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We investigate the four-wave mixing of matter wave packets created from a Bose–
Einstein condensate, realized experimentally by utilizing light pulses to create two high-
momentum wave packets via Bragg diffraction from a stationary condensate. Based on
the Gross–Pitaevskii equation, a set of nonlinearly coupled envelope equations including
self- and cross-phase modulational effects are derived systematically using a method of
multiple-scales. The exact and explicit analytical solutions are provided for the coupled
envelope equations and the evolution of the wave packets after turning off trapping
potential is discussed and compared with experiment.
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The advent of the laser as an intense source of coherent light resulted in the rapid

development of nonlinear optics.1 One of the main areas of research activity in this

field is resonant wave–wave mixing. In recent years, the experimental realization

of Bose–Einstein condensation in weakly interacting atomic gases has opened a

new direction for the study of the nonlinear properties of matter waves.2 This

enables the extension of linear atom optics to a nonlinear regime, i.e. nonlinear atom

optics.3 This is very much like how the laser led to the development of nonlinear

optics in the 1960s. Different from an optical medium, where the nonlinearity is

originated from the interaction between light and the medium, the nonlinearity in

a Bose–Einstein condensate (BEC) comes from atom–atom collisions. Some typical

nonlinear excitations, such as solitons and vortices, have been observed.4 Following

the suggestion in Ref. 5, Deng et al. successfully demonstrated a four-wave mixing

(FWM) in a remarkable experiment by using phase-matched BEC wave packets.6

There are several theoretical works on the FWM for the BEC matter

waves.5,7–10 Based on Ref. 5 and the experimental result of Ref. 6, Trippenbach

et al.8 made a detail investigation on the FWM in a BEC. Starting from the Gross–

Pitaevskii (GP) equation they derived a set of nonlinearly coupled envelope equa-

tions using a slowly–varying envelope approximation (SVEA) but only a numerical
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solution of these equations was given. Wu et al.7 presented a different theory and

provided an exact solution in the form of a triangular function on the FWM. How-

ever, the terms describing self-phase modulation effect are absent in their envelope

equations.

In this work, we give a systematic derivation of the nonlinearly coupled envelope

equations including the self- and cross-phase modulations for the FWM in the BEC

by using a method of multiple-scales. We provide an explicit analytical (Jacob

elliptic function) solution for these envelope equations and discuss the evolution of

BEC matter waves after turning off trapping potential and a comparison will be

made with experimental results.

It is well known that the dynamics of a weakly interacting Bose gas at zero

temperature is described by the time-dependent GP equation

i~
∂Ψ(r, t)

∂t
=

[

− ~
2

2m
∇2 + V (r, t) + g|Ψ(r, t)|2

]

Ψ(r, t) , (1)

where Ψ(r, t) is condensed state wave function (order parameter),
∫

dr|Ψ(r, t)|2 =

N is the atomic number in the condensate, V (r, t) is a trapping potential, g =

4π~
2as/m is the inter-atomic interaction constant with as the s-wave scattering

length (as > 0 for a repulsive interaction). According to the basic idea of singu-

lar perturbation theory,11 for a FWM in the BEC we can employ the asymptotic

expansion

Ψ(r, t) = εΨ(1) + ε2Ψ(2) + ε3Ψ(3) + · · · (2)

where ε is a small parameter characterizing the relative amplitude of the wave

packet, Ψ(j) (j = 1, 2, 3 · · ·) are the functions of the multiple-scale variables x,

y, t, x1 = εx, y1 = εy, t1 = εt, x2 = ε2x, y2 = ε2y and t2 = ε2t, V (r, t) =

ε2V2(x1, y1, t1, x2, y2, t2). Then Eq. (1) reads
(

i~
∂

∂t
+

~
2

2m
∇2

r

)

Ψ(j) = α(j) . (3)

The explicit expressions of α(j) are omitted here.

In the leading order (j = 1), Eq. (3) admits the solution

Ψ(1) = Φ(r1, r2, t1, t2) exp[i(k · r − ωt)] , (4)

where k = (kx, ky), r = (x, y) and Φ is an envelope function of slow variables yet

to be determined. Substituting Eq. (4) into Eq. (3) in leading order, we obtain

the linear dispersion relation given by ω(k) = ~k2/(2m). Note that it is different

from the Bogoliubov-type excitation spectrum since the latter is obtained for the

excitations created from a stationary background.12

We are interested in a FWM in the BEC. For an efficient FWM a phase-matching

condition is required by momentum and energy conservation5,8:

k1 + k3 = k2 + k4 , (5)

k2
1 + k2

3 = k2
2 + k2

4 . (6)
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Equations (5) and (6) can be fulfilled by suitably selecting the wavevectors kj , for

details see Ref. 8. For instance, the central momenta can be chosen as k1 = 0,

k2 = (k2 cos θ0, k2 sin θ0, 0), k3 = (k3, 0, 0), and k4 = (k3 − k2 cos θ0,−k2 sin θ0, 0)

with k3 cos θ0 = k2, where −π/2 < θ0 < π/2 and k2 arbitrary.6 Initially three BEC

wave packets with wave vectors k1, k2 and k3 can be produced by using Bragg

diffraction.6 If these wave packets overlap spatially, the atom–atom interaction can

cause the matter-wave FWM and the fourth wave with wave vector k4 to appear.

For describing the FWM we consider the case when the condensed state wave

function is a superposition of four wave packets with different central momenta

Ψ(1) =

4
∑

l=1

Φl(r1, r2, t1, t2) exp(iθl) , (7)

where θl(r, t) = kl · r − ωlt with ωl = ~k2
l /(2m), Φl is the envelope of lth wave

packet. kl (l = 1, 2, 3, 4) are chosen according to the phase-matching conditions (5)

and (6).

At the second order (j = 2), the solvability condition of Eq. (3) requires
(

∂

∂t1
+

~

m
kl · ∇r1

)

Φl = 0 . (8)

At the next order j = 3, a solvability condition of Eq. (3) results in the closed

equations for the envelopes Φl:
[

−i~

(

∂

∂t2
+

~

m
k1 · ∇r2

)

− ~
2

2m
∇2

r1
+ V2

]

Φ1

= −g
[

|Φ1|2Φ1 + 2(|Φ2|2 + |Φ3|2 + |Φ4|2)Φ1 + 2Φ4Φ2Φ
∗

3 exp(i∆θ)
]

, (9)
[

−i~

(

∂

∂t2
+

~

m
k2 · ∇r2

)

− ~
2

2m
∇2

r1
+ V2

]

Φ2

= −g
[

|Φ2|2Φ2 + 2(|Φ1|2 + |Φ3|2 + |Φ4|2)Φ2 + 2Φ∗

4Φ3Φ1 exp(−i∆θ)
]

, (10)
[

−i~

(

∂

∂t2
+

~

m
k3 · ∇r2

)

− ~
2

2m
∇2

r1
+ V2

]

Φ3

= −g
[

|Φ3|2Φ3 + 2(|Φ1|2 + |Φ2|2 + |Φ4|2)Φ3 + 2Φ4Φ2Φ
∗

1 exp(i∆θ)
]

, (11)
[

−i~

(

∂

∂t2
+

~

m
k4 · ∇r2

)

− ~
2

2m
∇2

r1
+ V2

]

Φ4

= −g
[

|Φ4|2Φ4 + 2(|Φ1|2 + |Φ2|2 + |Φ3|2)Φ4 + 2Φ∗

2Φ1Φ3 exp(−i∆θ)
]

, (12)

with ∆θ = θ4 + θ2 − θ1 − θ3 = (k4 + k2 − k1 − k3) · r − (ω4 + ω2 − ω1 − ω3)t,

∆ω = ω4 + ω2 − ω1 − ω3 = ε2∆Ω, representing a possible phase mismatch in

experiment. The left-hand side of these equations describes the motion of the wave

packets due to their kinetic and trapping potential energies, and the first fourth

terms in the right-hand side describe the effect of the phase matched nonlinear

interaction terms, including the contributions from self-phase modulation (denoted
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by |Φl|2Φl) and cross-phase modulation (denoted by other terms such as |Φ2|2Φ1,

etc.). The last term on the right-hand of each equation is a source term which either

creates or destroys atoms in the wave packets. This set of equations describing the

FWM of matter waves have been derived using SVEA and solved numerically by

Trippenbach et al. when the phases are completely matched, i.e. ∆θ = 0. Wu et al.

provided an analytical (triangle function) solution by disregarding the contributions

from the kinetic and trapping potential energies as well as the self-phase modulation

in each equation.7

It is difficult to solve the Eqs. (8) and (9)–(12) analytically. However, according

to the experiment of Deng et al.,6 the change in space and time of the envelopes

Φl are actually very slow so these envelopes depend only on the slow variables r2

and t2. In this situation, one should use the asymptotic expansion Ψ(r, t)=εΨ(1) +

ε3Ψ(3) + · · · with Ψ(j) = Ψ(j)(r, t, r2, t2). Then using a similar procedure as deriving

Eqs. (9)–(12) we obtain

∂

∂t2
Φ1 +

i

~
g
[

|Φ1|2Φ1 + 2(|Φ2|2 + |Φ3|2 + |Φ4|2)Φ1 + 2Φ4Φ2Φ
∗

3 exp(−i∆Ωt2)
]

= 0 ,

(13)

∂

∂t2
Φ2 +

i

~
g
[

|Φ2|2Φ2 + 2(|Φ1|2 + |Φ3|2 + |Φ4|2)Φ2 + 2Φ∗

4Φ3Φ1 exp(i∆Ωt2)
]

= 0 ,

(14)

∂

∂t2
Φ3 +

i

~
g
[

|Φ3|2Φ3 + 2(|Φ1|2 + |Φ2|2 + |Φ4|2)Φ3 + 2Φ4Φ2Φ
∗

1 exp(−i∆Ωt2)
]

= 0 ,

(15)

∂

∂t2
Φ4 +

i

~
g
[

|Φ4|2Φ4 + 2(|Φ1|2 + |Φ2|2 + |Φ3|2)Φ4 + 2Φ∗

2Φ1Φ3 exp(i∆Ωt2)
]

= 0 ,

(16)

where the contribution of the trapping potential has been neglected because in the

experiment the FWM is observed after turning off the trapping potential.6

We now seek the analytic solutions of the nonlinearly coupled envelope

Eqs. (13)–(16). In order to simplify the analysis, we make the transformation

Φl = E0fl(t2) exp(−iϕl(t2) ) , (17)

where E0 =
√

~/g (a real constant) and fl, ϕl (l = 1, 2, 3, 4) being real functions.

The total particle number N =
∑4

l=1 Nl where Nl =
∫

|Ψl|2dr denotes the numbers

of atoms in each wave packet. Separating the real and imaginary parts of Eqs. (13)–

(16) and setting Fl = εfl give the equations

−F1
dϕ1

dt
+ F 3

1 + 2(F 2
2 + F 2

3 + F 2
4 )F1 + 2F2F3F4 cosϑ = 0 , (18)

dF1

dt
+ 2F2F3F4 sinϑ = 0 , (19)

−F2
dϕ2

dt
+ F 3

2 + 2(F 2
1 + F 2

3 + F 2
4 )F2 + 2F1F3F4 cosϑ = 0 , (20)
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dF2

dt
− 2F1F3F4 sin ϑ = 0 , (21)

−F3
dϕ3

dt
+ F 3

3 + 2(F 2
1 + F 2

2 + F 2
4 )F3 + 2F1F2F4 cosϑ = 0 , (22)

dF3

dt
+ 2F1F2F4 sin ϑ = 0 , (23)

−F4
dϕ4

dt
+ F 3

4 + 2(F 2
1 + F 2

2 + F 2
3 )F4 + 2F1F2F3 cosϑ = 0 , (24)

dF4

dt
− 2F1F2F3 sin ϑ = 0 , (25)

when returning to the original variables, here ϑ = ϕ2 + ϕ4 − ϕ1 − ϕ3 + ∆ωt. It is

easy to show that Eqs. (18)–(25) have the following conservation quantities:

F 2
1 + F 2

2 = F 2
1 (0) + F 2

2 (0) = µ1, (26)

F 2
2 + F 2

3 = F 2
2 (0) + F 2

3 (0) = µ2, (27)

F 2
2 − F 2

4 = F 2
2 (0) − F 2

4 (0) = µ3, (28)

F 2
1 + F 2

4 = F 2
1 (0) + F 2

4 (0), (29)

F 2
3 + F 2

4 = F 2
3 (0) + F 2

4 (0), (30)

F 2
1 + F 2

2 + F 2
3 + F 2

4 = F 2
1 (0) + F 2

2 (0) + F 2
3 (0) + F 2

4 (0), (31)

where F 2
l ∝ nl = |Ψl|2, nl denotes the number density of the lth wave packet.

F 2
l (0) is proportional to the initial number density of lth wave packet. µ1, µ2

and µ3 are constants. Note that Eq. (31) clearly manifests the particle-number

conservation required by FWM of matter waves. Combining Eqs. (18), (20),

(22) and (24) produces an equation for the temporal evolution on the phase

mismatch ϑ,

dϑ

dt
= F 2

1 + F 2
3 − F 2

2 − F 2
4 + ∆ω +

cosϑ

sinϑ

d

dt
ln(F1F2F3F4) , (32)

which by integration yields

F1F2F3F4 cosϑ = σ − ∆ω

4
F 2

2 +
1

8
(F 4

1 + F 4
2 + F 4

3 + F 4
4 ) , (33)

where σ is an integration constant. Using Eqs. (21) and (33), we obtain the following

differential equation

dF 2
2

dt
= 4δ

{

F 2
1 F 2

2 F 2
3 F 2

4 −
[

σ − ∆ω

4
F 2

2 +
1

8
(F 4

1 + F 4
2 + F 4

3 + F 4
4 )

]2
}1/2

(34)

with δ = ±1. Using Eq. (31) to express F 2
1 , F 2

3 , F 2
4 in terms of F 2

2 leads to the

result

4t = ±
∫ F 2

2
(t)

F 2

2
(0)

dF 2
2

[(F 2
2 − α1)(F 2

2 − α2)(α3 − F 2
2 )(α4 − F 2

2 )]1/2
, (35)
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where α1, α2, α3, α4 are the roots of F 2
2 for Q = 0, with

Q = F 2
2 (F 2

2 − µ1)(F
2
2 − µ2)(F

2
2 − µ3)

−
{

σ − ∆ω

4
F 2

2 +
1

8
[(F 2

2 − µ1)
2 + (F 2

2 − µ2)
2 + (F 2

2 − µ3)
2 + F 4

2 ]

}2

. (36)

For bounded solutions, the roots of Q satisfy 0 ≤ α1 ≤ α2 ≤ α3 ≤ α4 with

α2 ≤ F 2
2 (t) ≤ α3, which are also the requirements of an elliptic function. If Eq. (36)

stands, one of its root α1 is zero. Given the solution of αl (l = 1, 2, 3, 4), Eq. (36)

holds through fixing on the parameters of σ, ∆ω. In the general case where αl are

all distinct, the solution for F 2
2 is given by13

F 2
2 (t) =

α2(α3 − α1) − α1(α3 − α2)sn
2(λ, γ)

(α3 − α1) − (α3 − α2)sn2(λ, γ)
, (37)

where λ = [(α4 − α2) (α3 − α1)]
1/2 (t − t0), γ = {[(α3 − α2) (α4 − α1)]/

[(α4 − α2) (α3 − α1)]}1/2 are the moduli of the Jacobian elliptic function, with

0 ≤ γ ≤ 1 and t0 is a constant. The solution for other Fl(t) expressed by F2(t)

reads

F 2
1 (t) = F 2

1 (0) + F 2
2 (0) − F 2

2 (t) , (38)

F 2
3 (t) = F 2

2 (0) + F 2
3 (0) − F 2

2 (t) , (39)

F 2
4 (t) = F 2

4 (0) − F 2
2 (0) + F 2

2 (t) . (40)

The behavior of Fl(t) for two sets of initial conditions is shown in Figs. 1 and 2,

respectively. For convenience we have set t0 = 0 so that F2(0) =
√

α2. Initially

(t = 0) the condensate is a superposition of three wave packets (i.e. Fj(0) 6= 0,

j = 1, 2, 3) and the fourth does not exists (i.e. F4(0) = 0). Due to the nonlinear

coupling and under the phase-matching condition, for t > 0 a new wave packet is

produced (i.e. F4(t) 6= 0). The growth of the created wave 4 is at the expense of

decreasing both wave 1 and wave 3, and at the same time, increasing another wave

2, which can be seen in Eqs. (26)–(28), Figs. 1 and 2. The FWM does not occur

when the nonlinear term in GP equation is absent. We see that the redistribution

of four matter waves among themselves is restricted by energy, momentum and

particle-number conservation laws in the FWM process.

We now discuss the conversion efficiency, N4/N , of the FWM. For this purpose,

we consider a condensate of sodium atoms under the experimental condition of the

trap frequencies in the x̂, ŷ and ẑ directions being 84 Hz, 59 Hz and 42 Hz, respec-

tively. The geometric average of the oscillator frequencies for harmonic potential

is ω̄ = (ωxωyωz)
1/3. Under a Thomas–Fermi approximation (TFA), the size of the

condensate is given by the TF radius8

rTF =
√

2µ/mω̄ , (41)

where the chemical potential µ is determined by the normalization of the wave

function and is given by

µ =
1

2

(

15gN

4π

)2/5

(mω̄2)3/5 , (42)
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Fig. 1. Plots of the individual envelope amplitudes Fl(t) for α1 = 0, α2 = 6×1014 , α3 = 7×1014 ,
α4 = 9 × 1014 , γ = 0.6547 and F1(0) = 107, F2(0) = 2.45 × 107, F3(0) = 2 × 107, F4(0) = 0.
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Fig. 2. Plots of the individual envelope amplitudes Fl(t) for α1 = 0, α2 = 2 × 1015 , α3 =
2.5 × 1015 , α4 = 3 × 1015, γ = 0.7746 and F1(0) = 4 × 107 , F2(0) = 4.47 × 107, F3(0) = 6 × 107,

F4(0) = 0.
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hence the TF radius rTF scales with N as N1/5 and the volume of the condensate

is expressed as

V =
4π

3
rTF3 =

4π

3

(

15g

4πm

)3/5

ω̄3/10N3/5 . (43)

Therefore, V is proportional to N 3/5, with the proportion coefficient about 10−10.

When the initial particle density n0
l = (Fl(0))2 (l = 1, 2, 3) are given, the numbers

of atom in the three initial wavepackets N 0
1 , N0

2 , N0
3 can be deduced using N0

l ≡
Nl(0)=n0

l V . The total particle number of the system is N =
∑3

l=1 N0
l =

∑4
l=1 Nl,

where Nl = Nl(t) is the atom number when the four wavepackets completely sepa-

rated. For obtaining a maximum conversion efficiency, Nl is chosen by making F 2
4 (t)

maximum, i.e. the Jacobian elliptic function sn in Eq. (37) taking a zero value. For

the case of Fig. 2, we have V = 3.25 × 10−10, N0
1 = 5.2 × 105, N0

2 = 6.5 × 105,

N0
3 = 11.7 × 105, N1 = 3.575 × 105, N2 = 8.125 × 105, N3 = 10.075 × 105 and

N4 = 1.625 × 105. The conversion efficiency N4/N is 6.9% with the total num-

ber N = 2.34 × 106. In case of Fig. 1 we obtain the conversion efficiency of 9.1%.

These results manifest the dependence of the conversion efficiency N4/N on the

initial distribution of atoms and the total particle number, agreeing well with the

experimental measurement by Deng et al.6

In conclusion, in this work we have developed a theoretical approach for the

FWM with BEC matter waves. We have derived in a systematic way a set of

nonlinearly coupled envelope equations describing the FWM starting from the GP

equation by using a method of multiple-scales. Comparing with the SVEA the

method of multiple-scales makes the “slow variation” of the envelopes more precise

and the derivation of the envelope equations more transparent physically and easy

to control mathematically. In addition, we have provided an exact and explicit

analytical solution of the envelope equations expressed by Jacobian elliptic function.

The theoretical results obtained agree well with the experimental ones measured

by Deng et al.6
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