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We present a theoretical investigation on the quantum memory of photonic polarization qubits via electro-
magnetically induced transparency (EIT). The system we consider is a tripod-shaped four-level atomic system
working under the condition of a double EIT, by which the storage and retrieval of a single-photon polarization
qubit are implemented through the switching off and on of a control laser field, and the storage efficiency and
the quantum-state fidelity for qubit memory are both calculated. We show that the optimal optical depth for
acquiring the maximum efficiency and maximum fidelity of the qubit memory can be obtained simultaneously,
which can be further improved by suppressing the optical absorption and dispersion via the choice of the time
duration of the input qubit pulse and the amplitude of the control field. We also carry out a calculation on the
quantum memory of a single-photon qudit by considering a multipod-shaped atomic-level configuration. The
results reported here are useful for understanding the quantum transmission property of slow lights with multiple
components and helpful for experimental realizations of high-quality memory of photonic qubits and qudits.
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I. INTRODUCTION

Quantum memories (QMs), devices that can efficiently
store and retrieve the quantum states on demand, play cru-
cial roles in quantum information processing, especially in
the implementation of repeater-based long-distance quan-
tum communications, the enhancement of the precision of
quantum metrology, the conversion of the heralded quantum
states into on-demand quantum states, and the synchroniza-
tion of the operations in quantum computations [1–7]. One of
the important QM techniques is electromagnetically induced
transparency (EIT), occurring typically in three-level atomic
gases in which typical quantum interference effect induced
by a strong control laser field leads to the propagation of a
weak signal laser field with significant suppression of optical
absorption and slowdown of group velocity [8]. Based on the
theory of dark-state polaritons, the storage and retrieval of
the signal field can be realized by switching off and on the
control field in an adiabatical and successive way [9]. Since
the first experimental realization [10,11], much effort has been
paid to the storage and retrieval of optical pulses using EIT
[12–23].

It is well known that EIT enables the preservation of quan-
tum properties of light [24,25], which can be utilized for the
storage and retrieval of nonclassical light [26–34]. In particu-
lar, the QMs of photonic qubits are able to encode quantum
information with the superposition of two-dimensional de-
grees of freedom of a photon (such as polarizations, orbital
angular momentum, path, time bins, etc.) [35]. Among them,
polarization degrees of freedom are particularly convenient
for codings and have been demonstrated to allow reliable and
robust transmission and QMs of single-photon qubits [36–51].

The storage efficiency and the quantum-state fidelity are
two key physical parameters for characterizing the quality of
QMs, and a high-quality QM should have storage efficiency
and quantum-state fidelity both close to unity in principle. In
recent years, a number of theoretical investigations on QM
efficiency have been proposed [52–57]. Nevertheless, a sys-
tematical theoretical study on both of these two parameters
and their optimizations in processes of QMs is still lacking.
Although quantum-state fidelities are commonly measured
experimentally by exploiting the technique of quantum to-
mography [58,59], the results acquired by such a technique
give no information on dynamical processes of QMs.

In this paper, we investigate the photon QMs by consid-
ering the storage and retrieval of single-photon polarization
qubits in a cold, tripod-shaped four-level atomic gas working
under the condition of double EIT. The storage efficiency η

and the quantum-state fidelity F of the qubit memory are both
calculated and optimized. We show that an optimal optical
depth for achieving the maximum efficiency ηmax and the
maximum quantum-state fidelity Fmax for the qubit memory
can be obtained simultaneously; moreover, ηmax and Fmax can
be improved by suppressing the optical absorption and dis-
persion via the choice of the time duration of the input qubit
pulse and the amplitude of the control field, both of which
can reach nearly 0.88 for 87Rb atomic gas. We also carry out
a theoretical calculation on the quantum memory of a single-
photon qudit by considering a multipod-shaped atomic-level
configuration, which is composed of three or more degrees of
freedom of photons and is useful for increasing information-
carrying capacity. A theoretical estimation of the optimized
storage efficiency and quantum-state fidelity of the QM of
single-photon qudits is provided.
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Before proceeding, we would like to stress that our work is
different from previously reported QMs using EIT [36–57].
(i) The theoretical investigation presented here is an all-
quantum theoretical study of EIT-based qubit and qudit
memories. (ii) The two polarization components of the photon
qubit considered here are assumed to be stored and retrieved
in a single atomic ensemble, which is different from the
previous studies, where two remote atomic ensembles were
employed [36,38,50]. (iii) At variance with the previous the-
oretical studies, the storage efficiency and the quantum-state
fidelity are both calculated, and the optimal optical depth for
obtaining the maximum efficiency and maximum fidelity of
the qubit memory can be obtained simultaneously. (iv) The
result for further improving the efficiency and fidelity of the
qubit memory by adjusting the time duration of the input qubit
wave packet and the control-field amplitude agrees with the
experimental observation reported recently in Ref. [51].

The remainder of this paper is arranged as follows. In
Sec. II, we describe the tripod-shaped atomic model under
study and consider the linear propagation of single-photon
qubit pulses. In Sec. III, we present analytical and numerical
results on the efficiency and fidelity of the qubit memory and
their optimizations. In Sec. IV, we extend the system to a
multipod-shaped model and discuss the quantum memory of
a single-photon qudit. Finally, in Sec. V we give a summary
on the main results obtained in this paper.

II. MODEL AND PROPAGATION OF SINGLE-PHOTON
POLARIZATION QUBITS

A. Physical model

We start by considering a cold atomic gas with a tripod-
shaped four-level configuration interacting with a weak,
pulsed signal laser field (central angular frequency ωp) and
a strong, control laser field (central angular frequency ωc),
both of which are assumed to propagate along the z direction
so as to suppress the first-order Doppler effect; see Fig. 1(a).
Level |4〉 is an excited state with spontaneous-emission de-
cay rate �4; |1〉, |2〉, and |3〉 are Zeeman-split sublevels of
the atomic ground state, which are induced by a weak static
external magnetic field B applied along the z direction [i.e.,
B = (0, 0, B0)]. The signal field is linearly polarized in the
x-y plane, which can be taken as a linear superposition of
the right-circularly (σ+) and the left-circularly (σ−) polarized
components that couples the transitions |1〉 ↔ |4〉 and |2〉 ↔
|4〉, respectively. The control field is chosen to be linearly
polarized, coupling to the transition |3〉 ↔ |4〉. The level spac-
ing between |1〉 and |2〉 is given by �2 (an example will be
given below); �4 and �3 are one- and two-photon detunings,
respectively [60]. Note that in this tripod-shaped scheme there
are two �-shaped excitation paths, i.e., |1〉 → |4〉 → |3〉 and
|2〉 → |4〉 → |3〉, which constitute two standard �-shaped
EITs (with state |4〉 being a shared excited state). Thus the
dynamics of the signal field and the atoms in the system is
essentially governed by a double EIT.

For simplicity, we assume that the signal field has a wide
transverse spatial distribution [or the atomic gas is filled in
a quasi-one-dimensional (quasi-1D) waveguide] so that the
diffraction effect of the signal field can be neglected. There-
fore a (1+1)D scheme (i.e., time plus space along the z

FIG. 1. (a) Energy-level diagram and excitation scheme of the
tripod-shaped four-level atomic gas, proposed to realize the QM of a
single-photon polarization qubit. The signal field with central angular
frequency ωp is decomposed into a superposition of right-circularly
(σ+) and left-circularly (σ−) polarized components. ωc is the central
angular frequency of the control field used to realize the double EIT.
�4 and �3 are one-photon and two-photon detunings, respectively.
�4 is the decay rate of spontaneous emission from the excited state
|4〉. (b) Possible experimental geometry; both the signal and control
fields propagate along the z direction. (c) Linear dispersion relation
K+ (K−) of the σ+ (σ−)-polarized component of the signal field as a
function of the sideband frequency ω; Re(Kj) and Im(Kj) are the real
and imaginary parts of Kj ( j = +, −), respectively. γP = γ41 ≈ γ42,
where γ4 j ( j = 1, 2) are the dephasing rates between the ground-
state sublevel | j〉 and the excited state |4〉.

direction) is sufficient to describe the dynamics of signal pho-
tons, as schematically shown in Fig. 1(b). The total electric
field in the system reads

Ê(z, t ) = Ec(z, t ) + Êp(z, t ), (1a)

Ec(z, t ) = ecEc(z, t )ei(kcz−ωct ) + c.c., (1b)

Êp(z, t ) = Êp+(z, t ) + Êp−(z, t ), (1c)

Êp j (z, t ) = ep jEpÊp j (z, t )ei(kpz−ωpt ) + H.c., (1d)

with j = +,−. Here, ec and Ec(z, t ) are the unit polarization
vector and the slowly varying envelope of the control field, re-
spectively; Ep ≡ √

h̄ωp/(2ε0V ) is the electric-field amplitude
of a single signal photon, with ep+ = (ex + iey)/

√
2 [ep− =

(ex − iey)/
√

2] being the unit polarization vector of its σ+

(σ−)-polarized component; Êp+(z, t ) [Êp−(z, t )] is the lon-
gitudinal slowly varying annihilation operator of photons in
the σ+ (σ−)-polarized component of the signal field, obeying
the equal-time commutation relation [Êp j (z, t ), Ê†

p j′ (z
′, t )] =

Lδ(z − z′)δ j j′ , with L being the quantization length along the z
axis; and c.c. in expression (1b) [H.c. in (1d)] means complex
(Hermitian) conjugate.

Under electric-dipole, rotating-waving, and paraxial ap-
proximations, the Hamiltonian of the system reads

ĤH = − h̄c

L

∫ +∞

−∞
dz

[
Ê†

p+

(
i
∂

∂z

)
Êp+ + Ê†

p−

(
i
∂

∂z

)
Êp−

]

− h̄N

L

∫ +∞

−∞
dz

(
4∑

α=1

�α Ŝαα + gp+Ŝ†
14Êp+

+gp−Ŝ†
24Êp− + cŜ†

34 + H.c.

)
. (2)
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Here, N is the atomic number in the system; Ŝαβ (z, t ) =
(�N )−1 ∑

j∈�L Ŝ j
αβ (t ) (α = 1, 2, 3, 4) are slowly varying

collective atomic transition operators, with �N (�1) being
the atomic number within a small length �L; Ŝ j

βα (t ) =
σ̂

j
βα (t ) exp[i(kβ − kα )z j − i(ωβ + �β − ωα − �α )t] is the

slowly varying atomic operator related to the transition
|α〉 ↔ |β〉 of the jth atom [61], obeying the equal-time
commutation relation

[Ŝαβ (z, t ), Ŝα′β ′ (z′, t )]

= L

N
δ(z − z′)[δα′β Ŝαβ ′ (z, t ) − δαβ ′ Ŝα′β (z, t )]; (3)

gp+ = (ep+ · p41)Ep/h̄ [gp− = (ep− · p42)Ep/h̄] is the coeffi-
cient denoting the dipole coupling between the σ+ (σ−)-
polarized component of the signal photon and the atomic
transition |1〉 ↔ |4〉 (|2〉 ↔ |4〉), i.e., single-photon half Rabi
frequency; c ≡ (ec · p43)Ec/h̄ is the half Rabi frequency
of the control field, with pαβ being the electric-dipole ma-
trix element associated with the transition |α〉 ↔ |β〉; and
the detunings are defined by �2 = ω1 − ω2, �3 = ωp −
ωc − (ω3 − ω1), �4 = ωp − (ω4 − ω1), with h̄ωα being the
eigenenergy of the atomic state |α〉.

The dynamics of the system is governed by the Heisenberg-
Langevin and Maxwell (HLM) equations, reading

i
∂

∂t
Ŝαβ

=
[

Ŝαβ,
ĤH

h̄

]
+ iL̂(Ŝαβ ) + iF̂αβ, (4a)

i

(
∂

∂z
+ 1

c

∂

∂t

)
Êp+ + g∗

p+N

c
Ŝ14

= 0, (4b)

i

(
∂

∂z
+ 1

c

∂

∂t

)
Êp− + g∗

p−N

c
Ŝ24

= 0. (4c)

Here, the damping operator L̂ describes the dissipation pro-
cess in Ŝαβ ; F̂αβ are δ-correlated Langevin noise operators
describing the fluctuations associated with the dissipation
contributed by L̂(Ŝαβ ) [62,63]. The two-time correlation
functions of F̂αβ are defined by 〈F̂αβ (z, t )F̂α′β ′ (z′, t ′)〉 ≡
TrR[F̂αβ (z, t )F̂α′β ′ (z′, t ′)ρ̂R], where ρ̂R is the initial density op-
erator of the thermal reservoir coupling to the atomic system
and TrR denotes the trace over the reservoir variables. Explicit
expressions of Eq. (4a) are presented in Appendix A.

The model presented above can be realized by realized
experiments. One of the candidates is the laser-cooled alkali
87Rb atomic gas with the atomic levels [shown in Fig. 1(a)]
assigned to be |1〉 = |52S1/2, gF,1 = −1/2, mF,1 = −1〉,
|2〉 = |52S1/2, gF,2 = −1/2, mF,2 = 1〉, |3〉 = |52S1/2, gF,3 =
1/2, mF,3 = 0〉, and |4〉 = |52P1/2, gF,4 = −1/6, mF,4 =
0〉 [43], with physical parameters given by �4 =
2π × 5.75 MHz, γ

dep
31 = γ

dep
32 ≈ 2π × 1 kHz [64]. If

the static magnetic field is chosen to be B0 = 1 G,
the Zeeman splitting between sublevels |1〉 and |2〉 is
�2 ≡ μB(gF,1mF,1 − gF,2mF,2)B0/h̄ ≈ 2π × 1.4 MHz.

The thermal reservoir coupling to the atomic medium can
be safely regarded as a vacuum reservoir ρ̂R ≈ |{0}R〉〈{0}R|
[53,54]. This is due to the fact that the excitation energy
of signal photons at optical frequency (h̄ωp) is much larger
than that of thermal noises of order kBT (here, kB is the
Boltzmann constant and T is temperature) at an ultracold en-
vironment, resulting in vanishing thermal noise photons, i.e.,
n̄th ≡ {exp[h̄ωp/(kBT )] − 1}−1 ≈ 0. As a result, all normally
ordered two-time correlation functions of the Langevin noise
operators are negligible [62,63].

In addition, as suggested in Refs. [52–54], the quantum
statistical property (as well as the photon efficiency and
quantum-state fidelity) of the signal photon is proportional
to the normally ordered correlators of the Langevin noise
operators F̂αβ under the condition of EIT, which is nearly van-
ishing for the atomic gas at an ultracold environment, as stated
before. Therefore the Langevin terms make negligible con-
tributions to the dynamics of photons and are omitted in the
following discussion. However, it should be pointed out that
special cases should be treated carefully when the Langevin
noise terms play significant roles. For example, when one
considers the dynamics of some nonclassical optical fields
described by continuous variables (such as squeezed vacuum
pulses) [30] or when four-wave mixing (FWM) processes
(which produce optical gain leading to nonzero populations at
excited states) play a significant role, the noise effect cannot
be neglected, as studied in Refs. [65–69].

In the absence of the signal field, the steady-state solution
of the system is found to be Ŝ(0)

αβ = ρ
(0)
11 δα1δβ1 Î + ρ

(0)
22 δα2δβ2 Î .

Here, Î is the identity operator; ρ (0)
αα (α = 1, 2) are initial

populations in ground-state sublevels |1〉 and |2〉 (with ρ
(0)
11 +

ρ
(0)
22 = 1), which can be adjusted by, e.g., optical pumping

or applying a microwave field coupling to states |1〉 and |2〉.
Especially, the result of the QM of photons with a single
polarization component can be obtained by taking ρ

(0)
11 = 1

and ρ
(0)
22 = 0. Here, our discussion will focus mainly on the

case ρ
(0)
11 = ρ

(0)
22 = 1/2.

Because the signal field is much weaker than the control
field, the populations in two ground-state sublevels will be
kept nearly unchanged when the weak signal field is applied to
the atomic gas. In this situation, the HLM equations (4a)–(4c)
can be reduced to the form(

i
∂

∂τ
+ dS j

)
Ŝ j + ∗

cP̂ j = 0, (5a)

(
i

∂

∂τ
+ dP j

)
P̂ j + cŜ j + Gp√

2
Ê j = 0, (5b)

i
∂

∂z
Ê j + G∗

p√
2c

P̂ j = 0, (5c)

where the subscript j (= +, −) represents the quantities
belonging to the σ+- and σ−-polarized components of the
qubit, respectively. In writing Eqs. (5a)–(5c), we have defined
Ê± = Êp±/

√
L, P̂+ = Ŝ14

√
2N/L, P̂− = Ŝ24

√
2N/L, Ŝ+ =

Ŝ13
√

2N/L, and Ŝ− = Ŝ23
√

2N/L [70]; moreover, the travel-
ing coordinate τ = t − z/c is used, and c = c(t − z/c) =
c(τ ) is assumed [54]; additionally, for simplified notations,
we have defined new parameters dS+ = �3 + iγS , dS− =
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�3 − �2 + iγS , dP+ = �4 + iγP, and dP− = �4 − �2 + iγP,
with γS ≡ γ31 ≈ γ32, γP ≡ γ41 ≈ γ42. In Eqs. (5b) and (5c),
the quantity Gp (≡ gp

√
N) is the coefficient characterizing the

collective photon-atom coupling, with gp ≡ gp+ ≈ gp− due to
the symmetry of the tripod-shaped level configuration.

We are interested in the propagation and QM dynamics of
photonic qubits in the system. We assume that at the entrance
of the atomic medium (z = 0), the signal field is prepared
in a state of a single-photon qubit encoded in σ+- and σ−-
polarized components of the signal field, i.e.,

|�(0)〉 ≡ |�(z = 0)〉

= √
c

∑
j=+,−

∫ +∞

−∞
dτ�E0 j (τ )Ê†

j (0, τ )|0〉, (6)

which obeys the normalization condition 〈�(0)|�(0)〉 =∫ +∞
−∞ dτ [|�E0+(τ )|2 + |�E0−(τ )|2] = 1. Here, |0〉 ≡

|{0}+〉|{0}−〉, with |{0} j〉 being the photon vacuum state
of the σ j-polarized component. �E0 j (τ ) is the σ j-polarized
component of the photon wave function (i.e., the probability
amplitude for finding the photon in the σ j-polarized
component), assumed to take the Gaussian form

�E0 j (τ ) = √
Aj�E0(τ ), (7a)

�E0(τ ) =
√

2
√

ln(2)

t0
√

π
exp

[
−2 ln(2)

τ 2

t2
0

]
, (7b)

where t0 is the FWHM (time duration) of |�E0(τ )|2 satisfying
the normalization condition

∫ +∞
−∞ dτ |�E0(τ )|2 = 1 and Aj ∈

[0, 1] is the energy fraction of the σ j-polarized component
obeying A+ + A− = 1.

B. Propagation of single-photon polarization qubits

We first give a brief discussion of the propagation property
of the single-photon polarization qubit working under the
condition of the double EIT, which will be instructive for the
investigation of the QM of single-photon qubits given in the
next section.

By taking c as a constant and employing a Fourier trans-
formation, from the HLM equations (4a)–(4c) we can obtain
the propagation solution of the σ j-polarized component of the
signal field

Ê j (z, τ ) = 1√
2π

∫ +∞

−∞
dω ˜̂E j (0, ω)ei[Kj (ω)z−ωτ ]. (8)

Here, Kj is the linear dispersion relation of the σ j-polarized
component given by

Kj (ω) = |Gp|2
2c

ω + dS j

|c|2 − (ω + dS j )(ω + dP j )
. (9)

N̂ j (z, τ ) in the propagation solution (8) is caused by the
Langevin noise, with its explicit form shown in Appendix B.

Figure 1(c) shows the linear dispersion relations K+ and
K− as a function of sideband frequency ω; Re(Kj) and Im(Kj)
are the real and imaginary parts of Kj ( j = +,−), respec-
tively. When plotting the figure, the system parameters used
were |Gp|2/c = 3 × 109 cm−1 s−1 corresponding to an atomic
density of Na ≡ N/V ≈ 1.1 × 1011 cm−3, c = 3γP, �3 =

FIG. 2. Propagation of the photon polarization qubit. (a) σ+-
polarized component of the qubit wave function |�E+|/|�E0|max as
a function of nondimensional traveling coordinate γPτ (γP = 2π ×
3 MHz). Lines 0, 1, 2, 3, and 4 are for |�E+|/|�E0|max at z = 0,
z = 0.25 Ldisp, z = 0.75 Ldisp, z = 1.25 Ldisp, and z = 1.75 Ldisp, re-
spectively, with Ldisp ≈ 2.3 cm. (b) The same as (a) but for the
σ−-polarized component of the qubit wave function |�E−|/|�E0|max.

0.25γP, and �4 = 0.25γP, with 2π × 3 MHz. We see that,
in the absorption spectrum of the σ+-polarized component
(σ−-polarized component) characterized by Im(K+) (dashed
red line) [Im(K−) (dashed magenta line)], an EIT transparency
window is opened. Since there are two EIT transparency
windows opened respectively in the absorption spectra of the
two polarization components, the system supports two EITs
simultaneously (i.e., the double EIT), induced by a shared
control field.

Dynamics of the polarization qubit can be described by an
effective qubit wave function. The σ j-polarized component of
the qubit wave function is defined by

� j (z, τ ) = 〈0|Ê j (z, τ )|�(0)〉, (10)

where |�(0)〉 is given by (6). Shown in Fig. 2 is the
qubit wave function during propagation. Figure 2(a) illus-
trates the wave function of the σ+-polarized component, i.e.,
|�E+|/|�E0|max, as a function of nondimensional traveling
coordinate γPτ ; lines 0, 1, 2, 3, and 4 are for |�E+|/|�E0|max

at z = 0, z = 0.25 Ldisp, z = 0.75 Ldisp, z = 1.25 Ldisp, and z =
1.75 Ldisp, respectively, with Ldisp being the typical dispersion
length (see its definition in Appendix B). Figure 2(b) is similar
to Fig. 2(a) but for the wave function of the σ+-polarized com-
ponent. When plotting the figure, we have chosen t0 = 3/γP,
with other parameters the same as those used in Fig. 1(c),
which gives Ldisp ≈ 2.3 cm.

From Fig. 2, we see that the qubit wave function can
preserve its shape quite well in a short propagation distance
(z � Ldisp), while it undergoes a significant deformation (i.e.,
the width and amplitude are broadened and lowered, respec-
tively) for a long propagation distance (z � Ldisp). The reasons
for the deformation are the following: (i) Due to the coupling
with the atoms, the signal field displays a dispersion effect
during propagation. (ii) Though the spontaneous emission has
been largely suppressed by the quantum interference effect
contributed by the double EIT, the decoherences between the
bottom levels |1〉, |2〉, and |3〉 of the atoms still cause the
absorption of the signal field. For more details, see Appendix
B. These propagation characters of the qubit have signifi-
cant impacts on the performance of the qubit memory; see
below.
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In addition, the quantum statistical property of the polar-
ization qubit can be described by the intensity correlation
functions g(2)

± (z, τ1, τ2). It can be shown that g(2)
+ (z, τ1, τ2) ≈

g(2)
− (z, τ1, τ2) ≈ 0, which means that, when the system

works under the condition of the double EIT, the quan-
tum statistical property of the polarization qubit can be
well preserved during propagation. A detailed discussion
of the intensity correlation functions g(2)

± is presented in
Appendix B.

III. MEMORY OF SINGLE-PHOTON
POLARIZATION QUBITS

A. Analytical results

Now we turn to investigate the memory of the photon
polarization qubit based on the HLM equations (5a)–(5c). For
simplicity, as in Refs. [30,55] we assume that the time dura-
tion of the input qubit wave packet is larger than the inversion
of the decay rate of the excited state (i.e., |t0dP j | > 1). In
this situation, the time derivative term ∂P̂ j/∂τ in Eq. (5b) is
comparably small and hence can be disregarded, which yields
the relation P̂ j = −[cŜ j + (Gp/

√
2)Ê j]/dP j . With such a

consideration, the HLM equations (5a)–(5c) are reduced
to (

i
∂

∂τ
+ dS j − |c|2

dP j

)
Ŝ j − Gp√

2dP j

∗
c Ê j = 0, (11a)

(
i
∂

∂z
− |Gp|2

2cdP j

)
Ê j − G∗

p√
2cdP j

c Ŝ j = 0. (11b)

By using a Laplace transformation, the analytical solution of
Eqs. (11a) and (11b) can be obtained, with the expression of
the signal-field operator Ê j ( j = +,−) given by

Ê j (z, τ ) = e−δP j D(z)Ê j (0, τ )

+ e−δP j D(z)
∫ τ

τ0

dτ ′ f j (z, τ, τ
′)Ê j (0, τ ′), (12a)

f j (z, τ, τ
′) = δP j

γP
c(τ )∗

c (τ ′)eidS j (τ−τ ′ )−κc (τ,τ ′ )

×
√

δP jD(z)

κc(τ, τ ′)
I1(2

√
κc(τ, τ ′)δP jD(z)). (12b)

Here, I1 is the first-order modified Bessel function; D(z) ≡
|Gp|2z/(2cγP ) is the optical depth of the signal field in the
absence of the control field, estimated by the propagation
distance z when the amplitude of the σ j-polarized component
of the signal field decays into exp[−D(z)] comparing with
its input value; and κc(τ1, τ2) ≡ (δP j/γP )

∫ τ1

τ2
dτ ′|c(τ ′)|2 is

a dimensionless quantity, with δP j ≡ iγP/dP j . A detailed
derivation of the solution composed of (12a) and (12b) is
presented in Appendix C. Obviously, the solution composed
of (12a) and (12b) can be taken as a transformation between
the input field operators Ê j (0, τ ) and the output field operators
Ê j (z, τ ). Note that when deriving Eqs. (12a) and (12b), the
initial spin waves Ŝ j (z, τ0) have been assumed to be zero,
which is employed for simplicity and valid for cases where
there is no initial coherence between the lower three states,
used also by the authors of Refs. [30,54,55].

We now consider the memory of the photon polarization
qubit by implementing the time-dependent control field used
for the storage and retrieval of the qubit as [71]

c(τ ) = cm

2

[
2 − tanh

(τ − Toff

Ts

)
+ tanh

(τ − Ton

Ts

)]
.

(13)

Here, cm is the maximum value of c; Toff and Ton are
the times at which the control field is switched off and on,
respectively; the storage time is given by Ton − Toff ; and Ts is
the duration of the switching time.

The quantum-state fidelity of the memory for the photon
polarization qubit is defined by the inner product between
the output quantum state |�(z)〉 and the target quantum
state |� tgt (z)〉 at the propagation distance z, i.e., F (z) ≡
|〈� tgt (z)|�(z)〉|2 [13,72]. Here, |�(z)〉 is given by

|�(z)〉 = √
c

∑
j=+,−

∫ +∞

Ton

dτ�E j (z, τ )Ê†
j (0, τ )|0〉, (14)

where �E j (z, τ ) is the effective one-photon wave function
given by Eq. (10); |� tgt (z)〉 is given by

|� tgt (z)〉 = √
c

∑
j=+, −

∫ +∞

Ton

dτ�
tgt
E j (z, τ )Ê†

j (0, τ )|0〉. (15)

Note that the lower limit of the above integration is set to be
Ton, which means that one starts to measure the quantum-state
fidelity after the control field is switched on. In expression
(15), �

tgt
E j (z, τ ) ≡ �E0 j (τ − Tj (z)) exp[iφ j (z, τ )] is the tar-

get qubit wave packet of the σ j-polarized component. Here,
�E0 j (τ ) is the incident qubit wave packet given by Eqs. (7a)
and (7b); Tj (z) is the time at which the peak of the σ j-
polarized component of the wave packet locates at the spatial
position z (its value is associated with the group delay z/Vgj ,
the switching time Ts, and the storage time Ton − Toff ); and
φ j (z, τ ) is the phase of the qubit wave packet of the σ j-
polarized component �E j (z, τ ). The values of Tj and φ j are
exactly extracted from numerical implementations.

By using Eqs. (14) and (15), we can obtain the explicit
expression of the quantum-state fidelity F as a function of the
distance z, given by

F (z) =
∣∣∣∣
∫ +∞

Ton

dτ [A+�∗
E0(τ − T+(z))|�E+(z, τ )| + A−�∗

E0(τ − T−(z))|�E−(z, τ )|]
∣∣∣∣
2

, (16a)

�E j (z, τ ) = e−δP j D(z)�E0(τ ) + e−δP j D(z)
∫ τ

τ0

dτ ′ f j (z, τ, τ
′)�E0(τ ′). (16b)
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FIG. 3. Storage and retrieval of the single-photon polarization qubit. (a) The efficiency η (dashed blue line) and the quantum-state
fidelity F (solid red line) of the qubit memory as functions of optical depth D = D(z) ≡ |Gp|2z/(2cγP ). Solid red circle 1 corresponds to
the optimal optical depth, i.e., D = Dopt ≈ 110, at which maximum memory efficiency ηmax ≈ 0.71 and maximum quantum-state fidelity
Fmax ≈ 0.67 can be obtained almost simultaneously. (b1) Evolution of the modulus of the qubit wave packet of the σ+-polarized component
(i.e., |�E+|/|�E0|max) as a function of γPτ and D in the process of the qubit memory. The wave packet shown by the bright stripe in the lower
left (upper right) is |�E+|/|�E0|max before (after) the storage. (c1) |�E+|/|�E0|max as a function of γPτ . Solid magenta line 0, |�E+|/|�E0|max

for D = 0. Solid red line 1, |�E+|/|�E0|max for optimal optical depth D = Dopt ≈ 110, corresponding to solid red circle 1 in (a) and also
dashed red line 1 in (b1). Solid orange line 2, |�E+|/|�E0|max for D ≈ 390, which corresponds to solid orange circle 2 in (a) and also dashed
orange line 2 in (b1). (b2) and (c2) are the same as (b1) and (c1), respectively, but for the qubit wave packet of the σ−-polarized component
(i.e., |�E−|/|�E0|max). Solid black lines in (c1) and (c2) are the half Rabi frequency c given by Eq. (13), illustrated here to show its switching
off and on during the process of the qubit memory. The small solid red curve circled by a dashed black ring in (c1) [(c2)] is the leaky part of
|�E+|/|�E0|max (|�E−|/|�E0|max) at the optimal optical depth Dopt ≈ 110.

Notice that the quantum-state fidelity (16) can be factored as F (z) = η(z)J2(z) [13]. Here, η(z) is the photon memory efficiency
defined as the energy ratio between the total output and the input photons in the signal field, given by [13,54,55]

η(z) =
∫ +∞

Ton
dτ [〈�(0)|Ê†

+(z, τ )Ê+(z, τ )|�(0)〉 + 〈�(0)|Ê†
−(z, τ )Ê−(z, τ )|�(0)〉]∫ Toff

τ0
dτ [〈�(0)|Ê†

+(0, τ )Ê+(0, τ )|�(0)〉 + 〈�(0)|Ê†
−(0, τ )Ê−(0, τ )|�(0)〉]

=
∫ +∞

Ton

dτ [A+|�E+(z, τ )|2 + A−|�E−(z, τ )|2]; (17)

J2(z) is the wave-shape similarity between the output and the target qubit wave packets, defined in the form of the Cauchy-
Schwarz inequality [13,72]

J2(z) =
∣∣∫ +∞

Ton
dτ [A+�∗

E0(τ − T+(z))|�E+(z, τ )| + A−�∗
E0(τ − T−(z))|�E−(z, τ )|]∣∣2

∫ +∞
Ton

dτ [A+|�E+(z, τ )|2 + A−|�E−(z, τ )|2]
, (18)

which is smaller than or equal to 1 [J2 = 1 is achieved
only when �E+(z, τ ) = �E0(τ − T+(z)) and �E−(z, τ ) =
�E0(τ − T−(z)) are both exactly achieved]. In writ-
ing Eqs. (17) and (18), we have used the normaliza-
tion condition of the input qubit wave functions (A+ +
A−)

∫ Toff

τ0
dτ |�E0(τ )|2 = 1. From the above results one sees

that the quantum-state fidelity F for the single-photon qubit
memory is determined by two factors. One is the memory
efficiency η, which is largely related by the optical absorption
(energy loss) of the photon during the storage and retrieval,

caused by the decoherence of the system; the other one is the
wave-shape similarity J2, which is largely determined by the
dispersion of the qubit wave packet during propagation.

B. Numerical results

Based on the above analytical analysis, we now carry out
numerical calculations on the memory of the photon polar-
ization qubit in the system via double EIT, with the results
summarized in Fig. 3. The physical parameters used in
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the numerical calculations are cm = 3γP, t0 = 3/γP, A+ =
A− = 1/2, Toff = 10/γP, Ton = 50/γP, and Ts = 2/γP (γP =
2π × 3 MHz), with the other parameters being the same as
those used in Fig. 1(c).

Shown in Fig. 3(a) are the efficiency η and the quantum-
state fidelity F of the qubit memory, plotted by the dashed
blue and solid red lines, respectively, and both of them
are taken to be functions of optical depth D = D(z) ≡
|Gp|2z/(2cγP ). From the figure, we can obtain the following
conclusions: (i) Both the efficiency η and the fidelity F grow
first as the optical depth D increases; then they arrive at their
maxima and finally decay as D increases further. (ii) There
exists an optimal optical depth, i.e., D = Dopt ≈ 110, at which
one can acquire maximum memory efficiency ηmax = 0.71
and maximum fidelity Fmax ≈ 0.67 almost simultaneously
[73]. The reasons for the appearance of such behaviors can be
explained as follows: In the process of the storage and retrieval
of the qubit wave packet, for small propagation distance (i.e.,
D < Dopt) the effects of the dispersion and absorption of the
system are negligible, and hence η and F grow as D increases;
however, for large distance (i.e., D > Dopt) the effects of the
dispersion and absorption play significant roles, and hence η

and F are reduced as D becomes larger.
In order to gain deep insight into the dynamics of the

qubit memory, the evolution of the qubit wave packets of the
two polarization components of the signal field is numerically
simulated, with the results shown in the remaining four panels
of Fig. 3. The system parameters used in the simulation are
chosen to be the same as those used in Fig. 3(a).

Illustrated in Fig. 3(b1) is the evolution of the modulus of
the qubit wave packet of the σ+-polarized component (i.e.,
|�E+|/|�E0|max) as a function of γPτ and D in the process of
the qubit memory. The qubit wave packet (shown by the bright
stripe) given in the lower left (upper right) is |�E+|/|�E0|max

before (after) the storage. Figure 3(c1) shows the wave shape
of |�E+|/|�E0|max as a function of γPτ for different optical
depths D. Solid magenta line 0 is for D = 0; solid red line
1 is for D ≈ 110 (optimal optical depth), which corresponds
to solid red circle 1 in Fig. 3(a) and also dashed red line
1 in Fig. 3(b1). Solid orange line 2 is for D ≈ 390, which
corresponds to solid orange circle 2 in Fig. 3(a) and also
dashed orange line 2 in Fig. 3(b1).

Figures 3(b2) and 3(c2) are the same as Figs. 3(b1) and
3(c1), respectively, but for the qubit wave packet of the
σ−-polarized component (i.e., |�E−|/|�E0|max). For com-
pleteness, in Figs. 3(c1) and 3(c2) we have also depicted by
solid black lines the half Rabi frequency of the control field
c [given by Eq. (13)] as a function of τ , illustrating clearly
the process of the switching off and on of the control field
during the qubit memory. The small solid red line circled by
a dashed black ring in Fig. 3(c1) [Fig. 3(c2)] represents the
leaky part of |�E+|/|�E0|max (|�E−|/|�E0|max) at the optimal
optical depth Dopt ≈ 110.

From the results given in Figs. 3(b1), 3(b2), 3(c1), and
3(c2), we can see that the qubit memory is realized in the
following way: (i) Before the storage of the qubit, the control
field is switched on; the input qubit wave packets of both
the σ+- and σ−-polarized components propagate freely in
the atomic medium. (ii) When the control field is switched
off at t = Toff , two qubit wave-packet components [i.e., solid

magenta line 0 in Figs. 3(c1) and 3(c2)] are adiabatically
stored into the atomic medium; lately, when the control field
is switched on again at t = Ton, two qubit wave-packet com-
ponents are retrieved, which can acquire maximal memory
efficiency ηmax and maximum fidelity Fmax at the optimal
optical depth Dopt [see solid red line 1 in Figs. 3(c1) and
3(c2)]. (iii) When the propagation distance is increased to
make the optical depth larger than the optimal one, the two
qubit wave-packet components [i.e., solid yellow line 2 in
Figs. 3(c1) and 3(c2)] undergo some deformations, i.e., their
widths are increased and their amplitudes are lowered (caused
by the dispersion and absorption of the system), which brings
a reduction of the efficiency and fidelity of the qubit memory.
From the figure, one can also see that there is a high symmetry
for the memory processes between Fig. 3(b1) and Fig. 3(b2)
[also between Fig. 3(c1) and Fig. 3(c2)]. This is due to the
fact that the tripod atomic level configuration [Fig. 1(a)] and
the input condition composed of (7a) and (7b) chosen here are
highly symmetric for the σ+- and σ−-polarized components
of the qubit.

C. Optimization of the single-photon qubit memory

The maximum efficiency ηmax, the fidelity Fmax, and
their corresponding optimal optical depths Dopt for the qubit
memory can be optimized by suppressing the dispersion
and absorption effects of the qubit wave-packet components
through the choice of system parameters. To demonstrate this,
as an example we fix most system parameters used in Fig. 3
but take t0 [the time duration of the input qubit pulse; see (7a)
and (7b)] and cm [the maximum half Rabi frequency of the
control field; see (13)] as two optimization parameters, which
are easily implemented experimentally.

Firstly, we fix cm = 3γP (γP = 2π × 3 MHz) and study
the dependence of ηmax, Fmax, and Dopt on the nondimen-
sional input time duration of the qubit pulse, i.e., t0, with the
numerical result given in Fig. 4(a1). In the figure, circle-
marked dashed blue and circle-marked solid red lines are
ηmax and Fmax, respectively; triangle-marked dashed blue and
solid red lines are the corresponding Dopt for ηmax and Fmax,
respectively. We see that both Fmax and ηmax arise when t0
increases; then they reach a stationary maximum value of
ηmax ≈ Fmax ≈ 0.72 and keep this value nearly invariant as
t0 is increased further. The physical reason for such behavior
is the following: As t0 increases, the frequency bandwidth of
the qubit pulse (proportional to t−1

0 ) is reduced; hence the
sideband absorption and the dispersion effect of the qubit
pulse are reduced, which results in the increase in the memory
efficiency ηmax and fidelity Fmax.

Drawn in Fig. 4(a2) is the numerical result of the qubit
memory for cm = 3 γP and t0 = 6.6/γP, where the solid red
line and the dashed blue line on the right-hand side are the
retrieved qubit wave packets of the σ+- and σ−-polarized
components, respectively, at the optimal optical depth Dopt ≈
135 [74]. Note that, due to the symmetry of the tripod level
configuration, the retrieved two polarization components have
closed wave shape and travel with closed group velocity, and
they coincide with each other in space. The solid black curve
shows the switching off and on of the control field c during
the memory process. One sees that the dispersion effect of
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FIG. 4. (a1) Maximum memory efficiency ηmax (circle-marked
dashed blue line) and fidelity Fmax (circle-marked solid red line)
and their corresponding optimal optical depths Dopt (triangle-marked
dashed blue and solid red lines, respectively) as functions of γPt0 for
cm = 3γP. (a2) Right part: optimized retrievals of the qubit pulse
for the σ+-polarized (solid red line 1) and σ−-polarized (dashed
blue line 2) components [74] at the optimal optical depth Dopt ≈ 135
as functions of γPτ for cm = 3γP and t0 = 6.6/γP, giving rise to
Fmax ≈ ηmax ≈ 0.72 [corresponding to the dashed red line in (a1)].
Left part: the small solid red and dashed blue curves are leaked qubit
components of the retrieved qubit pulse. (b1) Maximum memory
efficiency ηmax (circle-marked dashed blue line) and fidelity Fmax

(circle-marked solid red line) and their corresponding optimal op-
tical depths Dopt (triangle-marked solid red and dashed blue lines,
respectively) as functions of cm/γP for t0 = 3/γP. (b2) Optimized
retrievals of the wave packets of the σ+-polarized (solid red line
1) and σ−-polarized (dashed blue line 2) components [74] at the
optimal optical depth Dopt ≈ 580 as functions of γPτ for t0 = 3/γP

and cm = 6.8γP, giving rise to Fmax ≈ ηmax ≈ 0.88 [corresponding
to the dashed red line in (b1)]. Solid magenta curve 0 in (a2) and (b2)
denotes the incident qubit wave packets (corresponding to D = 0; its
two components have been chosen to have the same wave shape and
hence coincided).

the system is suppressed in the retrieved qubit pulse. This
is different from the results given in Figs. 3(c1) and 3(c2),
where cm = 3γP and t0 = 3/γP and hence the dispersion
effect (efficiency and fidelity) is larger (smaller) than the case
discussed here.

Secondly, we fix t0 = 3/γP and study the dependence of
ηmax, Fmax, and their corresponding optimal optical depths
Dopt on the maximum half Rabi frequency of the control field,
i.e., cm, with the result given in Fig. 4(b1). From the figure
we see that as cm is increased, both Fmax and ηmax increase,
and Fmax gradually coincides with ηmax for large cm. The
physical reasons for such a property can be understood in the
following: (i) The increase in the control field enlarges both
transparency windows of the double EIT and thus brings the
increase in the typical absorption length of the system; see Ap-
pendix B). This means that the optical absorption of the qubit
pulse due to the spontaneous emission of the atoms is further
suppressed, resulting in an increase in the memory efficiency
η. (ii) When cm arises, the typical dispersion length of the
system, i.e., Ldisp, also arises, which means that the dispersion
effect of the qubit pulse is reduced and hence the wave-shape

similarity J2 is increased. Consequently, the quantum-state
fidelity F of the qubit memory is enlarged.

Figure 4(b2) shows the numerical result of the qubit mem-
ory for cm = 6.8 γP and t0 = 3/γP, in which the solid red and
the dashed blue lines on the right-hand side are the retrieved
qubit wave packets of the σ+- and σ−-polarized components,
respectively (these two wave packets also coincide in space) at
the optimal optical depth Dopt ≈ 580, yielding ηmax ≈ Fmax ≈
0.88. We see that the absorption and the dispersion effect of
the qubit pulse are significantly lowered and its leaky part is
very little compared with those shown in Figs. 3(c1) and 3(c2)
for cm = 3γP and t0 = 3/γP, where both the absorption and
the dispersion (the efficiency and fidelity) are larger (smaller)
than the case considered here, which agrees with the recent
experimental observation on the qubit memory reported in
Ref. [51].

Based on the above results, we see that the efficiency and
fidelity of the qubit memory can arise indeed through the
increase in the time duration of the input pulse and the control-
field intensity. Additionally, the curves shown in the lower
parts of Figs. 4(a1) and 4(b1) also indicate that higher Fmax

and ηmax are usually accompanied by larger optimal optical
depth Dopt, which is in agreement with previous theoretical
[52–54] and experimental [75] studies for the photon storage
with only one polarization component.

IV. QUANTUM MEMORY OF SINGLE-PHOTON QUDITS

The theoretical scheme of the photon qubit memory de-
veloped above can be generalized to the memory of photon
qudits, multicomponent counterparts of photon qubits useful
for increasing information-carrying capacity [7,76]. Shown in
Fig. 5(a) is the energy-level diagram and excitation scheme
of an (N + 1)-pod atomic system allowing the memory of
photons encoded in N degrees of freedom, where one con-
trol field (with amplitude Ec) drives the transition |N + 1〉 ↔
|N + 2〉 and the jth component of the signal field [with photon
annihilation operator Ê j ( j = 1, . . . , N )] drives the transition
| j〉 ↔ |N + 2〉, with � j being the detuning and � being the
spontaneous emission from the excited state |N + 2〉.

Similar to Eq. (6), the incident quantum state for the single-
photon qudit of the signal field is assumed to be

|�〉 = √
c

N∑
j=1

[√
Aj

∫ +∞

−∞
dτ�E0(τ )Ê†

j (0, τ )

]
|0〉, (19)

where �E0(τ ) is given by Eqs. (7a) and (7b); Aj are the
amplitudes of the jth components obeying the normalization
condition

∑N
j=1 Aj = 1.

We focus on the case that the atoms are initially pre-
pared to have equal populations at the ground-state sublevels
| j〉 ( j = 1, . . . , N ), i.e., ρ

(0)
j j = 1/N . Then the optical depths

for each of the components are identical, defined by D(z) ≡
|Gp|2z/(NcγP ). The derivation of the quantum-state fidelity of
qudit memory is similar to that of the qubit memory, with the
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FIG. 5. (a) Energy-level diagram and excitation scheme of an
(N + 1)-pod atomic system. Ê j ( j = 1, . . . , N ) is the photon anni-
hilation operator of the jth component coupling with the atomic
transition | j〉 ↔ |N + 2〉; the control field with amplitude Ec drives
the transition |N + 1〉 ↔ |N + 2〉. (b) The efficiency η (dashed
blue line) and the fidelity F (solid red line) of the memory of a
single-photon qudit as a function of the optical depth D = D(z) ≡
|Gp|2Nz/(3cγP ) for N = 3. The solid red circle denotes the position
D = Dopt ≈ 110 for achieving the maximum fidelity Fmax ≈ 0.62.
(c) Right part: |�E j |/|�E0|max ( j = 1, 2, 3) as functions of γPτ re-
trieved at optimal optical depth D = Dopt ≈ 110 [corresponding to
the solid red circle in (b)]. Solid red line 1 is for |�E1|/|�E0|max at
an optimal optical depth D = Dopt ≈ 110; dashed blue line 2 is the
same as solid red line 1, but for |�E2|/|�E0|max; dash-dotted cyan
line 3 is the same as solid red line 1, but for |�E3|/|�E0|max [77]. Left
part: solid magenta curve 0 is the input qudit pulse (corresponding
to D = 0; its three components have been chosen to have the same
wave shape and hence coincided); the small solid red, dashed blue,
and dash-dotted cyan curves are leaked qudit components of the
retrieved qudit pulse. The solid black line in the figure is the half
Rabi frequency c given by Eq. (13).

result given by

F (z) =
∣∣∣∣∣

N∑
j=1

[
Aj

∫ +∞

Ton

dτ�∗
E0(τ − Tj (z))|�E j (z, τ )|

]∣∣∣∣∣
2

.

(20)

Here, Tj (z) is the time at which the peak of the jth component
of the qubit wave packet locates at the spatial position z, which
is exactly extracted by numerical implementation. �E j (z, τ )
is formally given by Eq. (16b), but with δP j = iγP/dP j and
dP j = �N+2 − � j + iγP. Similar to Eq. (17), the qudit mem-
ory efficiency is given by

η(z) =
N∑

j=1

[
Aj

∫ +∞

Ton

dτ |�E j (z, τ )|2
]
. (21)

As an example, here we consider the case of the
qudit memory with N = 3. The atoms are chosen to be
the laser-cooled alkali 87Rb atomic gas with the atomic
levels [see Fig. 5(a)] assigned to be |1〉 = |52S1/2, gF,1 =
−1/2, mF,1 = −1〉, |2〉 = |52S1/2, gF,2 = −1/2, mF,2 = 1〉,

|3〉 = |52S1/2, gF,3 = −1/2, mF,3 = 0〉, |4〉 = |52S1/2, gF,4 =
1/2, mF,4 = 0〉, and |5〉 = |52P1/2, gF,5 = −1/6, mF,5 = 0〉,
with parameters γP ≡ γ51 ≈ γ52 ≈ γ53 = �/2 = 2π ×
3 MHz [64]. To satisfy transition selection rules, the
control field driving the transition |4 ↔ |5〉 should be
linearly polarized; the three components of the signal
field that drive the transitions |1〉 ↔ |5〉, |2〉 ↔ |5〉,
and |3〉 ↔ |5〉 should be chosen to be right polarized,
linearly polarized, and left polarized, respectively. The
static magnetic field is chosen to be B0 = 1 G; thus
�2 ≡ μB(gF,1mF,1 − gF,2mF,2)B0/h̄ ≈ 2π × 1.4 MHz and
�3 ≡ μB(gF,1mF,1 − gF,3mF,3)B0/h̄ ≈ 2π × 0.7 MHz.

Based on Eqs. (20) and (21), we perform numerical sim-
ulations on the memory of the single-photon qudit by using
�4 = �5 = 0.5γP, A1 = A2 = A3 = 1/3, with other physical
parameters the same those used in Fig. 3. The results for the
efficiency η and fidelity F as functions of the optical depth
D = D(z) ≡ |Gp|2z/(3cγP ) are shown in Fig. 5(b). Similar
to the qubit memory with the corresponding result shown
in Fig. 3(a), the maximum efficiency ηmax ≈ 0.66 and the
maximum fidelity Fmax ≈ 0.62 can be acquired almost simul-
taneously at the optimal optical depth Dopt ≈ 109. Modules of
the three components of the qudit pulse at the optimal optical
depth are shown in Fig. 5(c) [77], from which one sees that,
similar to the corresponding results given in Figs. 3(c1) and
3(c2) for the qubit memory, all three qudit components can be
optimally retrieved at the optimal optical depth by which the
maximum memory efficiency and fidelity can be realized (see
the description given in the caption of Fig. 5).

V. SUMMARY

In this paper, we have presented a theoretical study on QMs
by considering the storage and retrieval of single-photon po-
larization qubits in a tripod-shaped atomic gas working under
a double EIT, in which the storage efficiency and the quantum-
state fidelity of the qubit memory are both calculated. We
have shown that the optimal optical depth for acquiring the
maximum efficiency ηmax and maximum fidelity Fmax of the
qubit memory can be acquired simultaneously, which can be
further improved by suppressing the optical absorption and
dispersion via the choice of the time duration of the input
qubit pulse and the amplitude of the control field. In addition,
we have estimated the improved efficiency and fidelity of the
QM for single-photon qudits. The results reported here are
useful for understanding the quantum transmission property
of multicomponent slow lights. The theoretical method can
be generalized to study the QM of photons with multiple
spatial modes (e.g., orbital angular momentum states of sin-
gle photons) and photons with entanglements. They are also
helpful for guiding new experimental findings of high-quality
memory of photons.
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APPENDIX A: EXPLICIT EXPRESSIONS OF THE HEISENBERG-LANGEVIN EQUATIONS

Explicit expression of the Heisenberg-Langevin equation (4a) is given by

i
∂

∂t
Ŝ11 − i�14Ŝ44 + g∗

p+Ê†
p+Ŝ14 − gp+Ŝ41Êp+ − iF̂11 = 0, (A1a)

i
∂

∂t
Ŝ22 − i�24Ŝ44 + g∗

p−Ê†
p−Ŝ24 − gp−Ŝ42Êp− − iF̂22 = 0, (A1b)

i
∂

∂t
Ŝ33 − i�34Ŝ44 + ∗

c Ŝ34 − cŜ43 − iF̂33 = 0, (A1c)

i

(
∂

∂t
+ �4

)
Ŝ44 − ∗

c Ŝ34 + cŜ43 − g∗
p+Ê†

p+Ŝ14 + gp+Ŝ41Êp+ − g∗
p−Ê†

p−Ŝ24 + gp−Ŝ42Êp− − iF̂44 = 0, (A1d)

(
i
∂

∂t
+ d21

)
Ŝ12 + g∗

p−Ê†
p−Ŝ14 − gp+Ŝ42Êp+ − iF̂12 = 0, (A1e)

(
i
∂

∂t
+ d43

)
Ŝ34 + c

(
Ŝ33 − Ŝ44

) + gp1+Ŝ31Êp+ + gp−Ŝ32Êp− − iF̂34 = 0, (A1f)

(
i
∂

∂t
+ d31

)
Ŝ13 + ∗

c Ŝ14 − gp+Ŝ43Êp+ − iF̂13 = 0, (A1g)

(
i
∂

∂t
+ d32

)
Ŝ23 + ∗

c Ŝ24 − gp−Ŝ43Êp− − iF̂23 = 0, (A1h)

(
i
∂

∂t
+ d41

)
Ŝ14 + cŜ13 + gp+(Ŝ11 − Ŝ44)Êp+ + gp−Ŝ12Êp− − iF̂14 = 0, (A1i)

(
i
∂

∂t
+ d42

)
Ŝ24 + cŜ23 + gp−(Ŝ22 − Ŝ44)Êp− + gp+Ŝ21Êp+ − iF̂24 = 0. (A1j)

Here, dαβ = �α − �β + iγαβ (α �= β ) with γαβ ≡ (�α + �β )/2 + γ
dep
αβ , where �1 = �2 = �3 ≡ 0, and �4 ≡ �14 + �24 + �34,

with �αβ being the decay rate of the spontaneous emission from the state |β〉 to the state |α〉 and γ
dep
αβ being the dephasing rate

between |α〉 and |β〉.

APPENDIX B: ANALYTICAL RESULTS ON THE
QUANTUM STATISTICAL PROPERTY AND THE

PROPAGATION OF THE PHOTON POLARIZATION QUBIT

Here, we give a detailed analysis of the quantum statistical
and propagating properties of the photon polarization
qubit. The quantum statistical property of the photon
polarization qubit is characterized by the intensity correlation
functions g(2)

± (z, τ1, τ2) = G(2)
± (z, τ1, τ2)/[I±(z, τ1)I±(z, τ2)],

quantifying the joint probability of detecting one photon
at the position z and time τ1 and a second photon at
the same position z and time τ2. Here, G(2)

± (z, τ1, τ2) ≡
c2〈�(0)|Ê†

±(z, τ1)Ê†
±(z, τ2)Ê±(z, τ2)Ê±(z, τ1)|�(0)〉 is

the Glauber two-photon correlation function, and
I±(z, τ ) = 〈�(0)|Ê†

±(z, τ )Ê±(z, τ )|�(0)〉 is the light intensity
of the σ j-polarized component of the qubit ( j = +,−).
With the input condition (6), we immediately obtain
G(2)

± (z, τ1, τ2) ≈ 0. Therefore the intensity correlation
functions g(2)

+ (z, τ1, τ2) ≈ g(2)
− (z, τ1, τ2) ≈ 0, which means

that the quantum statistical property of the photon polarization
qubit can be well preserved under the condition of EIT.

To see the absorption and dispersion properties of the qubit
pulse, we seek an approximated analytical expression of the
effective wave function [78] of the qubit, defined by [also see
Eq. (10)]

� j (z, τ ) = 〈0|Ê j (z, τ )|�(0)〉. (B1)

Using the result of Ê j (z, τ ) and making the Taylor expansion
on Kj (ω) around ω = 0, we obtain

� j (z, τ ) ≈ √
Aj�E j (z, τ ), (B2a)

�E j (z, τ ) ≈
√

2
√

ln(2)

t0β j (z)
√

π
exp

(
− z

LA, j

)

× exp

[
− 2 ln(2)

t2
0 β j (z)

(
τ − z

Vgj

)2]
, (B2b)

LA, j ≡
[

Im

(
d3 j

|c|2 − d3 jd4 j

)]−1

,

β j (z) ≡ 1 − i
z

Ldisp, j
. (B2c)

Here, Vgj ≡ (∂Kj/∂ω)−1|ω=0 is the group velocity of the σ j-
polarized component; LA, j and Ldisp, j ≡ t2

0 /[4 ln(2)K2 j] are
typical absorption and dispersion lengths, respectively, of
the σ j-polarized component, with K2 j ≡ (∂2Kj/∂ω2)−1|ω=0.
Due to the (tripod) symmetry of the system, K2 ≈ K1 ≡
K , Vg2 ≈ Vg1, K22 ≈ K21, and hence Ldisp,2 ≈ Ldisp,1 ≡ Ldisp,
LA,2 ≈ LA,1 ≡ LA, β2(z) ≈ β1(z).

Although a large dispersion can lead to a slowdown of the
group velocity (i.e., slow light) under the condition of EIT, the
large dispersion also can result in a significant deformation
of the qubit wave packet and hence the degradation of the
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quantum-state fidelity of qubit memory at the propagation
distance z comparable to the typical dispersion length Ldisp.
Therefore there is a trade-off between the slowdown of the
qubit wave packet during the storage by increasing the dis-
persion and the improvement in the quantum-state fidelity for
the retrieved qubit wave packet by suppressing the dispersion.
To optimize the quality of the qubit memory, we can tune
the values of the dispersion and absorption lengths through
selecting the values of c and t0. The increase in c and
t0 results in an enlargement of the dispersion and absorption
lengths; in this case the qubit pulse can maintain its waveform
for longer propagation distance. With the system parameters
given in Sec. II B, we have Ldisp ≈ 2.3 cm and LA ≈ 15.3 cm,
which can give a higher quantum-state fidelity for the qubit
memory.

APPENDIX C: DERIVATION OF EQUATIONS (12a) AND
(12b)

We start the derivation by applying the Laplace transfor-
mations

¯̂E j (p, τ ) ≡ Lz→p[Ê j (z, τ )] =
∫ +∞

0
dzÊ j (z, τ )e−pz, (C1a)

¯̂S j (p, τ ) ≡ Lz→p[Ŝ j (z, τ )] =
∫ +∞

0
dzŜ j (z, τ )e−pz, (C1b)

where the overbar’ denotes the quantity in the Laplace domain
and Lz→p denotes the operation of the Laplace transforma-
tion with the argument changed from z to p. Substituting
Eqs. (C1a) and (C1b) into Eqs. (11a) and (11b), and elimi-
nating ¯̂E j with some algebras, we arrive at a first-order linear

inhomogeneous differential equation for ¯̂S j :(
i

∂

∂τ
+ dS j−|c(τ )|2

dP j

p

p′
j

)
¯̂S j − ∗

c (τ )

dP j

1

p′
j

Gp√
2
Ê j (0, τ ) = 0,

(C2)

where p′
j = p + δP jκ4ρ

(0)
j j , δP j = iγP/dP j , and κ4 =

|Gp|2/(cγP ). By performing the integration of the above
equation over τ from τ = τ0 and keeping in mind that c(τ )
are explicitly time dependent, we obtain

¯̂S j (p, τ ) = ¯̂S j (p, τ0) exp

[
idS j (τ − τ0) − p

p′
j

κc(τ, τ0)

]

− δP j

γP

∫ τ

τ0

dτ ′∗
c (τ ′)

Gp√
2
Ê j (0, τ ′)

1

p′
j

× exp

[
idS j (τ − τ ′) − p

p′
j

κc(τ, τ ′)
]
, (C3)

where κc(τ1, τ2) ≡ (δP j/γP )
∫ τ1

τ2
dτ |c(τ )|2. By substituting

Eq. (C3) into the Laplace form of Eqs. (11a) and (11b), one
obtains the solutions of the operators of the signal field, given
by

¯̂E j (p, τ ) = 1

p′
j

Ê j (0, τ ) −
δP jκ4

√
ρ

(0)
j j

Gp
c(τ ) ¯̂S j (p, τ0)

1

p′
j

× exp

[
idS j (τ − τ0) − p

p′
j

κc(τ, τ0)

]

+ δ2
P j

2γP
κ4c(τ )

∫ τ

τ0

dτ ′∗
c (τ ′)Ê j (0, τ ′)

1

p′2
j

× exp

[
idS j (τ − τ ′) − p

p′
j

κc(τ, τ ′)
]
. (C4)

Finally, by performing the inverse Laplace transformation on
Eq. (C4), and noting that Ŝ j (z, τ0) can be neglected by as-
suming that there is no initial atomic coherence between the
lower atomic states, we obtain Eqs. (12a) and (12b) given in
the main text.
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