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Controllable PT phase transition and asymmetric soliton scattering
in atomic gases with linear and nonlinear potentials
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We propose a physical scheme to realize combined linear and nonlinear optical potentials with parity-time
(PT ) symmetry and investigate the scattering property of optical solitons in a coherent atomic gas. We show
that the combined linear and nonlinear PT -symmetric potentials can be created through the spatial modulation
of the control laser field and the inclusion of the Kerr nonlinearity of the signal laser field. We demonstrate
that the imaginary part of the nonlinear PT potential plays a crucial role for the occurrence of the PT phase
transition and the change of the PT phase diagram, which can be actively manipulated in our system. We
demonstrate also that the system supports stable optical solitons, which can be managed via tuning the combined
linear and nonlinear PT potentials; furthermore, by taking the combined linear and nonlinear PT potentials as
a defect, the scattering of the optical solitons by the defect displays evident asymmetric behavior, controlled by
the imaginary parts of the combined linear and nonlinear PT potentials. The results reported here may have
potential applications in optical information processing and transmission.
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I. INTRODUCTION

In recent years, considerable attention has focused on the
research of parity-time (PT ) symmetry in various physi-
cal systems. The primary motivation for such research is
to develop non-Hermitian quantum theory [1,2]. Because
of the mathematical equivalence of the Maxwell equation
in electrodynamics under paraxial approximation with the
Schrödinger equation in quantum mechanics, light propaga-
tions in electromagnetic media provide excellent platforms
for testing PT -symmetric quantum theory both theoretically
and experimentally [3]. With the advance of research, it has
been found that PT -symmetric optics, or more generally
non-Hermitian photonics [4,5], may have many practical ap-
plications, including the realization of unidirectional light
propagations [6–10], coherent perfect absorbers [11–13], gi-
ant light amplification [14], novel lasers [15,16], precision
measurement [17,18], quantum computation [19], and so on.
Optical solitons [20], and more generally nonlinear waves, in
PT -symmetric systems have also been explored [21].

Recently, it has been shown that coherently atomic gases
interacting with laser fields may provide a fertile ground for
studying optical PT symmetry [22–26]. The optical refractive
index of such systems can be actively manipulated; further-
more, the Kerr nonlinearity in such systems can be greatly
increased by using the resonant enhancement of nonlinear
optical susceptibilities. Thus, the non-Hermitian optics with
coherent atomic gases opens a new route for the investigation
of PT -symmetric linear and nonlinear quantum mechanics.
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It was predicted that weak-light solitons are possible in PT -
symmetric atomic gases [27,28].

However, most optical PT symmetries realized so far are
only for linear systems, or for nonlinear ones with constant
Kerr coefficients. Because in many cases space-dependent
Kerr coefficients occur or are needed, it is desirable to obtain
PT -symmetric systems that not only have a linear potential
but also have a nonlinear one with a space-dependent Kerr
coefficient [21]. In this paper, we propose a realistic scheme
for physically realizing combined linear and nonlinear optical
potentials with PT symmetry by using a coherent atomic gas,
through a spatial modulation of the control laser field and
the inclusion of the Kerr nonlinearity of the signal laser field.
We shall show that the space-dependent imaginary part of the
nonlinear PT potential plays a key role for the occurrence
of the PT phase transition and the change of the PT phase
diagram, which can be actively manipulated. We shall also
show that the system supports stable optical solitons, which
can be managed via tuning the combined PT potentials;
furthermore, by taking such combined PT potentials as a
defect, the scattering of the optical solitons by the defect
displays obvious asymmetric behavior, controlled mainly by
the space-dependent imaginary parts of the combined linear
and nonlinear potentials.

Before proceeding, we notice that in literature there were
many studies devoted to PT -symmetric systems with a
space-dependent nonlinear potential, or with space-dependent
combined linear and nonlinear ones [29–36]. Results on the
soliton scattering in systems with PT symmetry were also
reported [37–41]. However, in many aspects our paper is
different from Refs. [29–41]. First, in Refs. [29–41] no realis-
tic physical scheme on how to realize space-dependent PT
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FIG. 1. (a) Energy-level diagram and excitation scheme of the N-type four-level atomic gas. | j〉 are atomic states and � j are detunings
( j = 1, 2, 3, 4; �1 = 0); �3 and �4 are, respectively, decay rates of |3〉 and |4〉; �s, �c, and �p are, respectively, half Rabi frequencies of three
laser fields, i.e., weak signal field (red), strong control field (blue), and strong pump field (purple). The pump field provides an active Raman
gain to the signal field. (b) Atomic cell (yellow solid circles denote atoms) and the geometric arrangement of the three laser fields. Especially,
the control field consists of two spatially separated Gaussian beams used to realize the combined linear and nonlinear PT optical potentials.
All laser fields are assumed to propagate through the atomic ensemble along the z direction.

potentials was provided. Our paper presents a practical
scheme for realizing the combined linear and nonlinear PT
potentials, which is useful to guide realistic experiments.
Second, in Refs. [29–41], no result on the manipulation of
PT phase transition by tuning the space-dependent nonlinear
PT potential was given. In our paper, such manipulation
is studied and the result reveals that the property of the
PT phase transition has a heavy dependence on the space-
dependent imaginary part of the nonlinear PT potential.
Third, in Refs. [29–41] no scattering of the soliton was con-
sidered for systems that have a nonlinear PT potential with a
space-dependent imaginary part. In our paper, such scattering
is investigated in detail and interesting results (especially
on the asymmetric and nonreciprocal soliton scattering) are
obtained. The results reported here are useful for developing
non-Hermitian nonlinear optics and have potential applica-
tions in optical information processing and transmission.

The paper is arranged as follows. In Sec. II, a description
of the physical model under study is presented. In Secs. III,
the realization of the combined linear and nonlinear PT
potentials by engineering the space-dependent control field is
provided. In Sec. IV, the results on the controlled PT phase
transition and stable optical solitons are studied. In Sec. V,
the scatterings of optical solitons by the PT -symmetric linear
and nonlinear optical potentials are analyzed. Finally, Sec. VI
summaries the main results obtained in this paper.

II. MODEL

We start with considering a cold, dilute N-type four-level
atomic gas, which interacts with a weak signal laser field
Es of center frequency ωs and wave number ks = ωs/c, a
strong control laser field Ec of frequency ωc and wave number
kc = ωc/c, and a strong pump-laser field Ep of frequency ωp

and wave number kp = ωp/c, coupling to transitions |1〉 ↔
|3〉, |2〉 ↔ |3〉, and |1〉 ↔ |4〉, respectively [see Fig. 1(a)].
The electric-field vector can be written as E = Es + Ec +
Ep = ∑

l=s,c,p elE l exp[i(klz − ωl t )] + c.c., where es, ec, and

ep (Es, Ec, and Ep) are, respectively, polarization unit vec-
tors (envelopes) of the signal, control, and pump fields. For
minimizing Doppler effect, all laser fields are assumed to
propagate through the atomic ensemble along the z direction.
The atomic excitation scheme given by Fig. 1(a) can be taken
as a system of optically pumped electromagnetically induced
transparency (EIT), consisting of a standard three-level �-
type EIT plus an optical pumping used to provide an active
Raman gain to the signal field [42].

Under electric-dipole and rotating-wave approximations
and in the interaction picture, the Hamiltonian of this optically
pumped EIT system is given by Ĥint = −h̄

∑4
j=1 � j | j〉〈 j| −

h̄[�p|4〉〈1| + �s|3〉〈1| + �c|3〉〈2| + H.c.]. Here �2 = ωs −
ωc − (E2 − E1)/h̄ is two-photon detuning, �3 = ωc − (E3 −
E1)/h̄ and �4 = ωp − (E4 − E1)/h̄ are one-photon detunings
(with Ej the eigenenergy of the atomic state | j〉), and �s =
(es · p13)Es/h̄, �c = (ec · p23)Ec/h̄, and �p = (ep · p14)Ep/h̄
are, respectively, half Rabi frequencies of the signal, control,
and pump fields, with p jl the electric dipole matrix elements
associated with the transition | j〉 ↔ |l〉.

The dynamics of atoms is governed by the optical Bloch
equation

∂ρ

∂t
= − i

h̄
[Ĥint, ρ] − � [ρ], (1)

where ρ is a 4 × 4 density matrix (with density-matrix ele-
ments ρ jl ; j, l = 1, 2, 3, 4) describing the atomic population
and coherence, and � is a 4 × 4 relaxation matrix describing
the spontaneous emission and dephasing. The explicit expres-
sion of Eq. (1) is presented in Appendix A.

The motion of the signal field is described by the Maxwell
equation, which under the slowly varying envelope approxi-
mation reads [25]

i

(
∂

∂z
+ 1

c

∂

∂t

)
�s + c

2ωs

(
∂2

∂x2
+ ∂2

∂y2

)
�s + ωs

2c
χs�s = 0,

(2)
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where χs = Na|es · p13|2ρ31/(ε0 h̄�s) is the optical suscep-
tibility of the signal field, with Na the atomic density and
ε0 the vacuum dielectric constant. We are interested in the
stationary state of the system, i.e., the time derivatives in the
Maxwell-Bloch Eqs. (1) and (2) can be neglected, which is
valid for the signal field with a longer time duration.

Since the signal field is weak, we can take �s as a small
parameter to solve the Bloch Eq. (1) by using a perturba-
tion expansion. The solution of Eq. (1) up to third order is
presented in Appendix B. With this solution we may obtain
the expression of the total optical susceptibility of the sig-
nal field with the form χs = χ (1)

s + |�s|2χ (3)
s , where χ (1)

s =
Na|es · p13|2a(1)

31 /(ε0h̄) and χ (3)
s = Na|es · p13|2a(3)

31 /(ε0 h̄) are,
respectively, first-order and third-order nonlinear optical sus-
ceptibilities, with explicit expressions of a(1)

31 and a(3)
31 , respec-

tively, given by Eqs. (B2b) and (B5) in Appendix B. For
simplicity, we assume that the signal, control, and pump fields
have a wide distribution in the y direction, so that their y
dependence plays no significant role during the propagation
of the signal field, and hence the term ∂2�s/∂y2 in Eq. (2) can
be disregarded.

To get space-dependent linear and nonlinear optical poten-
tials, we assume that the control field is modulated along the
x direction, i.e., �c = �c(x). Then one has χ (1)

s = χ (1)
s (x),

χ (3)
s = χ (3)

s (x), and Eq. (2) is reduced to

i
∂�s

∂z
+ 1

2ks

∂2�s

∂x2
+ ks

2
χ (1)

s (x)�s + ks

2
χ (3)

s (x)|�s|2�s = 0.

(3)

For the convenience of the following calculations, we convert
Eq. (3) into the dimensionless form

i
∂u

∂ζ
= −∂2u

∂ξ 2
+ V (ξ )u + W (ξ )|u|2u, (4)

where we have defined dimensionless variables ξ = x/ls,
ζ = z/(2ksl2

s ), and u = �s/U0, with U0 and ls, respectively,
the typical half Rabi frequency and typical length in the x
direction (comparable to the wavelength λs = 2πc/ωs) of the
signal field. In Eq. (4), V (ξ ) = −k2

s l2
s χ (1)

s (ξ ) and W (ξ ) =
−k2

s l2
s |U0|2χ (3)

s (ξ ), which, following Ref. [21], are called, re-
spectively, linear and nonlinear potentials, or combined linear
and nonlinear potentials.

III. PHYSICAL REALIZATION OF THE COMBINED
LINEAR AND NONLINEAR

PT -SYMMETRIC POTENTIALS

Although there were many studies on PT -symmetric sys-
tems with combined linear and nonlinear potentials [29–36],
no realistic scheme was provided for their physical realization
up to now. Here we show that it is possible to realize such
potentials through choosing suitable system parameters and
a space-dependent control field in the optically pumped EIT
system described above.

Before presenting the concrete form of the spatially modu-
lated �c for realizing the combined linear and nonlinear opti-
cal potentials obeying PT symmetry, we illustrate the relation
between the linear and nonlinear optical susceptibilities of
the signal field and the control-field frequency detuning �2

for a fixed �c = �c0. We take �3 = �4 = 0, �12 = �34 ≈
0, �13 = �23 = �14 = �24 = 6π MHz, �s = 0.1 × 2π MHz,
�p = 4 × 2π MHz, �c0 = 1.5 × 2π MHz, and solve Eq. (1)
numerically, with the results of χ (1)

s and χ (3)
s plotted in

Figs. 2(a) and 2(d), respectively. The blue solid and red
dashed lines in Fig. 2(a) [Fig. 2(d)] are, respectively, the
real part Re[χ (1)

s ] and imaginary part Im[χ (1)
s ] of the linear

susceptibility (real part Re[χ (3)
s ] and imaginary part Im[χ (3)

s ]
of the nonlinear susceptibility). We see that Im[χ (1)

s ] and
Im[χ (3)

s ] are simultaneously zero for �2 = −29.94 MHz, i.e.,
point “P” in Figs. 2(a) and 2(d). In the vicinity of this “P”
point, χ (1)

s exhibits absorption on the left side and gain on the
right side; in contrast, χ (3)

s exhibits gain in the left side and
absorption in the right side of the “P” point.

A symmetric real part and an antisymmetric imaginary part
of χ (1)

s and χ (3)
s can be acquired by choosing different �2.

Shown in Figs. 2(b) and 2(e) are Re[χ (1)
s ] and Re[χ (3)

s ] as
functions of �c0/(2π ). The blue solid lines and red dashed
lines are for �2 = −28.68 and –31.98 MHz, respectively.
We see that Re[χ ( j)

s ]|�2=−28.68 MHz ≈ Re[χ ( j)
s ]|�2=−31.98 MHz

( j = 1, 3), which means that both the real parts of the linear
and nonlinear susceptibilities are matched well, i.e., they are
symmetric. Figures 2(c) and 2(f) show results of Im[χ (1)

s ]
and Im[χ (3)

s ] as functions of �c0/(2π ). One finds that
Im[χ ( j)

s ]|�2=−28.68 MHz ≈ −Im[χ ( j)
s ]|�2=−31.98 MHz ( j = 1, 3),

i.e., the imaginary parts of the linear and nonlinear suscep-
tibilities are antisymmetric [43].

The above fact tells us that the PT symmetry of the
combined linear and nonlinear potentials V (ξ ) and W (ξ ) can
be realized by choosing a control field that consists of two
spatially separated laser beams with different frequency de-
tunings, which produce two separated waveguides where one
provides absorption and other one provides gain for the prop-
agation of the signal field. With this thought in mind, to fulfill
the condition of PT symmetry, i.e., V ∗(−ξ ) = V (ξ ) and
W ∗(−ξ ) = W (ξ ), equivalent to Re[χ ( j)

s (x)] = Re[χ ( j)
s (−x)]

and Im[χ ( j)
s (x)] = −Im[χ ( j)

s (−x)] ( j = 1, 3), we naturally
assume that the control field consists of two identical (but
spatially separated) Gaussian beams with the form

�c(x) = �c0
[
e− (x−x0 )2

2σ2 + e
−(x+x0 )2

2σ2
]
, (5)

where 2x0 is the separation between the two beams, and σ is
the width of each beam [44]. Though these two beams have
identical intensity profiles, one can obtain gain in one beam
and absorption in another for both the linear and nonlinear
susceptibilities by choosing different frequency detunings for
each beam, as discussed above. Substituting Eq. (5) into the
expressions of χ

( j)
s (x) ( j = 1, 3), we obtain the following

PT -symmetric, dimensionless combined linear and nonlinear
potentials:

V (ξ ) = V0 + v0
[(

e
−(ξ−d )2

2a2 + e
−(ξ+d )2

2a2
)

+iv1
(
e

−(ξ−d )2

2a2 − e
−(ξ+d )2

2a2
)]

, (6a)

W (ξ ) = W0 + w0
[(

e
−(ξ−d )2

2a2 + e
−(ξ+d )2

2a2
)

−iw1
(
e

−(ξ−d )2

2a2 − e
−(ξ+d )2

2a2
)]

, (6b)
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FIG. 2. Realization of the linear and nonlinear optical susceptibilities with PT symmetry. (a) Real part Re[χ (1)
s ] (blue solid line) and

imaginary part Im[χ (1)
s ] (red dashed line) of the linear susceptibility χ (1)

s as functions of �2. (d) Similar to (a) but for the nonlinear susceptibility
χ (3)

s . Point “P” in (a) and (d) corresponds to �2 = −29.94 MHz. (b) Real part Re[χ (1)
s ] as a function of �c0/(2π ) for �2 = −28.68 (blue solid

line) and �2 = −31.98 MHz (red dashed line), respectively. (e) Similar to (b) but for the real part of the nonlinear susceptibility, i.e., Re[χ (3)
s ].

(c) Imaginary part Im[χ (1)
s ] via �c0/(2π ) for �2 = −28.68 (blue solid line) and �2 = −31.98 MHz (red dashed line), respectively. (f) Similar

to (c) but for the imaginary part of the nonlinear susceptibility, i.e., Im[χ (3)
s ].

where V0 and W0 are constants, v0 (w0) is the amplitude of
the space-dependent part for the linear potential V (nonlinear
potential W ), and v1 (−w1) is the relative amplitude between
the imaginary part and the real part of V (W ), with d = x0/ls
and a = σ/ls.

Spatial profiles of V (ξ ) and W (ξ ) are shown in Figs. 3(a)
and 3(b), respectively. When plotting the figure, system
parameters are chosen to be v0 = 2, w0 = 0.8, v1 = 0.25,
w1 = 0.06, d = 10, and a = 4.2, corresponding to �c0 =
2π × 106 s−1, x0 = 10 μm, and σ = 4 μm in Eq. (5). From
Eq. (6) and Fig. 3 we see that, as expected, both the linear
potential V (ξ ) and the nonlinear potential W (ξ ) exhibit in-
deed PT symmetry. With the specific form of the control
field (5), both Re(V ) and Re(W ) have double-well shapes
(blue solid lines); for the linear potential there is an absorption

ξ
-30 0 30

V

-1

0

1

2 (a)

Re(V) Im(V)

ξ
-30 0 30

W

-0.5

0

0.5

1
(b)

Re(W) Im(W)

FIG. 3. Spatial profiles of the linear PT potential V and nonlin-
ear PT potential W as functions of ξ . (a) Profile of the linear PT
potential V (ξ ). The blue solid line and red dash-dotted line are its
real part Re(V ) and imaginary part Im(V ), respectively. (b) The same
as (a) but for the nonlinear PT potential W (ξ ). Constants V0 and W0

in Eq. (6) have been disregarded when plotting the figure.

on the left side [Im(V ) < 0] and a gain on the right side
[Im(V ) > 0], but for the nonlinear potential there is a gain on
the left side [Im(W ) > 0] and an absorption on the right side
[Im(W ) < 0], illustrated by the red dash-dotted lines in the
figure. Notice that the method for realizing the PT -symmetric
potentials described here is a generation of that developed
in Ref. [23]; however, it is different from Ref. [23] since
it is valid for preparing both the linear and nonlinear PT -
symmetric potentials simultaneously.

IV. CONTROLLABLE PT PHASE TRANSITION AND
STABLE SOLITON PROPAGATION

A. PT phase transitions and their active control

We now turn to consider the property of the PT phase tran-
sition of our optically pumped EIT system with the combined
linear and nonlinear PT potentials (6). Because the system
can be actively controlled, the PT phase transition may
be manipulated by tuning system parameters, e.g., potential
parameters v1 and w1 in Eq. (6).

To demonstrate this, we assume u(ζ , ξ ) = u0(ξ )eiqζ , and
from Eq. (4) we obtain the nonlinear eigenvalue prob-
lem ∂2u0/∂ξ 2 − V (ξ )u0 − W (ξ )|u0|2u0 = qu0, where q is the
eigenvalue (also called the propagation constant) and u0(ξ )
is the eigenfunction. This eigenvalue problem can be solved
numerically by using the Newton iteration method [45]. One
of the key characters of PT symmetry is that the eigenvalue
displays a transition from real to complex when the relative
amplitudes of the linear and nonlinear potentials, i.e., v1 and
w1, are varied. Shown in Fig. 4(a) is the result obtained for
the phase diagram of the PT phase transition in the plane

043832-4
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FIG. 4. PT phase diagrams and their active manipulation. (a) PT phase diagram of the system as functions of v1 and w1 with a = 4.2
and d = 10. The left-bottom (blue) domain is the phase with PT symmetry, while the top-right (green) domain is the phase with broken PT
symmetry. The purple solid line is the boundary between the unbroken and broken PT phases, where points “C,” “D,” and “E” correspond
to (w1, v1) = (0, 0.14), (32,0.11), and (28, 0), respectively. Point “A” (point “B”) corresponds to (w1, v1) = (10, 0.1) [(w1, v1) = (20, 0.15)],
where the optical soliton is stable (unstable). (b) PT phase diagram with a = 3.2 (the boundary of the PT phase transition is denoted by the
red dash-dotted line) and a = 4.2 (the boundary of the PT phase transition is denoted by the purple solid line). Point “M” corresponds to
(v1, w1) = (10, 0.14). (c) PT phase diagram with d = 9.5 (the boundary of the PT phase transition is denoted by the red dash-dotted line)
and d = 10 (the boundary of the PT phase transition is denoted by the purple solid line). Point “N” corresponds to (v1, w1) = (10, 0.1). The
red arrow indicates the changing trend of the boundary of the PT phase transition.

of v1 and w1 for a = 4.2 and d = 10, with other system
parameters the same as used in Fig. 3. The purple solid
line in the figure represents the boundary of the PT phase
transition, with the left-bottom (blue) domain being the phase
with PT symmetry and the top-right (green) domain being
the phase with broken PT symmetry. Points “C,” “D,” and
“E” in the boundary line correspond to (w1, v1) = (0, 0.14),
(32,0.11), and (28, 0), respectively. From Fig. 4(a), we see
that the PT phase transition depends not only on v1 but also
on w1. To be specific, for a linear PT -symmetric potential,
i.e., v1 > 0, and a real nonlinear potential, i.e., w1 = 0, the
phase transition point locates at v1 = 0.14 (labeled by “C”).
However, this value will be decreased when w1 increases.
Therefore, the imaginary part of the nonlinear potential can
enlarge the broken domain of PT symmetry. Furthermore,
the PT phase transition is determined by the ratio between
the imaginary and real parts of the combined linear and
nonlinear potentials, which is determined by the quantity
(v0v1 − w0w1|u|2)/(v0 + w0|u|2), with |u|2 the intensity of
the signal field. Since this ratio decreases as |u|2 increases,
the broken domain of PT symmetry can be enlarged by
increasing the signal field intensity.

Except for v1 and w1, the PT phase diagram can also
be changed by adjusting the width (characterized by the
parameter a) of each beam in the control field. Shown in
Fig. 4(b) are phase boundary lines of the PT phase transition
for different values of a [with other system parameters the
same as those used in Fig. 4(a)], where the purple solid and red
dash-dotted lines are for a = 4.2 and 3.2, respectively. From
the figure, we see that the domain of the PT -symmetry phase
is increased greatly as a is decreased. The red arrow in the
figure represents the changing trend of the boundary of the
PT phase transition.

The threshold of the PT -symmetry breaking depends also
on the separation (characterized by the parameter d) of the
two beams in the control field. Figure 4(c) shows the PT
phase diagram by decreasing d from 10 to 9.5, with other
system parameters the same as those used in Fig. 4(a). In the

figure, the purple solid and red dash-dotted lines represent the
boundary lines of the PT phase transition for d = 10 and 9.5,
respectively. One sees that the domain of the PT -symmetry
phase is decreased when d decreases.

Based on the results given by panels (a), (b), and (c) of
Fig. 4, we conclude that the PT phase transition in our
optically pumped EIT system can indeed be manipulated by
adjusting the parameters w1, v1, a, and d in the combined
linear and nonlinear potentials (6), which provide a practical
physical example for an active control of non-Hermitian non-
linear optical systems.

B. Stable soliton propagations and their active control

One of the important applications of the controllability
of the PT phase transition is the soliton propagation in the
combined linear and nonlinear PT -symmetric potentials and
their active control in the system. By solving Eq. (4) numer-
ically, we find that the system supports optical solitons, with
their intensity arrested in the spatial region between the two
Gaussian peaks of the control field; furthermore, such optical
solitons are stable when the system works in the domain of the
PT symmetry, and they become unstable if the system works
in the domain of the broken PT symmetry.

Shown in Fig. 5(a) is the numerical result on the prop-
agation of a fundamental optical soliton, with (w1, v1) =
(10, 0.1) to make the system work in the PT -symmetric
phase, i.e., point “A” in Fig. 4(a). We see that the optical
soliton is fairly stable during propagation. Figure 5(b) shows
the propagation of another optical soliton, with (w1, v1) =
(20, 0.15) to make the system work in the broken PT -
symmetric phase, i.e., point “B” in Fig. 4(a). In this case,
the soliton propagation is unstable. For a better understanding
on the results shown in Figs. 5(a) and 5(b), a linear stability
analysis [46,47] on the soliton is carried out (see Appendix C),
which shows that the optical soliton described in Fig. 5(a)
[Fig. 5(b)] is indeed stable (unstable).
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FIG. 5. Optical solitons in the system. (a) Stable propagation of
an optical soliton, with (w1, v1) = (10, 0.1) where the system works
in the PT -symmetric phase, i.e., point “A” in Fig. 4(a). (b) Unstable
propagation of an optical soliton, with (w1, v1) = (20, 0.15) where
the system works in the broken PT -symmetric phase, i.e., point “B”
in Fig. 4(a).

The active control of the optical soliton can be imple-
mented by adjusting the width a of the two Gaussian peaks in
the combined linear and nonlinear potentials (6). To show this,
we focus on the case (w1, v1)=(10, 0.14), i.e., point “M” in
Fig. 4(b). In this case, the system works in the PT -symmetry
phase for a = 3.2 but the broken PT -symmetry phase for
a = 4.2. Shown in Fig. 6(a) is the result on the propagation
of an optical soliton by tuning the value of a. The upper part
of the figure is the variation of a along the ζ axis; the lower
part is the propagation behavior of the soliton in different
regions of ζ . We see that the soliton is stable in the region
0 < ζ < 50 (where a = 3.2), while it is not stable in the
region 50 < ζ < 100 (where a = 4.2).

Similarly, the active control of the optical soliton can also
be realized by tuning the separation d between the two Gaus-
sian peaks in the linear and nonlinear PT -symmetric poten-
tials (6). To illustrate this, we consider the case (w1, v1)=(10,
0.1), i.e., point “N” in Fig. 4(c). In this situation, the system
works in the PT -symmetry phase for d = 10 but the broken
PT -symmetry phase for d = 9.5. Plotted in Fig. 6(b) is the
result on the propagation of the optical soliton by tuning the

FIG. 6. Active control of optical solitons. (a) Optical soliton for
(w1, v1) = (10, 0.14) [corresponding to the “M” point in Fig. 4(b)].
Upper part: The variation of the width a of the two Gaussian
peaks in the combined linear and nonlinear PT -symmetric potentials
along the ζ axis. Lower part: Propagation behaviors of the soliton
in the regions 0 < ζ < 50 (a = 3.2) and 50 < ζ < 100 (a = 4.2).
(b) Optical soliton for (w1, v1) = (10, 0.1) [corresponding to the “N”
point in Fig. 4(c)]. Upper part: The variation of the separation d
between the two Gaussian peaks in the combined linear and nonlinear
PT -symmetric potentials along the ζ axis. Lower part: Propagation
behaviors of the soliton in the regions 0 < ζ < 50 (d = 10) and
50 < ζ < 100 (d = 9.5).

value of d . The upper part is the variation of d along the ζ

axis; the lower part shows the propagation behaviors of the
soliton for different ζ . One sees that the soliton is stable in the
region 0 < ζ < 50 (where d = 10), while it is not stable in
the region 50 < ζ < 100 (where d = 9.5).

As we see, the results presented in Figs. 5 and 6 are quite
consistent with the predictions given in Fig. 4, which means
that optical soliton propagations and their stability can indeed
be controlled by changing the PT potential parameters w1,
v1, a, and d .

V. ASYMMETRIC SOLITON SCATTERING BY THE
COMBINED LINEAR AND NONLINEAR

OPTICAL POTENTIALS

A. Symmetric soliton scattering

The scattering property of solitons is an interesting re-
search topic not only for a deep understanding of the physical
property but also for possible practical applications of nonlin-
ear PT -symmetric systems. It is natural to ask the question
of how the soliton scattering works in our optically pumped
EIT system if the combined PT -symmetric optical potentials
are taken to be a defect. Parameters of the defect are chosen
to be v0 = 2, w0 = 0.8, a = 4.2, and d = 10. To this end,
we assume that the position of the soliton is initially away
from the defect, so that there is no interaction between them
at ζ = 0. In general, we may have full reflection, transmission,
trapping, or some combination of them. These scattering
behaviors can be described by the coefficients of reflection
(R), transmission (T ), and trapping (G), defined, respectively,
by

R = 1

P

∫ −h

−∞
|ψ (ξ )|2dξ, T = 1

P

∫ ∞

h
|ψ (ξ )|2dξ,

G = 1

P

∫ h

−h
|ψ (ξ )|2dξ, (7)

where P = ∫ ∞
−∞ |ψ (ξ )|2dξ is the total power of the optical

soliton and h denotes position on the ξ axis at which the
influence of the defect on the soliton is negligible.

We first consider the situation with (w1, v1) = (0, 0) in
Eq. (6), i.e., the scattering of the soliton by a defect with real
linear and nonlinear potentials. Shown in Fig. 7(a) [Fig. 7(b)]
is the result of the soliton scattering when the soliton is
incident from the left side of the defect with incident velocity
v = 0.8 (v = 1.5). The result is obtained through numerically
solving Eq. (4) by using the split-step Fourier method [45] and
taking u(ξ, ζ = 0) = 1.5sech(ξ ) eivξ [48]. In the figure, the
region between the two vertical white dashed lines denotes
the one where the defect locates; the width of the defect is
�ξ = 40 in the ξ direction and �ζ = ∞ in the ζ direction.
We see that, for smaller (larger) incident velocity, the soliton
is completely reflected (transmitted). Figure 7(c) illustrates
the result of the reflection coefficient R (red solid line) and
transmission coefficient T (green dash-dotted line) as func-
tions of incident velocity v. The blue dots “a” and “b” in the
figure indicate the values of R and T , which correspond to the
cases shown in panels (a) and (b), respectively. We find that
when v � vcr (where vcr ≈ 1 is critical velocity) the scattering
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FIG. 7. Symmetric soliton scattering by the combined but real linear and nonlinear PT -symmetric defect potentials, i.e., (w1, v1) = (0, 0)
in Eq. (6). In panels (a), (b), (d), and (e), the region between the two vertical white dashed lines is the one where the defect locates. (a) [(b)]
The soliton is incident from the left side of the defect with incident velocity v = 0.8 (v = 1.5). (c) Reflection coefficient R (red solid line) and
transmission coefficient T (green dash-dotted line) as functions of incident velocity v for the soliton incident from the left side. The blue dots
“a” and “b” represent the values of R and T for the cases shown in panels (a) and (b), respectively. (d) [(e)] The soliton is incident from the right
side with incident velocity v = 0.8 (v = 1.5). (f) Reflection coefficient R (red solid line) and transmission coefficient T (green dash-dotted
line) as functions of incident velocity v for the soliton incident from the right side. The purple dots “d” and “e” represent the values of R and
T for the cases shown in panels (d) and (e), respectively.

of the soliton changes sharply from a full reflection to a full
transmission. There is nearly no trapping of the soliton, i.e.,
G = 0, during the process of the soliton scattering.

For comparison, in Fig. 7(d) [Fig. 7(e)] we show the result
of the soliton scattering when the soliton is incident from
the right side of the defect with incident velocity v = 0.8
(v = 1.5). One sees that for small (v = 0.8) and large (v =
1.5) incident velocity the soliton is also completely reflected
(transmitted). Figure 7(f) plots the reflection coefficient R (red
solid line) and transmission coefficient T (green dash-dotted
line) as functions of incident velocity v. The red dots “d”
and “e” indicate the values of R and T for the cases shown
in panels (d) and (e), respectively. It is found that when
v � vcr ≈ 1 the scattering of the soliton changes also from
a full reflection to a full transmission sharply. Similar to the
case of the scattering from the left side, there is nearly no
trapping during the process of the soliton scattering. From
these results, we conclude that, for the combined real linear
and nonlinear PT defect potentials, the soliton scattering is
left-right symmetric (reciprocal).

B. Asymmetric soliton scattering

We now consider what will happen for the soliton scatter-
ing if the imaginary parts of the combined linear and nonlinear
PT potentials are not zero, by taking (w1, v1) = (0, 0.1) in
Eq. (6) and other parameter values the same as those used in
Fig. 7. Panels (a), (b), and (c) of Fig. 8 show results of soliton
scattering when the soliton is incident from the left side

of the defect with v = 0.4, 1, and 3.5, respectively. We see
that the soliton gets a complete reflection when it collides with
the defect for a small incidence velocity [v = 0.4, panel (a)],
and a complete transmission for a large incidence velocity
[v = 3.5, panel (c)]. However, for an intermediate incidence
velocity, the soliton experiences a state with a combination
of reflection and transmission [v = 1, panel (b)], in which
a radiation is generated and the reflected wave undergoes
an attenuation, which is due to the absorption on the left
side of the defect [see Fig. 3(a)]. Plotted in Fig. 8(d) are
reflection coefficient R (red solid line), trapping coefficient G
(blue dashed line), and transmission coefficient T (green dash-
dotted line) as functions of v. Blue dots indicate the value of
R and T corresponding to panels (a), (b), and (c), respectively.
We see that there exists an interval of the incident velocity,
i.e., 0.9 < v < 1.2, in which the trapping coefficient G is
nonzero. Thus, by tuning v one can control the ratio between
the reflected and transmitted parts of the soliton, which might
be useful to design an optical soliton beam splitter.

Shown in panels (e), (f), and (g) of Fig. 8 are results of the
soliton scattering when the soliton is incident from the right
side of the defect with the incident velocity v = 0.4, 1, and
3.5, respectively. One sees that for small and large incident
velocity [panels (e) and (g)] the soliton scattering displays
similar behaviors to those shown in panels (a) and (c), but
there exists an interval, i.e., 0.42 < v < 2.8, in which the soli-
ton undergoes a collapse when it collides with the defect [see
Fig. 8(f)]. Figure 8(h) gives the reflection coefficient R (red
solid line) and transmission coefficient T (green dash-dotted
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FIG. 8. Asymmetric soliton scattering by the combined linear and nonlinear PT -symmetric defect with (w1, v1) = (0, 0.1). Panels (a),
(b), and (c) are the soliton scatterings by the defect when the soliton is incident from the left side with the incidence velocity v = 0.4, 1, and
3.5, respectively. (d) Reflection coefficient R (red solid line), trapping coefficient G (blue dashed line), and transmission coefficient T (green
dash-dotted line) as functions of v. Blue dots indicate the value of R and T corresponding to panels (a), (b), and (c), respectively. Panels (e),
(f), and (g) are the soliton scatterings by the defect when the soliton is incident from the right side with the incidence velocity v = 0.4, 1,
and 3.5, respectively. (h) Reflection coefficient R (red solid line) and transmission coefficient T (green dash-dotted line) as functions of v. The
gray domain is the one where the soliton is collapsed. Purple dots indicate the values of R and T corresponding to panels (e), (f), and (g),
respectively.

line) as functions of v. The gray domain is the one where
the soliton is collapsed. Purple dots indicate the values of R
and T corresponding to panels (e), (f), and (g), respectively.
Comparing the upper panels with the lower panels of Fig. 8,
one sees that the left-right symmetry and reciprocity of the
soliton scattering are broken.

Lastly, we investigate the soliton scattering by a defect if
the imaginary parts of the combined linear and nonlinear PT
potentials are not nonzero, by taking (w1, v1) = (0.1, 0.1),
and other system parameters are the same as used in Fig. 7.
Shown in panels (a), (b), and (c) of Fig. 9 are results of
the soliton scattering when the soliton is incident from the
left side, with the incident velocity v = 0.2, 4.2, and 4.5,
respectively. Figure 9(d) gives the reflection coefficient R (red
solid line) and transmission coefficient T (green dash-dotted
line) as functions of v. Purple dots indicate the values of R
and T corresponding to panels (a), (b), and (c), respectively.
Panels (e), (f), and (g) illustrate results of the soliton scattering
when the soliton is incident from the right side with v = 0.2,
4.2, and 4.5, respectively. Figure 9(h) gives the reflection
coefficient R (red solid line) and transmission coefficient T
(green dash-dotted line) as functions of v. Purple dots indicate
the values of R and T corresponding to panels (e), (f), and (g),
respectively.

From Fig. 9, we see that for small and large incident veloc-
ities the soliton scatterings have similar behaviors for the both
left and right incidences. However, in the domain of the in-
termediate incident velocity the soliton scatterings have quite
different behaviors. Figure 9(b) [Fig. 9(f)] shows the soliton
scattering for v = 4.2, where the soliton is completely trans-
mitted (trapped). In fact, no complete self-trapping is found

for the soliton when it collides the defect from the left side, but
there exists an interval of v, i.e., 0.26 < v < 4.25, in which
the soliton can experience a complete self-trapping when col-
liding with the defect from the right side. Based on these re-
sults, we conclude that the left-right symmetry and reciprocity
of the soliton scattering are also broken when the imaginary
parts of both the linear and nonlinear potentials are not zero.

VI. SUMMARY

In this paper, we have proposed a realistic physical scheme
for realizing combined linear and nonlinear optical potentials
with PT symmetry and investigated the interesting scattering
properties of optical solitons in an optically pumped EIT sys-
tem. We have shown that the combined linear and nonlinear
PT -symmetric potentials can be produced through the design
of the spatial modulation of the control laser field and the
inclusion of the Kerr nonlinearity of the signal laser field. We
have demonstrated that the imaginary part of the nonlinear
PT potential plays a very important role for the occurrence
of the PT phase transition and the change of the PT phase
diagram, which can be actively manipulated in our system. We
have also demonstrated that the system supports stable optical
solitons, which can be controlled via tuning the combined
PT potentials. Furthermore, by taking the combined PT
potentials as a defect the scattering of the optical solitons by
the defect may display obvious asymmetric and nonreciprocal
behaviors, which can be manipulated by the imaginary parts
of the combined linear and nonlinear PT potentials. The
results reported here may have potential applications in optical
information processing and transmission.
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FIG. 9. Asymmetric soliton scattering by the combined linear and nonlinear PT -symmetric defect with (w1, v1) = (0.1, 0.1). Panels (a),
(b), and (c) are the soliton scatterings when the soliton is incident from the left with the incidence velocity v = 0.2, 4.2, and 4.5, respectively.
(d) Reflection coefficient R (red solid line), trapping coefficient G (blue dashed line), and transmission coefficient T (green dash-dotted line)
as functions of v. Blue dots indicate the value of R and T corresponding to panels (a), (b) and (c), respectively. Panels (e), (f), and (g) are the
soliton scatterings when the soliton is incident from the right side with the incidence velocity v = 0.2, 4.2, and 4.5, respectively. (h) Reflection
coefficient R (red solid line) and transmission coefficient T (green dash-dotted line) as functions of v. The gray domain is the one where the
soliton is trapped. Red dots indicate the values of R and T corresponding to panels (e), (f), and (g), respectively.
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APPENDIX A: OPTICAL BLOCH EQUATION

The optical Bloch equation describing the time evolution of the density-matrix elements ρ jl reads [49]

i
∂

∂t
ρ22 − i�42ρ44 − i�32ρ33 + �∗

cρ32 − �cρ
∗
32 = 0, (A1a)

i
∂

∂t
ρ33 + i�3ρ33 + �sρ

∗
31 − �∗

s ρ31 + �cρ
∗
32 − �∗

cρ32 = 0, (A1b)

i
∂

∂t
ρ44 + i�4ρ44 + �pρ

∗
41 − �∗

pρ41 = 0, (A1c)

(
i
∂

∂t
+ d21

)
ρ21 + �∗

cρ31 − �sρ
∗
32 − �pρ

∗
42 = 0, (A1d)

(
i
∂

∂t
+ d31

)
ρ31 + �s(ρ11 − ρ33) + �cρ21 − �pρ

∗
43 = 0, (A1e)

(
i
∂

∂t
+ d41

)
ρ41 + �p(ρ11 − ρ44) − �sρ43 = 0, (A1f)

(
i
∂

∂t
+ d32

)
ρ32 + �c(ρ22 − ρ33) + �sρ

∗
21 = 0, (A1g)

(
i
∂

∂t
+ d42

)
ρ42 − �cρ43 + �pρ

∗
21 = 0, (A1h)

(
i
∂

∂t
+ d43

)
ρ43 + �pρ

∗
31 − �∗

s ρ41 − �∗
cρ42 = 0, (A1i)

where the symbol “*” denotes the complex conjugate, d21 = �2 + iγ21, d31 = �3 + iγ31, d41 = �4 + iγ41, d32 = �3 −
�2 + iγ32, d42 = �4 − �2 + iγ42, d43 = �4 − �3 + iγ43, γ jl = (� j + �l )/2 + γ

dep
jl ( j �= l), and �l = ∑

j<l � jl , with � jl the

043832-9



LU QIN, CHAO HANG, AND GUOXIANG HUANG PHYSICAL REVIEW A 99, 043832 (2019)

spontaneous emission decay rate and γ
dep
jl the dephasing rate from |l〉 to | j〉. The atomic population in the ground state ρ11 can

be obtained by using the condition
∑4

j=1 ρ j j = 1 [49].

APPENDIX B: SOLUTIONS OF THE BLOCH EQUATION

By taking �s ∼ ε as an expansion parameter, assuming the expansion ρ jl = ρ
(0)
jl + ερ

(1)
jl + ε2ρ

(2)
jl + · · · , and substituting the

expansion into the Bloch Eq. (1), we obtain a chain of linear but inhomogeneous equations, which can be solved order by order.
The zeroth-order solution reads

ρ
(0)
11 = �31X32|�c|2(i�4 + X41|�p|2)

D
, (B1a)

ρ
(0)
22 = �42X41|�p|2(i�3 + X32|�c|2)

D
, (B1b)

ρ
(0)
33 = �42X41X32|�p|2|�c|2

D
, (B1c)

ρ
(0)
44 = �13X41X32|�p|2|�c|2

D
, (B1d)

ρ
(0)
32 = − i�3�24X41|�p|2�c

d32D
, (B1e)

ρ
(0)
41 = − i�13�4X32|�c|2�p

d41D
, (B1f)

where D = 2(�31 + �42)X32X41|�p|2|�c|2 + i�4�31X32|�c|2 + i�3�42X41|�p|2, with X41 = 1/d∗
41 − 1/d41, and X32 = 1/d∗

32 −
1/d32. Other ρ

(0)
jl are zero. The first-order solution is given by

ρ
(1)
21 = (d31d∗

42d∗
43 + |�p|2d∗

42 − |�c|2d31)ρ∗(0)
32 − �∗

c

(
ρ

(0)
33 − ρ

(0)
11

)
(d∗

42d∗
43 + |�p|2 − |�c|2)

a1d31 + a2|�p|2 − a3|�c|2 �s

+ �p�
∗
cρ

(0)
41 (d31 − d∗

42)

a1d31 + a2|�p|2 − a3|�c|2 �s ≡ a(1)
21 �s, (B2a)

ρ
(1)
31 = a1

(
ρ

(0)
33 − ρ

(0)
11

) + a2�pρ
∗(0)
41 − a3�cρ

∗(0)
32

a1d31 + a2|�p|2 − a3|�c|2 �s ≡ a(1)
31 �s, (B2b)

ρ
(1)
42 = �c�p(d43 − d∗

21)
(
ρ

∗(0)
33 − ρ

∗(0)
11

) + �cρ
(0)
41 (|�p|2 − |�c|2 + d∗

21d∗
31)

a∗
1d∗

31 + a∗
2|�p|2 − a∗

3|�c|2 �s

+�pρ
(0)
32 (|�c|2 − |�p|2 − d43d∗

31)

a∗
1d∗

31 + a∗
2|�p|2 − a∗

3|�c|2 �s ≡ a(1)
42 �s, (B2c)

ρ
(1)
43 = �p(|�c|2 − |�p|2 − d∗

21d42)
(
ρ

∗(0)
33 − ρ

∗(0)
11

) + ρ
(0)
41 (d∗

21d∗
31d42 − |�c|2d42 + |�p|2d∗

31)

a∗
1d∗

31 + a∗
2|�p|2 − a∗

3|�c|2 �s

+ �p�
∗
cρ

(0)
32 (d42 − d∗

31)

a∗
1d∗

31 + a∗
2|�p|2 − a∗

3|�c|2 �s ≡ a(1)
43 �s, (B2d)

with other ρ
(1)
jl being zero, and

a1 = d21d∗
42d∗

43 − d21|�c|2 + d∗
43|�p|2, (B3a)

a2 = |�p|2 − |�c|2 + d21d∗
42, (B3b)

a3 = d∗
42d∗

43 + |�p|2 − |�c|2. (B3c)
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The second-order solution reads

ρ
(2)
11 =

{
2�42X32|�c|2 + X32|�c|2�31 + i�3�42

X32|�c|2�31(i�4 + X41|�p|2)

×
(

�pa∗(1)
43

d∗
41

− �∗
pa(1)

43

d41

)
+

(
�32

�31X32|�c|2
− 2i

�31

)

× (
a∗(1)

31 − a(1)
31

)}
ρ

(0)
11

+ 1

X32|�c|2
(

�ca(1)
21

d∗
32

− �∗
ca∗(1)

21

d32

)
ρ

(0)
11 |�s|2, (B4a)

ρ
(2)
22 = (i�3 + X32|�c|2)�42X41|�p|2

X32|�c|2�31(i�4 + X41|�p|2)
ρ

(2)
11

− i
(
a(1)

31 − a∗(1)
31

)
(i�3 + X32|�c|2)

�31X32|�c|2
|�s|2

+ �42(i�3 + X32|�c|2)

X32|�c|2�31(i�4 + X41|�p|2)

×
(

�∗
pa(1)

43

d41
− �pa∗(1)

43

d∗
41

)
|�s|2 + 1

X32|�c|2

×
(

�∗
ca∗(1)

21

d32
− �ca(1)

21

d∗
32

+ a∗(1)
31 − a(1)

31

)
|�s|2, (B4b)

ρ
(2)
33 = �42X41|�p|2

�31(i�4 + X41|�p|2)
ρ

(2)
11 + �42

�31(i�4 + X41|�p|2)

×
(

�∗
pa(1)

43

d41
− �pa∗(1)

43

d∗
41

)
|�s|2 − i

(
a(1)

31 − a∗(1)
31

)
�31

|�s|2,

(B4c)

ρ
(2)
44 = X41|�p|2

i�4 + X41|�p|2 ρ
(2)
11 + 1

i�4 + X41|�p|2

×
(

�∗
pa(1)

43

d41
− �pa∗(1)

43

d∗
41

)
|�s|2, (B4d)

ρ
(2)
32 =

[(
ρ

(2)
33 − ρ

(2)
22

)
�c − �sρ

∗(1)
21

]
d32

, (B4e)

ρ
(2)
41 =

[(
ρ

(2)
44 − ρ

(2)
11

)
�p − �sρ

(1)
43

]
d41

. (B4f)

FIG. 10. Spectrum of the linear stability of the optical soliton
as functions of Re(δ) and Im(δ), with δ the eigenvalue of the
perturbations. (a) Linear stability spectrum of the soliton described
in Fig. 5(a) (blue solid circles). (b) Linear stability spectrum of the
soliton described in Fig. 5(b) (red stars).

The third-order solution for ρ
(3)
31 is given by

ρ
(3)
31 = a1

(
ρ

(2)
33 − ρ

(2)
11

) + a2�pρ
∗(2)
41 − a3�cρ

∗(2)
32

a1d31 + a2|�p|2 − a3|�c|2 |�s|2�s

≡ a(3)
31 |�s|2�s. (B5)

The other density-matrix elements in this order are not needed
and hence omitted here.

APPENDIX C: LINEAR STABILITY ANALYSIS
OF SOLITONS

The linear stability analysis [46,47] on the solitons shown
in Figs. 5(a) and 5(b) is implemented by assuming u =
[u0(ξ ) + f (ξ ) exp(iδζ ) + g∗(ξ ) exp(−iδ∗ζ )] exp(iqζ ). Here
u0(ξ ) exp(iqζ ) is the soliton wave function, f (ξ ) exp(iδζ ) and
g∗(ξ ) exp(−iδ∗ζ ) are perturbations, and δ is the eigenvalue of
the perturbations. Substituting this expression into Eq. (4), we
obtain the linear eigenvalue problem for the perturbations:[

L11 Wu2
0

−(
Wu2

0

)∗ L22

][
f
g

]
= δ

[
f
g

]
, (C1)

with L11 = ∂ξξ − V (ξ ) − 2W (ξ )|u0|2 − q and L22 = −∂ξξ +
V ∗(ξ ) + 2W ∗(ξ )|u0|2 + q. Equation (C1) can be solved nu-
merically by the using plane-wave expansion method [50,51].
The eigenspectrum of Eq. (C1) for the soliton is shown in
Fig. 10. The soliton described in Fig. 5(a) is stable because
Im(δ) = 0 [see Fig. 10(a)]; however, the soliton described in
Fig. 5(b) is unstable because some Im(δ) are negative [see
Fig. 10(b)].
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