oatr =0and ¥ =0 at r — oo for m = 0 (for solitons) or
VU =0atr =0andr — oo for m > 0 (for vortices).

A. Solitons

The soliton solution corresponds to the winding number
m = 0. We solve Eq. (5) by using a Newton iteration method
[33], with © =2.0, § =—11.6 —0.01i, 0 = 1.0, and ¢ =
0.19. Figure 3 shows the result of our numerical simulation.
Figures 3(a)-3(c) are soliton profiles for s =0, s =5, and
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FIG. 3. (Color online) Soliton profile |u| as a function of coordi-
nates &, 1, and s, obtained by numerically solving Eq. (5). (a) Initial
profile of the soliton (s = 0). (b, ¢) Soliton profiles when propagating
to 5 (s =5) and 10 (s = 10) diffraction lengths, respectively. (d—f)
2-D projection plots corresponding to (a), (b), and (c), respectively.

s = 10 (in units of Lp = 2.53 cm), respectively. Figures 3(d)—
3(f) are 2-D projection plots corresponding to Figures 3(a)—
3(c), respectively. For checking the stability of the soliton,
in the simulation, we have added a small randomness 0., to
the initial condition, that is, u = us (1 4 Oran), With |oran| =
0.1. From Fig. 3, we see the soliton keeps its shape after
propagating to 10 diffraction length (i.e., s = 10). Hence
Eq. (5) indeed admits a soliton solution, and this solution
is fairly stable during propagation.

We have also investigated collisions between two solitons
by using an accelerated imaginary-time evolution method [34].
Shown in Fig. 4 are profiles of amplitude |u| as a function of £,
n, and s for two-soliton collisions. The physical parameters are
chosen to be the same as in Fig. 3. The lower part of the figure
corresponds to projecting (to the £-n plane) plots of the upper
part. Note that in the upper part of the figure, 3-D plots have
been projected into the n = 0 plane. From the figure, we see
that soliton collisions display an elastic character; two solitons
are attractive for A¢ = 0 but repulsive for A¢p = 7.

It is easy to get the peak generation power of the
spatial optical soliton obtained previously, which is given by
Prax = 2€0cnsSo(h/1p23))* UG lumax |*, with ng and S, being
the reflective index and the cross-sectional area of the signal
beam, respectively. Taking Sp =7 R7 ~ 0.5 x 107* cm?,
Ip23] = 2.1 x 10727 c¢cm C, and using the other parameters
given earlier, we obtain Prax = 2.32 uW. Hence the spatial
optical soliton in the present system can be generated at very
low light power, which is much different from the optical
soliton generation schemes using passive media, where much
higher generation power is required.

B. Vortices

It is well known that vortices of high-D NLS equations
are generally unstable. However, saturable nonlinearity may
be used to effectively suppress such instability [29-32,35].
For a nonresonant passive system, saturation intensity is very
large, and saturation parameters of the system are fixed.
However, our present system is a resonant active one, so the
situation is thus quite different. On one hand, owing to the
resonant character of the system, the saturation intensity is
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FIG. 4. (Color online) Profiles of amplitude |u| for two-soliton collisions as a function of £ and s (projection to = 0 plane has been taken).
(a—d) Collisions of two solitons with initial relative phases A¢ = 7, w/2, 0, and —7 /2, respectively. (bottom) Corresponding projection (to

&-n plane) plots of (a—d).

very small. This can be seen as follows. From Eq. (5), the
saturable nonlinearity can be obtained by setting o |ue > ~ 1,
which gives the saturable electric field of the signal beam as
| Esatl = hUp/|p23l]. Using the numerical values of the physical
parameter given earlier, we obtain |Eg| =~ 5 V/m. On the
other hand, the active character of the present system provides
us with many adjustable parameters, which can be manipulated
to reduce the saturation intensity and increase vortex lifetime.
In the following, we shall discuss only how to increase
the vortex lifetime by adjusting the half control-field Rabi
frequency Q2¢. From Eq. (5), we know that the coefficients §,
o, and ¢ depend on Q2¢, and hence the solution parameters
of vortices, that is, the propagation constant u and Wy, (the
maximum value of W), depend also on Q2.

Shown in Fig. 5(a) is the relation between Wy,.x and pu,
with Q¢ = 6.0 x 107 s~!. The vortex corresponding to the
point (i, Wmax) = (8.56,3.152) in the curve is more stable than
the vortex corresponding to the point (u, W) = (5,1.577).
Shown in Fig. 5(b) are curves of saturation parameters o (solid
line) and ¢ (dashed line) as functions of Q¢ for fixed param-
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FIG. 5. (Color online) (a) Wy« as a function of propagation
constant u, with Q¢ = 6.0 x 107 s~!. The vortex corresponding to
the point (1, W) = (8.56,3.152) in the curve has a longer lifetime
than the vortex corresponding to the point (i, W) = (5,1.577).
(b) Curves of saturation parameters o (solid line) and ¢ (dashed
line) as functions of Q¢. The point (4.0,2.6) in the o curve and the
point (4,1) in the ¢ curve correspond to (i, Wpax) = (7.43,1.578). The
point (6.0,1.0) in the o curve and the point (6.0,0.2) in the ¢ curve
correspond to (i, Wmax) = (5.0,1.577). The vortex corresponding
to (,Wma) = (7.43,1.578) has a longer lifetime than the vortex
corresponding to (i, Wnax) = (5.0,1.577).

eters Ay =0, A3 = —2.0x 10° s7!, Ay = —=3.0 x 108 s~1,
and Qp = 8.0 x 107 s~!. Since the saturation intensity of the
signal field is inversely proportional to ¢ and ¢, from the
figure, we see that one can reduce the saturation intensity by
decreasing Q¢. In the figure, by choosing 107 s~! as the unit
of Q¢, we have illustrated the point (2¢,0) = (4.0,2.6) in
the o curve and the point (2¢,¢) = (4.0,1.0) in the ¢ curve.
Using the values of Q2¢, o, and ¢ at these points, we obtain
(1, Wiax) = (7.43,1.578), which has been indicated in the
inset in the figure; we have also illustrated the point (2¢,0) =
(6.0,1.0) in the o curve and the point (2¢,4)=(6.0,0.2) in
the ¢ curve, which correspond to (u,Wmax) = (5.0,1.577),
also indicated in an inset. The vortex corresponding to
(1, Wmax) = (7.43,1.578) has a longer lifetime compared with
the vortex corresponding to (14, Wnax) = (5.0,1.577). All these
predications have been verified by numerical simulations.

In Fig. 6, we have shown the evolution of |u| for m =1
vortex with different distances s. Figure 6(a) corresponds to the
point (p, ¥max) = (5,1.577) of Fig. 5(a), without adding any
random perturbation to the initial condition. No deformation
of the vortex is found after propagating to s = 10. However,
when a random perturbation p,, (With | pran| = 0.158) is added
into the initial condition, that is, # = uyo(1 + 0ran), the vortex
is stable until propagating to s = 2.4, but it deforms after
s = 2.4 and disintegrates into two solitons, as shown clearly
in Fig. 6(b). Plotted in Fig. 6(c) is the result of the evolution
of a large-amplitude m = 1 vortex corresponding to the point
(8.56,3.152) of Fig. 5(a). In this case, the vortex has a longer
lifetime in comparison with the case shown in Fig. 6(b) because
the vortex can propagate to a longer distance even when
a random perturbation is added to the initial condition. Of
course, it splits into two solitons at a large distance.

All evolution figures in Fig.6(a)-Fig.6(c) are obtained
for Q¢ = 6.0 x 107 s. In order to demonstrate the effect of
different saturation parameters, in Fig. 6(d), we have shown
the evolution of m = 1 vortex for Q¢ = 4.0 x 107 s, which
corresponds to (i, Wnax) = (7.43,1.578) of Fig. 5(b). We see
that in this case, the vortex is also relatively stable compared
with that shown in Fig. 6(b).

Shown in Fig. 7 are the evolution plots of the m =2
vortex for four different propagating distances s. Figure 7(a)
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FIG. 6. (Color online) Evolution of amplitude |u| of m =1
vortex as a function of (&,7), with different propagating distances s.
(a) Evolution corresponding to the point (@, Wnax) = (5,1.577) of
Fig. 5(a) without adding any random perturbation. (b) Evolution
when a random perturbation is added into the initial condition.
The vortex keeps its shape until propagating to s = 2.4, but it
deforms after s = 2.4 and then disintegrates into two solitons.
(c) Evolution of a large-amplitude vortex corresponding to the point
(s Wimax) = (8.56,3.152) of Fig. 5(a). The vortex has a longer lifetime
compared with the case shown in (b), but it splits into two solitons
at large s. (d) Evolution corresponding to Q¢ = 4.0 x 107 s, which
corresponds to (i, Wiax) = (7.43,1.578) of Fig. 5(b).

is the vortex evolution for (u,Wn.x) = (5,1.565), without
adding any random perturbation to the initial condition. We
see that, different from the m = 1 vortex, the m = 2 vortex
cannot keep its shape even with no random perturbation
added into the initial condition. At s = 6.25, the vortex splits
into four solitons. When a random perturbation pp,, (with

(d) s=0 5=2.8 s=3.5 s=4.2
g

FIG. 7. (Color online) Evolution plots of the m =2 vortex
as functions of (&,n), with different propagating distances s.
(a) Vortex evolution based on Eq. (5) for (u,Wma) = (5,1.565)
without adding any random perturbation to the initial condition.
(b) Vortex evolution when a random perturbation is added into the
initial condition. (c) Evolution of a large-amplitude m = 2 vortex
corresponding to (©, W) = (8.56,3.152). (d) Evolution of m =2
vortex corresponding to Q¢ = 4.0 x 107 s, which corresponds to
(U, Wmax) = (7.43,1.566).

PHYSICAL REVIEW A 83, 023816 (2011)

| pran] = 0.157) is added to the initial condition, the vortex
displays instability in earlier stages (s = 2.4). At s = 2.8, it
splits into four solitons, as shown in Fig. 7(b). Figure 7(c)
shows the result of the evolution of a large-amplitude m = 2
vortex corresponding to (u,Wmax) = (8.56,3.152). We see
that the large-amplitude vortex is relatively stable compared
with the (small-amplitude) vortex of Fig. 7(b). However, it
disintegrates into three (not four) solitons at a long evolution
distance.

We have also simulated the evolution of the m = 2 vortex
by changing the Rabi frequency of the control field. Shown
in Fig. 7(d) is the evolution of the m = 2 vortex for Q¢ =
4.0 x 107 s, which corresponds to (i, Wpay) = (7.43,1.566).
We see that the vortex in this case is also relatively stable
in comparison with that shown in Fig. 7(b). Generally, by
manipulating the parameters of the system, we can control
the lifetime of the vortex freely. In particular, when the
control-field intensity decreases a small amount, the lifetime
of the vortex can increase significantly. In addition, it is easy to
show that the peak generation powers of them = 1 andm = 2
vortices are also at a microwatt level.

IV. DISCUSSION AND SUMMARY

Generally, the vortices found in the system are unstable,
mainly because of symmetry-breaking azimuthal perturba-
tions. However, as shown, the instability can be very weak, that
is, the vortices can have long lifetimes and hence be observable
in experiment and useful in practical applications. Because our
system is an active one, we can control the weak instability of
the vortices by manipulating the system parameters at will. In
addition, there exists a parameter domain in which the vortices
are stable, which can be illustrated as follows. Notice that
Eq. (5), after making the transformation u = v exp (iés), can
be reduced to the cubic-quintic NLS equation

(2 sy — 8¢ — od)vl'v =0
11— —_— —_— V—00|(V|"V — — O VIV =
02 on? ¢

©)

ifo|u|? 4+ ¢|u|* < 1, which can be realized when (i) the signal
field is weak and (ii) the saturation intensity is large, which can
be achieved easily by selecting the system parameters. Under
the condition

o =—1, 8(t—0c>)=1, (7

Eq. (6) can be transferred into the standard cubic-quintic NLS
equation i(dv/ds) + (3%2/9&% + 3%/9n>)v + [v|*v — [v|*v =
0, which admits stable vortices [35]. Condition (7) can
be easily fulfilled in our system. For instance, by choos-
ing Az =—-10x 10° S_l, Ay =—1.69A3, Qp =Qc =
—0.1A3, Uy = —0.44A3, R, =2.516 x 1073 cm, one ob-
tains o ~ —0.09, ¢ ~ 0.10, and thus condition (7) is well
satisfied. In this parameter domain, the vortices are very stable,
which has been verified in our numerical simulation.

In conclusion, we have proposed a scheme for generating
high-D self-trapped laser beams at a very low light intensity
via atomic coherence. The system we have considered is an
ensemble of resonant four-level atoms, working in an active
Raman gain regime and at room temperature. We have derived
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a (24 1)-D NLS equation for the signal-field envelope with a
specific saturable nonlinearity. We have shown that because of
the quantum interference effect induced by a control laser field,
the imaginary part in coefficients of the NLS equation can be
much smaller than their real part. We have demonstrated that
the system supports stable high-D spatial optical solitons and
long-lifetime vortices, which can be produced with light power
at the microwatt level. The results presented here may be useful
for understanding the nonlinear property of coherent atomic
systems and guiding experimental findings of spatial solitons
and vortices with very low generation power, which may have

PHYSICAL REVIEW A 83, 023816 (2011)

potential applications in optical information processing and
engineering.
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