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X waves are a special type of wave packet that can maintain their transverse profile of X shape during
propagation, and they are of much interest for the study of fundamental physics and practical applications.
Here we present a scheme to generate nonlinear X waves and realize their active control by using a cold gas
of Rydberg atoms via electromagnetically induced transparency (EIT). We show that, due to the EIT effect
contributed by a control laser field and the strong, nonlocal Kerr nonlinearity contributed by Rydberg-Rydberg
interaction between atoms, the system supports high-dimensional, nonlocal, and nonlinear optical X waves,
which have low propagation loss, ultraslow propagation velocity, and ultralow generation power. We also show
that the stability domain of such X waves can be greatly enlarged by increasing the nonlocality degree of the Kerr
nonlinearity, and their motion trajectory can be manipulated by using an external magnetic field. Our study opens
a route for generating and controlling nonlocal ultraslow nonlinear optical X waves, which may have promising
applications in optical information processing and transmission.
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I. INTRODUCTION

X waves are a special type of wave packet that can keep
their transverse profiles of characteristic X shape during
propagation [1,2]. The formation of such wave packets can
be understood as nonmonochromatic superpositions of plane
waves with the same wave vector along the propagation direc-
tion. Different from solitons [3–5], X waves can propagate
free from diffraction or dispersion even in the absence of
nonlinearity. Moreover, in some sense X waves are more ro-
bust than solitons because the latter ones are usually unstable
when propagating in high dimensions. However, to generate X
waves the dispersion relation of a system must be hyperbolic;
i.e., the effective mass has the opposite sign in transverse
directions.

Due to their unique features described above, X waves and
related topics have attracted intense attention in recent years
[6]. Particularly, optical X waves have been investigated and
observed in various physical systems including fluids [7,8]
and optical media [9–25]. Besides, X waves have also been
studied in many other systems, such as acoustic materials
[26], condensed matters [27,28], polariton fluids [29–31],
and so on. Except for the fundamental interest in wave
localization, the research on X waves has facilitated many
important applications, including high frame-rate medical and
optical imaging, high-quality optical lithography tweezers and
tomography, high-capacity communications from microwave
to optical waves, etc. [6,32,33].

Although nonlinearity is not required for sustaining the
wave shape of X waves, it may play an important role in their
formation and propagation. It has been shown that nonlinear
X waves can be generated spontaneously by using simple
Gaussian input pulses or other input pulses through a self-
induced spectral reshaping mechanism [6]. Among X waves

considered in various nonlinear systems, there is growing
interest in the study of nonlinear optical X waves (NLOXWs)
[9–11,14,15]. Yet, up to now all the NLOXWs have been
obtained by using passive optical media, which have the prop-
agation speed closed to c (i.e., the light speed in vacuum) and
have high generation power due to nonresonant (thus small)
Kerr nonlinearity; furthermore, such NLOXWs are hard to
control and manipulate actively.

In this work, we propose a scheme to produce a different
type of nonlinear X wave and realize its active control. The
system we consider is a cold Rydberg atomic gas [34–38],
where a �-type electromagnetically induced transparency
(EIT) [39] is adopted and the EIT is dressed by a Ryd-
berg state, which brings interatomic interaction (also called
Rydberg-Rydberg interaction) into the system. We show that,
due to the contribution from the EIT and the nonlocal Kerr
nonlinearity induced by the Rydberg-Rydberg interaction,
the system supports high-dimensional, low-loss, nonlocal
NLOXWs with ultraslow propagation velocity and extremely
low generation power. Similar to the nonlocal solitons con-
sidered in Refs. [40–52], we clarify the effect of the nonlocal
Kerr nonlinearity acting on the formation, propagation, and
stabilization of such NLOXWs.

We stress that the NLOXWs found here are different from
those reported before [9–25]. First, our system is based on
a cold atomic gas working under the condition of Rydberg-
EIT. Due to the existence of the strong Rydberg-Rydberg
interaction, the NLOXWs obtained are nonlocal nonlinear op-
tical wave packets, which have ultraslow propagation velocity
(∼10−3c) and ultralow generation power (with the order of
several nanowatts). Second, the nonlinear X waves in our
system can be well manipulated due to the active character
of the system; in particular, their stability domain may be
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largely enlarged by increasing the nonlocality degree of the
Kerr nonlinearity. Third, the nonlinear X waves obtained here
may experience a significant deflection by using an external
magnetic field; inversely, the external magnetic field can be
measured by the motion trajectory of the nonlinear X waves,
which can be exploited for the precision measurement of mag-
netic fields. All these properties of the NLOXWs are absent
for the nonlinear X waves considered previously [9–25]. Our
study opens a way for generating and actively controlling non-
local NLOXWs, which may have promising applications in
precision measurement and in optical information processing
and transmission.

The remainder of the article is arranged as follows. In
Sec. II, we describe the physical model under study and
derive a (3 + 1)-dimensional [(3 + 1)D] nonlinear envelope
equation controlling the evolution of the wave packet of the
probe laser field. In Sec. III, we investigate the formation
and stability of (3 + 1)D nonlocal NLOXWs. In Sec. IV,
we discuss how to actively control the motion trajectory of
the NLOXWs by using an external magnetic field. Finally,
in Sec. V we summarize the main results obtained in this
work.

II. MODEL AND NONLINEAR ENVELOPE EQUATION

A. Physical model

We start to consider a cold, lifetime-broadened four-
level atomic gas with an inverted-Y type-configuration,
shown in Fig. 1(a). The electric field resonantly interacting
with the atomic gas reads E = Ep + Ec + Ea, with Eα =
eαEα exp[i(kα · r − ωαt )] + H.c. and r = (x, y, z). Here eα

are unit polarization vectors, Eα are field amplitudes (α =
p, c, a), and H.c. represents the corresponding complex con-
jugate. The probe field Ep (with wave number kp = ωp/c,
angular frequency ωp, and half Rabi frequency �p) is weak,
is pulsed, and couples the ground state |1〉 to the intermediate
state |3〉; the control field Ec (with wave number kc = ωc/c,
angular frequency ωc, and half Rabi frequency �c) is strong,
is continuous, and couples the low-lying state |2〉 and the
state |3〉. In the level diagram, �3 is a one-photon detuning;
�2 and �4 are two-photon detunings; and �13, �23, and �34

are respectively the spontaneous-emission decay rates from
|3〉 to |1〉, |3〉 to |2〉, and |4〉 to |3〉. States |1〉, |2〉, and |3〉
and the probe and control fields constitute a standard �-type
EIT configuration. The �-type EIT is, however, dressed by a
high-lying Rydberg state |4〉 (with a large principal quantum
number n), which is far off-resonantly (i.e., �3 + �4 � �a)
coupled to |3〉 through an assistant laser field Ea (with wave
number ka = ωa/c, angular frequency ωa, and half Rabi fre-
quency �a). The reason for using Rydberg-dressed EIT is to
exploit the advantages of EIT (which can suppress the absorp-
tion of the probe field due to the spontaneous emission) and
the Rydberg state (which can provide a giant nonlocal Kerr
nonlinearity contributed by the Rydberg-Rydberg interaction),
simultaneously.

The dynamics of the system is described by the Hamilto-
nian Ĥ = Na

∫
d3rĤ(r, t ), with Ĥ(r, t ) being the Hamilto-

nian density and Na the atom density. Under electric-dipole
and rotating-wave approximations, the Hamiltonian density in
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FIG. 1. (a) Level diagram and excitation scheme of the Rydberg-
dressed EIT. �p, �c, and �a are half Rabi frequencies of the probe,
control, and assisted laser fields, respectively. �α are detunings
and �αβ are spontaneous-emission decay rates from |β〉 to |α〉,
respectively. The interaction between Rydberg atoms is described
by the van der Waals potential Vvdw ≡ h̄V (r′ − r), with V (r′ − r) =
C6/|r′ − r|6 (C6 is called the dispersion parameter). (b) Spatial
distributions of the real and imaginary parts of the dimensionless
nonlocal nonlinear response g, i.e., Re(g) and Im(g), in the plane
of x/R0 and y/R0. (c) The real part of group velocity dispersion K2,
i.e., Re(K2), as a function of �2 and �3. The dashed line is the one
for Re(K2) = 0. Nonlocal nonlinear optical X waves are allowed (not
allowed) in the region for Re(K2) > 0 [Re(K2) < 0].

the interaction picture reads

Ĥ(r, t ) = −h̄
4∑

j=2

�α Ŝαα (r, t ) − h̄[�pŜ13(r, t )

+�aŜ34(r, t ) + �cŜ23(r, t ) + H.c.]

+Na

∫
d3r

∫
d3r′ Ŝ44(r′, t )h̄V (r′ − r)Ŝ44(r, t ),

(1)

where d3r = dxdydz, and Ŝαβ (r, t ) =
|β〉〈α| exp i[(kβ − kα ) · r − (ωβ − ωα + �β − �α )t] is the
transition operator related to the states |α〉 and |β〉, satisfying
the commutation relation

[Ŝαβ (r, t ), Ŝμν (r′, t )]

= 1

Na
δ(r − r′) [δαν Ŝμβ (r′, t ) − δμβ Ŝαν (r′, t )]. (2)

Here h̄ωα is the eigenenergy of the level |α〉; �3 = (ω3 −
ω1) − ωp is a one-photon detuning, �2 = ωp − ωc − (ω2 −
ω1) and �4 = ωp + ωa − (ω4 − ω1) are two-photon de-
tunings; and �p = (ep · p31)Ep/h̄, �c = (ec · p32)Ec/h̄, and
�a = (ea · p43)Ea/h̄ are respectively half Rabi frequencies of
the probe, control, and assistant fields, with pαβ being the
electric dipole matrix elements associated with the transition
|α〉 ↔ |β〉. The last term in the Hamiltonian density is the
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contribution coming from the Rydberg-Rydberg interaction,
where the two-body potential is of the van der Waals form
Vvdw ≡ h̄V (r′ − r) = h̄C6/|r′ − r|6 (C6 is dispersion parame-
ter, which may be positive or negative).

From the Hamiltonian given above, we obtain the optical
Bloch equation

∂ρ

∂t
= − i

h̄
[Ĥ , ρ] − �[ρ], (3)

where ρ is the density matrix, with matrix elements ραβ ≡
〈Ŝαβ〉 [53], and � is a relaxation matrix, contributed by the
spontaneous emission and dephasing. The explicit form of
Eq. (3) is given in the Appendix.

The evolution of the probe field is controlled by the
Maxwell equation, which under the slowly varying amplitude
approximation reads

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p + 1

2kp

(
∂2

∂x2
+ ∂2

∂y2

)
�p + κ13ρ31 = 0,

(4)

where κ13 = Nα (ep · p13)2ωp/(2ε0 h̄c) is a constant describing
the coupling between the probe field and the atomic gas.
For convenience and without loss of generality, the propa-
gation direction of the probe field is assumed to be along
the z direction, i.e., kp = (0, 0, kp); furthermore, in order to
suppress the Doppler effect, the wave vectors of the control
and assisted fields are taken to be along, respectively, the
positive and negative z directions, [i.e., kc = (0, 0, kc) and
ka = (0, 0,−ka)].

B. Nonlinear envelope equation

We now derive the nonlinear equation that describes the
nonlinear evolution of the probe-field envelope beyond the
mean-field approximation. We assume that atoms are initially
populated only in the ground state |1〉. Since the probe field is
weak, the population in atomic levels changes not much when
the probe field is applied to the system, and hence a method
of multiple scales [3,52,54,55] can be employed to solve
the Maxwell-Bloch (MB) equations (3) and (4). To be con-
crete, we employ the asymptotic expansions �p = ε�(1)

p +
ε2�(2)

p + · · · and ραβ = ρ
(0)
αβ + ερ

(1)
αβ + · · · , where ε is a small

parameter characterizing the typical amplitude of the probe
field and multiple scale variables z j = ε jz ( j = 0, 1, 2), t j =
ε jt ( j = 0, 1), x1 = εx, and y1 = εy. Substituting expansions
in Eqs. (3) and (4) and comparing powers of ε, we obtain a set
of equations at different orders, which can be solved order by
order.

The linear evolution of the system is described by the
solution at the first-order approximation. The probe field at
this order reads �(1)

p = F exp {i[K (ω)z0 − ωt0]}, here F is an
envelope function of the slow variables x1, y1, z1, t1, and z2.
The linear dispersion relation reads

K (ω) = ω/c − κ13(ω + d21)(ω + d41)/D(ω), (5)

with D(ω) = (ω + d21)(ω + d31)(ω + d41) − |�a|2(ω +
d21) − |�c|2(ω + d41).

With the first-order solution in hand, one can go to the
second- and third-order approximations. Then a (3 + 1)D

envelope equation for the envelope F including diffraction,
dispersion, and nonlocal Kerr nonlinearity can be obtained,
which after returning to the original variables has the form

i
∂U

∂z
= − 1

2kp
∇2

⊥U + K2

2

∂2U

∂T 2

+
∫

d3r′H (r − r′)|U (r′, T )|2 U (r, T ) − i
α0

2
U,

(6)

with ∇2
⊥ = ∂2/∂x2 + ∂2/∂y2, U = εF exp(−iα0z), α0 =

Im(K ), and T = t − z/Vg. Here, Vg = (∂K/∂ω)−1 is the group
velocity, K2 = ∂2K/∂ω2 is the group velocity dispersion,
and H (r − r′) = κ13Nad21�

∗
aa(3)

44,41(r′, r)/D is the nonlinear
response function contributed by the Rydberg-Rydberg in-
teraction. The detailed derivation of the nonlocal nonlinear
Schrödinger (NLS) equation (6) and the explicit expression
of a(3)

44,41 are presented in Appendix. Notice that (i) for
avoiding the excitation of other atomic states, the spectral
width of the probe field is assumed to be narrow enough
(the spectral width of the probe field is ∼107 Hz, which is
smaller by 8 orders of magnitude when compared with the
central frequency of the probe field, ωp ∼ 1015 Hz), so the
expressions of Vg, K2, H , and α0 have been simplified by
taking ω = 0, and (ii) due to the EIT effect, the imaginary
parts of Vg and K2 are much smaller than their corresponding
real parts, i.e., Vg = Re(Vg) + iIm(Vg) ≈ Re(Vg) and K2 =
Re(K2) + iIm(K2) ≈ Re(K2), and they can be neglected.

C. Explicit form of the nonlinear response function

For simplification of the following discussions, we as-
sume that the typical length of the probe-field envelope is
much larger than the range of Rydberg-Rydberg interaction,
so that a local approximation along the z direction can be
made. In this situation, the last term on the left-hand side
of Eq. (6) can be reduced to the form

∫∫
dx′dy′G(r⊥ −

r′
⊥)|U (r′

⊥, z)|2 U (r⊥, z), where r⊥ ≡ (x, y), and G(r⊥ −
r′
⊥) ≡ ∫

dz H (r⊥ − r′
⊥, z) is the reduced response function.

In the following calculations, a cold gas of 88Sr atoms
is chosen. The atomic levels are assigned to be |1〉 =
|5S1/2, F = 1〉, |2〉 = |5S1/2, F = 2〉, |3〉 = |5P3/2, F = 3〉,
and |4〉 = |nS1/2〉, with n being the principle quantum num-
ber. The parameters of the system are given by �2 = 2π ×
10 kHz, �3 = 2π × 16 MHz, �4 = 2π × 16.7 kHz, �2 =
10 MHz, �3 = 350 MHz, �4 = 15 MHz. �c = 100 MHz,
�a = 60 MHz, Na = 1.0 × 1010 cm−3 (corresponding to
κ13 = 4.35 × 107 cm−1 Hz), and C6 = −2π × 81.6 GHz
μm6 (for n = 60) [56]. With these parameters, we obtain
the explicit expression of the reduced nonlinear response
function:

G(r⊥ − r′
⊥) ≈ −(24.25 + i4.00)

×
∫

dz

{
1 + i0.22 + [(r⊥ − r′

⊥)2 + z2]3

(1.01Rb)3

}−1

.

(7)

Here Rb ≡ (|C6|/|δEIT|)1/6 is the radius of the Rydberg block-
ade, with δEIT ≡ |�c|2/|�3 + iγ31| being the linewidth of the
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EIT transmission spectrum (or the width of the EIT trans-
parency window). Based on the above parameters, under our
consideration Rb ≈ 5.1 μm; in addition, since G is negative,
the nonlocal Kerr nonlinearity of the system is a self-focusing
one.

For convenience, we write Eq. (6) in the dimensionless
form

i
∂u

∂s
= −β0∇̃2

⊥u + ρ0
∂2u

∂τ 2
+

∫∫
d2ζ ′g(
ζ − 
ζ ′)|u(
ζ ′, τ )|2

× u(
ζ , τ ) − iγ0u, (8)

with u = U/U0, s = z/(2Ldisp), 
ζ = (ξ, η) = (x, y)/R0,
∇̃2

⊥ = ∂2/∂ξ 2 + ∂2/∂η2, τ = t/τ0, β0 = Ldisp/Ldiff ,
ρ0 = sgn[Re(K2)], γ0 = Ldisp/Labs, and d2ζ ′ = dξ ′dη′.
Here R0, U0, and τ0 are respectively the typical
transverse size, Rabi frequency, and pulse duration of
the probe field; Ldisp ≡ τ 2

0 /|Re(K2)|, Ldiff ≡ ωpR2
0/c, and

γ0 = Ldisp/Labs (with Labs ≡ 1/α0) are respectively the
typical dispersion, diffraction, and absorption lengths;
and sgn[Re(K2)] is a sign function of Re(K2), i.e.,
sgn[Re(K2)] = 1 (= −1) when Re(K2) > 0 [Re(K2) < 0].
The dimensionless response function in Eq. (8) is defined by
g(
ζ ) = 4τ 4

0 R2
0G(
ζ )|U0|2/[Re(K2)]2, reading as

g(
ζ ) ≈ −(1.12 + i0.19) × 10−3 g0

∫
ds

{
1 + i0.22 +

[
(
ζ − 
ζ ′)2 + 4τ 4

0 s2/
[
Re(K2)2R2

0

]]3

(1.01Rb/R0)6

}−1

, (9)

where g0 = ∫∫
d2ζ ′g(
ζ − 
ζ ′) is a nonlinear parameter char-

acterizing the magnitude of the nonlocal Kerr nonlinearity.
Figure 1(b) shows the shape of g as a function of ξ and η.
One sees that the imaginary part Im(g) is much smaller than
the real part Re(g).

The nonlocal property of the Kerr nonlinearity can be
characterized by its nonlocality degree, defined by

σ ≡ Rb/R0. (10)

When the transverse size of the probe pulse is much larger
than the radius of the Rydberg blockade, i.e., R0 � Rb, one
has σ ≈ 0, in which case the nonlocal Kerr nonlinearity
becomes a local one and the nonlocal NLS equation (8) is
reduced to a NLS equation with a local Kerr nonlinearity.
However, if R0 � Rb, the nonlocal effect of the Kerr nonlin-
earity plays a significant role in the propagation and stability
of high-dimensional probe pulses.

III. NONLOCAL NONLINEAR X WAVES
AND THEIR STABILITY

A. Formation of nonlinear X waves

We now turn to consider the formation and propagation
of NLOXWs in the system. Since the system is actively
controllable, we can adjust the sign and the magnitude of K2

(i.e., the group velocity dispersion) through tuning the one-
and two-photon detunings �2 and �3. In order to realize
NLOXWs, one must have Re(K2) > 0, and hence ρ0 = 1.
Shown in Fig. 1(c) is the result of Re(K2) as a function of
�2 and �3. The dashed line in the figure is the one for
Re(K2) = 0. NLOXWs are allowed (not allowed) in the region
for Re(K2) > 0 [Re(K2) < 0].

Based on the system parameters given in the last subsection
along with the pulse duration τ0 ≈ 0.3 × 10−7 s, we have
Ldisp ≈ Ldiff = 1.6 cm and Labs = 197 cm, and hence β0 = 1
and γ0 ≈ 0. As a result, Eq. (8) is reduced to

i
∂u

∂s
= −∇̃2

⊥u + ∂2u

∂τ 2
+

∫∫
d2ζ ′g(
ζ − 
ζ ′)|u(
ζ ′, s)|2 u(
ζ , s).

(11)

Equation (11) is now a hyperbolic one with nonlocal Kerr non-
linearity; in the linear regime (i.e., g0 = 0), which is valid for
the very low probe-field intensity, it admits the s-independent
X wave solution

u = 1√
(ξ 2 + η2) + (δ0 − iτ )2

, (12)

where δ0 is a free parameter, characterizing the localization
degree of the solution; i.e., the smaller δ0 is, the stronger the
localization of the X wave is.

The linear X wave solution [Eq. (12)] describes an X -
shaped wave packet localized in both time and transverse
directions. Although such a wave can propagate stably, it
cannot be generated spontaneously and its production needs
a sophisticated input-beam shaping technique. To avoid such
a requirement, one can introduce nonlinearity into the system,
so that a nonlinear X wave is spontaneously generated via
a self-induced spectral reshaping mechanism, which can be
realized by using an input of simple Gaussian or other type of
wave packet [6].

Based on such an idea, we carried out a numerical simula-
tion for the formation and propagation of optical X waves in
the Rydberg atomic gas in both linear and nonlinear regimes.
Shown in Figs. 2(a) and 2(b) are the results of linear (i.e.,
g0 = 0) probe pulses in the η = 0 plane as functions of ξ =
x/R0 and τ = t/τ0 when propagating to z = 2Ldisp = 3.2 cm,
with the initial conditions respectively given by Eq. (12)
and u(s = 0) = e−(ξ 2+η2+τ 2 )/4. We see that, compared with
the case shown in Fig. 2(a) where the X wave propagates
quite stably, the probe pulse with the input of a Gaussian
wave packet [Fig. 2(b)] spreads out rapidly and it cannot be
transformed spontaneously into an X -shaped wave during the
propagation. Nevertheless, when a local Kerr nonlinearity of
the system is taken into account, the probe pulse with the input
of a Gaussian wave packet may transform into an X wave, i.e.,
NLOXW, which is illustrated in Fig. 2(c) where the magnitude
of the Kerr nonlinearity and the nonlocality degree are taken
to be g0 = 2 and σ = 0, respectively. However, the NLOXW
obtained is unstable and it generates vortices during propa-
gation. Figure 2(d) shows the phase of the wave function for
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FIG. 2. Formation and propagation of local X waves. (a) Linear
X wave as a function of x/R0 and t/τ0 when propagating to z =
2Ldisp = 3.2 cm, with the initial condition given by Eq. (12). (b) The
same as panel (a) but for the input of a Gaussian wave packet, with
the wave function u(s = 0) = e−(ξ2+η2+τ2 )/4. (c) Local nonlinear X
wave when propagating to z = 2Ldisp = 3.2 cm, by taking a Gaussian
wave packet as an input. The magnitude of the Kerr nonlinearity and
the nonlocality degree are g0 = 2 and σ = 0, respectively. (d) The
phase of the wave function for the local nonlinear X wave. The
generation of quantized vortex-antivortex pairs is indicated by the
solid and dashed circles.

the local nonlinear X wave generated from a Gaussian wave
packet, where quantized vortex-antivortex pairs are indicated
by the solid and dashed circles.

B. Stabilization of the nonlinear X waves

The numerical result given in the last subsection shows
that the NLOXWs obtained by a local Kerr nonlinearity
are unstable during propagation. It is necessary to know
under what conditions these waves are stable and under
what conditions they are not. To acquire a “phase diagram”
on the stability of NLOXWs, here we carry out a general
liner stability analysis of the nonlocal NLS equation (11).
To this aim, we assume u = [u0(
ζ , τ ) + f̃ (
ζ , τ ) exp(iλs) +
g̃∗(
ζ , τ ) exp(−iλ∗s)] exp(iqs). Here u0(
ζ , τ ) is the wave func-
tion of a nonlinear X wave, f̃ (
ζ , τ ) and g̃(
ζ , τ ) denote the
amplitudes of perturbations acting on the X wave, and λ is the
growth rate of the perturbations. Substituting this expression
in Eq. (11), we obtain the following linear eigenvalue prob-
lem:

λ f̃ =
(

∇̃2
⊥ − ∂2

∂τ 2
− q

)
f̃ − n f̃ − u0(
ζ , τ )�n, (13a)

λg̃ =
(

−∇̃2
⊥ + ∂2

∂τ 2
+ q

)
g̃ + ng̃ + u∗

0(
ζ , τ )�n, (13b)

where n= ∫∫
d2ζ ′g(
ζ−
ζ ′)|u0(
ζ , τ )|2 and �n= ∫∫

d2ζ ′g(
ζ −

ζ ′)[u0(
ζ ′, τ )g̃(
ζ ′) + u∗

0(
ζ ′, τ ) f̃ (
ζ ′)]. Equation (13) can be
solved numerically by using a plane-wave expansion method
[57]. NLOXWs are stable if Im(λ) = 0 for all the eigenvalues
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FIG. 3. (a) “Phase diagram” of the stability and the instability
of NLOXWs in the plane of the nonlinear parameter g0 and the
nonlocality degree σ of the Kerr nonlinearity. The solid black line
is the boundary between the stability and the instability regions. The
inset zooms in the stability and instability regions for the interval
0 < g0 < 2. (b) Light intensity distribution of a stable NLOXW as
a function of x/R0 and t/τ0 when the NLOXW propagates to z =
2Ldisp = 3.2 cm, by taking (g0, σ ) = (6, 1.3) [labeled by the point
“A” in the stable region of panel (a). (c) The same as panel (b) but
for an unstable NLOXW, by taking (g0, σ ) = (6, 0.2) [labeled by the
point “B” in the unstable region of panel (a).

of λ, and they are unstable if there is at least one eigenvalue
of λ at which its imaginary part is nonzero, i.e., Im(λ) �= 0.

Shown Fig. 3(a) is the “phase diagram” of the stability of
NLOXWs in the plane of the magnitude g0 and the nonlocality
degree σ of the Kerr nonlinearity, in which the left-upper
(right-lower) region is the one where NLOXWs are stable
(unstable). The solid black line in the figure is the boundary
between the stability and the instability regions. The inset
zooms in the stability and instability regions for the interval
0 < g0 < 2. From the figure we obtain the following conclu-
sions: (i) linear X waves (corresponding to g0 = 0) are stable,
(ii) NLOXWs are unstable for the Kerr nonlinearity with zero
or small nonlocality degree σ , and (iii) NLOXWs can be
stabilized by increasing the nonlocality degree σ of the Kerr
nonlinearity. Particularly, the stability domain can be greatly
enlarged as σ is increased. Figure 3(b) shows the intensity
distribution of a stable NLOXW by taking (g0, σ ) = (6, 1.3)
[labeled by “A” in Fig. 3(a)] when it propagates to the distance
z = 2Ldisp = 3.2 cm. For comparison, the intensity distribu-
tion of an unstable NLOXW by taking (g0, σ ) = (6, 0.2)
[labeled by “B” in Fig. 3(a) is illustrated in the right-lower
panel of the figure. The stable NLOXW has no obvious
distortion during propagation, while the unstable NLOXW
deforms significantly and its intensity maximum is increased
by three times compared with that of its input.

The propagation speed of the stable NLOXW is mainly
determined by the group velocity of the probe-pulse envelope.
Based on the system parameters given above, we obtain

Vg ≈ 4.4 × 10−3c, (14)

which is very slow compared with c (the light speed in
vacuum), resulting from the EIT effect in the system. The
threshold of the optical power Pth for generating the NLOXW
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can be estimated by estimating the Poynting’s vector [3,52].
Taking into account that the typical half Rabi frequency U0 of
the probe pulse is about 1 order of magnitude smaller than �c,
i.e., U0 ∼ 106 Hz, together with the cross-section area of the
probe pulse, ∼0.02 mm2, we obtain

Pth ≈ 1.8 nW. (15)

We see that a very low input power is needed to generate
NLOXWs in the present system. The reason is that the system
has largely enhanced Kerr nonlinearity due to the Rydberg-
Rydberg interaction. Thereby, the NLOXWs proposed here
are completely different from those nonlinear X waves ob-
tained by using other passive optical media, which have the
propagation speed very close to c and require a very high
generation power in order to bring enough nonlinear effect to
trigger the self-induced spectral reshaping for the formation
of NLOXWs [6,9,11].

IV. ACTIVE MANIPULATION OF THE
NONLINEAR X WAVES

A. External potential induced by a gradient magnetic field

Last, we study the active manipulation of the nonlocal
NLOXWs in the system. As an example, we assume that a
gradient magnetic field is applied to the atomic gas along the
z direction, with the form

B(x, y) = ẑB(r⊥) = ẑ(B1x + B2y), (16)

where ẑ is the unit vector in the z direction, and B1 and B2

characterize the gradients of the magnetic field along the x and
y directions, respectively. Due to the presence of the magnetic
field, each atomic level is split into a series of Zeeman
sublevels with the energy �EZeeman = μBgα

F mα
F B, where μB,

gα
F , and mα

F are the Bohr magneton, the gyromagnetic factor,
and the magnetic quantum number of level |α〉, respectively.
As a result, the one- and two-photon detunings �2 and �3

are changed into �2(r⊥) = (ωp − ωc − ω21) + μ21B(r⊥) and
�3(r⊥) = (ωp − ω31) + μ31B(r⊥), with μαβ = μB(gα

F mα
F −

gβ
F mβ

F )/h̄.
The nonlinear envelope equation in the presence of the

gradient magnetic field can also be derived by means of the
multiple-scale perturbation method [58], which has the same
form as Eq. (6), except that an additional term, −P(r⊥)U ,
appears on the right-hand side of the equation. Here

P(r⊥) = κ13
|�c|2μ21 + d (0) 2

21 μ31(|�c|2 − d (0)
21 d (0)

31

)2 (B1x + B2y) (17)

plays the role of an external potential, contributed by the
gradient magnetic field. Then the dimensionless form of the
nonlinear envelope equation in the presence of the magnetic
field is given as

i
∂u

∂s
= −1

2

(
∇̃2

⊥ − ∂2

∂τ 2

)
u − Q(
ζ )u

+
∫∫

d2ζ ′g(
ζ − 
ζ ′)|u(
ζ ′, s)|2 u − iγ0u, (18)

where Q(
ζ ) = Q1ξ + Q2η is the dimensionless external po-
tential, with

Q1 = κ13
|�c|2μ21 + d2

21μ31

(|�c|2 − d21d31)2
LdispR0B1,

Q2 = κ13
|�c|2μ21 + d2

21μ31

(|�c|2 − d21d31)2
LdispR0B2. (19)

B. Transverse deflection of the nonlocal nonlinear X waves

We now show that the gradient magnetic field can be used
to actively control the motion of the nonlocal NLOXWs.
To demonstrate this, we first consider Eq. (18) in the ab-
sence of the optical Kerr nonlinearity (i.e., g0 = 0) and in
the low-loss limit (i.e., γ0 ≈ 0, which is true due to the
EIT effect). Using the transformation u = u′ exp[i(Q1ξ

′ +
Q2η

′ + Q2
1s2/3 + Q2

2s2/3)s], with ξ ′ = ξ − Q1s2/2 and η′ =
η − Q2s2/2, Eq. (18) is converted into the form i∂u′/∂s =
−(1/2)(∂2/∂ξ ′ 2 + ∂2/∂η′ 2 − ∂2/∂τ 2)u′, which admits the
exact X wave solution

u = e−i[Q1(ξ−Q1s2/2)+Q2(η−Q2s2/2)+Q2
1s2/3+Q2

2s2/3]s√
(ξ − Q1s2/2)2 + (η − Q2s2/2)2 + (�0 − iτ )2

(20)

when returning to the ξ -η variables, where �0 is a constant.
Obviously, the position of the center of the X wave in the ξ -η
plane is given by (ξ, η) = (Q1s2/2, Q2s2/2). Returning to the
original x-y-z variables, the position of the center reads

(x, y) = κ13
|�c|2μ21 + d (0) 2

21 μ31

8
(|�c|2 − d (0)

21 d (0)
31

)2

R2
0

Ldisp
z2(B1, B2). (21)

We see that, due to the presence of the magnetic field, the
motion of the X wave is changed and its trajectory in the
x-y plane has a deflection with a quadratic dependence on
the propagation coordinate z; moreover, the trajectory can be
controlled by tuning the gradient of the magnetic field, i.e., by
manipulating the parameters B1 and B2.

In the presence of the nonlocal Kerr nonlinearity (i.e.,
nonlinearity parameter g0 �= 0), an exact X wave solution is
not possible. However, we can solve Eq. (18) numerically to
obtain the trajectory deflection of NLOXW. Shown in the up-
per part of Fig. 4(a) are three-dimensional motion trajectories
of a NLOXW for the nonlinear parameter g0 = 1 as functions
of x/R0, y/R0, and z/Ldisp in the presence of the gradient
magnetic field; the solid red line (trajectory A), the dashed
blue line (trajectory B), and the dotted green line (trajectory
C) are for (B1, B2) = (50, 0) G cm−1, (0, 50) G cm−1, and
(50, 50) G cm−1, respectively. The lower part of the figure
shows the light-intensity distributions of the NLOXW in the
x-y plane; the left, middle, and right panels are for trajectories
A, B, and C in the upper part when the NLOXW propagates
to z ≡ 2Ldisp = 3.2 cm. From the figure, one can see that the
NLOXW experiences indeed a trajectory deflection due to the
role played by the magnetic field; furthermore, the trajectory
can be changed significantly by using different gradients (i.e.,
different B1 and B2) of the magnetic field.

Shown in Fig. 4(b) is the deflection of the central position
of the NLOXW in the x direction as a function of z/Ldisp (left
panel) and B1 (right panel). The dashed red line in the figure
is obtained by the analytical solution (21); the blue circles and
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FIG. 4. Trajectory deflection of the nonlocal nonlinear X waves.
(a) Upper part: Three-dimensional motion trajectories of a NLOXW
for the nonlinear parameter g0 = 1 as functions of x/R0, y/R0,
and z/Ldisp in the presence of the gradient magnetic field. The
solid red line (trajectory A), dashed blue line (trajectory B), and
dotted green line (trajectory C) are for (B1, B2) = (50, 0) G cm−1,
(0, 50) G cm−1, and (50, 50) G cm−1, respectively. Lower part:
Light-intensity distributions of the NLOXW in the x-y plane. The
left, middle, and right panels are for trajectories A, B, and C in the
upper panel when the NLOXW propagates to z ≡ 2Ldisp = 3.2 cm.
(b) Deflection of the central position of the NLOXW in the x
direction as a function of z/Ldisp (left panel) and B1 (right panel),
where the dashed red line is obtained by the analytical solution (21).
Blue circles and green rectangles are respectively for the nonlocality
degree of the Kerr nonlinearity σ = 0 and σ = 10, obtained numeri-
cally by solving Eq. (18) numerically.

green rectangles are respectively for the nonlocality degree
of the Kerr nonlinearity σ = 0 and σ = 10, obtained numeri-
cally by solving Eq. (18) numerically. We see that the position
deflection of the NLOXW in the presence of local Kerr
nonlinearity (i.e., σ = 0), shown by the blue circles, is the
same as that of the linear X wave solution (21) (shown by the
red dashed lines). In particular, the position of the NLOXW
may have a displacement of 3.2 μm when B1 = 50 G cm−1

for the propagation distance z ≈ 3.2 cm, corresponding to the
deflection angle around ≈10−4 rad. Note that this deflection
angle is 1 order of magnitude larger than that obtained in
Ref. [59]. The physical reason for such large deflection is
contributed by the EIT effect in the system [59–61]. As a
potential application, the significant deflection of the NLOXW
can be used in the precision measurement of external magnetic
fields.

We have also carried out a numerical simulation on the
position deflection of the NLOXW for a large nonlocality
degree of the Kerr nonlinearity by taking σ = 10, with the
result plotted by the green rectangles in Fig. 4(b). One sees
that in this case the deflection of the NLOXW is greatly
reduced. The physical reason behind this can be understood
as follows. For a large nonlocal Kerr nonlinearity, all the
photons in the probe pulse see almost the same Rydberg-
Rydberg interaction, and hence the nonlocal nonlinear term in
Eq. (18) may be reduced into an effective parabolic potential
of the form Veff (
ζ ) = G0P0 |
ζ |2 = G0P0 (ξ 2 + η2) (G0 and
P0 are constants) [52], which can trap the NLOXW. As a
result, the transverse deflection of the NLOXW is largely
suppressed.

V. SUMMARY

In this work, we have presented a scheme for realizing
NLOXWs in a cold gas of Rydberg atoms. By means of the
EIT and the Rydberg-Rydberg interaction, we have shown
that high-dimensional, low-loss, nonlocal NLOXWs can be
generated spontaneously by using simple inputs of Gaussian
pulses when the dispersion in the system takes an opposite
sign compared with that of the diffraction in the transverse
dimensions; moreover, such NLOXWs may propagate with
ultraslow velocity and can be generated at extremely low
input power due to the EIT effect and the enhanced opti-
cal Kerr nonlinearity in the system. Furthermore, we have
identified the stability and instability regions of NLOXWs
and found that the stability region can be enlarged by in-
creasing the nonlocality degree of the Kerr nonlinearity. In
addition, we have demonstrated that the motion trajecto-
ries of NLOXWs can be actively controlled and manipu-
lated by using an external gradient magnetic field. Our re-
search opens a route for generating and actively controlling
NLOXWs and may have have promising applications in pre-
cision measurement and optical information processing and
transmission.
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APPENDIX: EXPLICIT EXPRESSION OF THE BLOCH
EQUATION AND DERIVATION OF NONLINEAR

ENVELOPE EQUATION

1. Explicit expression of the Bloch equation

From the Hamiltonian given in the main text, we can obtain
the explicit expression of optical Bloch equation (3) for the
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one-body density matrix elements ραβ ≡ 〈Ŝαβ〉 [53]:

i
∂

∂t
ρ11 − i�12ρ22 − i�13ρ33 − �pρ13 + �∗

pρ31 = 0, (A1a)

i
∂

∂t
ρ22 + i�12ρ22 − i�23ρ33 − �cρ23 + �∗

cρ32 = 0, (A1b)

i
∂

∂t
ρ33 + i�3ρ33 − i�34ρ44 + �pρ13 − �∗

pρ31 + �cρ23 − �∗
cρ32 − �aρ34 + �∗

aρ43 = 0, (A1c)

i
∂

∂t
ρ44 + i�34ρ44 + �aρ34 − �∗

aρ43 = 0, (A1d)(
i
∂

∂t
+ d21

)
ρ21 + �∗

cρ31 − �pρ23 = 0, (A1e)

(
i
∂

∂t
+ d31

)
ρ31 + �p(ρ11 − ρ33) + �cρ21 + �∗

aρ41 = 0, (A1f)

(
i
∂

∂t
+ d41

)
ρ41 + �aρ31 − �pρ43 − Nα

∫
d3r′V (r′ − r)ρ44,41(r′, r, t ) = 0, (A1g)

(
i
∂

∂t
+ d32

)
ρ32 + �pρ12 + �c(ρ22 − ρ33) + �∗

aρ42 = 0, (A1h)

(
i
∂

∂t
+ d42

)
ρ42 + �aρ32 − �cρ43 − Nα

∫
d3r′V (r′ − r)ρ44,42(r′, r, t ) = 0, (A1i)

(
i
∂

∂t
+ d43

)
ρ43 + �a(ρ33 − ρ44) − �∗

pρ41 − �∗
cρ42 − Nα

∫
d3r′V (r′ − r)ρ44,43(r′, r, t ) = 0, (A1j)

with dαβ = �α − �β + iγαβ and γαβ = (�α + �β )/2 + γ
dep
αβ .

Here �β = ∑
α<β �αβ , with �αβ being the spontaneous emis-

sion decay rate and γ
dep
αβ the dephasing rate from the state |β〉

to the state |α〉. Note that, in the above equations for the one-
body density matrix elements ραβ , two-body density matrix
elements ραβ,μν (r′, r, t ) ≡ 〈Ŝαβ (r′, t )Ŝμν (r, t )〉 are involved.
Thereby, to solve Eq. (A1), one needs to solve also the
equations of the two-body density matrix elements ρραβ ,μν ,
which will involve three-body density matrix elements, and so
on. Equations for the two-body and three-body density matrix
elements are too lengthy and thus are omitted here.

2. Derivation of the nonlinear envelope equation

We first focus on the equations of the one-body den-
sity matrix elements ραβ presented above. We employ the
method of multiple scales and the approach of the beyond
mean-field approximation developed in Refs. [52,54,55] to
solve the MB equations (A1) and (4). To this end, we make
the asymptotic expansions �p = ∑

j=1 ε j�
( j)
p and ραβ =

δα1δβ1 + ∑
j=1 ε jρ

( j)
αβ . Here ε is a small parameter character-

izing the typical amplitude of the probe field, �
( j)
p and ρ

( j)
αβ

are functions of the multiple-scale variables z j = ε jz ( j =
0, 1, 2), t j = ε jt ( j = 0, 1), x1 = εx, and y1 = εy. Substitut-
ing these expansions into Eqs. (A1) and (4) and comparing
powers of ε, we obtain a set of equations for different orders,
which can be solved order by order. Note that, to derive the
nonlinear envelope equation (6), the key is to get the solution
of ρ31 up to the third-order approximation of the probe field,
i.e., ρ31 = ερ

(1)
31 + ε2ρ

(2)
31 + ε3ρ

(3)
31 .

(i) First-order approximation. The solution of the probe
field at this order has the form �(1)

p = F exp[i(Kz0 − ωt0)],
where F = F (r1, t1, z2) [with r1 = (x1, y1, z1)] is an en-
velope function undetermined yet and K (ω) is the lin-
ear dispersion relation given by formula (5). The solu-
tion of nonzero matrix elements at this order reads ρ

(1)
21 =

a(1)
21 F exp[i(Kz0 − ωt0)], ρ

(1)
31 = a(1)

31 F exp[i(Kz0 − ωt0)], and
ρ

(1)
41 = a(1)

41 F exp[i(Kz0 − ωt0)], where a(1)
21 , a(1)

31 , and a(1)
41 are

determined by the equation

⎛
⎝ω + d21 �∗

c 0
�c ω + d31 �∗

a

0 �a ω + d41

⎞
⎠

⎛
⎜⎝

a(1)
21

a(1)
31

a(1)
41

⎞
⎟⎠ =

⎛
⎝ 0

−1
0

⎞
⎠. (A2)

Thus, we have a(1)
21 = �∗

c (ω + d41)/D(ω), a(1)
31 = −(ω +

d21)(ω + d41)/D(ω), and a(1)
41 = �a(ω + d21)/D(ω), where

D(ω) = (ω + d21)(ω + d31)(ω + d41) − |�a|2(ω + d21) −
|�c|2(ω + d41).

(ii) Second-order approximation. A solvability condition at
this order gives the equation

i

(
∂F

∂z1
+ 1

Vg

∂F

∂t1

)
= 0, (A3)

where Vg = (∂K/∂ω)−1 is the group velocity of the probe-
field envelope. The solutions of nonzero matrix elements
at this order are found to be ρ

(2)
21 = a(2)

21 ∂F/∂t1ei(Kz0−ωt0 ),
ρ

(2)
31 = a(2)

31 ∂F/∂t1ei(Kz0−ωt0 ), ρ
(2)
41 = a(2)

41 ∂F/∂t1ei(Kz0−ωt0 ),
ρ

(2)
32 = α

(2)
32 |F |2, ρ

(2)
42 = a(2)

42 |F |2, ρ
(2)
43 = a(2)

43 |F |2, and

053832-8



NONLOCAL NONLINEAR OPTICAL X WAVES … PHYSICAL REVIEW A 101, 053832 (2020)

ρ (2)
αα = a(2)

αα |F |2 (α = 1, 2, 3, 4). Here a(2)
21 , a(2)

31 , and a(2)
41 read as

a(2)
21 = −i

(ω+d31)(ω + d41)−|�a|2
D

a(1)
21 + i

(ω+d41)�∗
c

D
a(1)

31 − i
�∗

c�
∗
a

D
a(1)

41 , (A4a)

a(2)
31 = i

(ω + d41)�c

D
a(1)

21 − i
(ω + d21)(ω + d41)

D
a(1)

31 + i
(ω + d21)�∗

a

D
a(1)

41 , (A4b)

a(2)
41 = −i

�c�a

D
a(1)

21 + i
(ω + d21)�a

D
a(1)

31 − i
(ω + d21)(ω + d31) − |�c|2

D
a(1)

41 , (A4c)

and a(2)
32 , a(2)

42 , and a(2)
43 satisfy the equation⎛

⎜⎝
d32 �∗

a 0

�a d42 −�c

0 −�∗
c d43

⎞
⎟⎠

⎛
⎜⎝

a(2)
32

a(2)
42

a(2)
43

⎞
⎟⎠ =

⎛
⎜⎝

�c
(
a(2)

33 − a(2)
22

) − a(1)
12

0

�a
(
a(2)

44 − a(2)
33

) + a(1)
41

⎞
⎟⎠. (A5)

Here a(2)
αα (α = 1, 2, 3, 4) satisfy the equation⎛

⎜⎜⎜⎝
0 �12 �13 0

0 −�12 �23 0

0 0 −�13 − �23 �34

1 1 1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

a(2)
11

a(2)
22

a(2)
33

a(2)
44

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

2Im
(
a(1)

31

)
2Im

(
�∗

ca(2)
32

)
2Im

(
a(1)∗

31 + �ca(2)∗
32 + �∗

aa(2)
43

)
0

⎞
⎟⎟⎟⎟⎠. (A6)

By solving these two equations, the explicit expressions of a(2)
32 , a(2)

42 , a(2)
43 , and a(2)

αα can be obtained.
(iii) Third-order approximation. The solution of ρ

(3)
α1 (α = 2, 3, 4) can be obtained from the equation⎛

⎜⎝
ω + d21 �∗

c 0

�c ω + d31 �∗
a

0 �a ω + d41

⎞
⎟⎠

⎛
⎜⎝

ρ
(3)
21

ρ
(3)
31

ρ
(3)
41

⎞
⎟⎠

=

⎛
⎜⎝

a(2)
23

a(2)
33 − a(2)

11

a(2)
43

⎞
⎟⎠|F |2Fei(Kz0−ωt0 ) +

⎛
⎜⎝

0

0

Na
∫

r′
1V (r′

1 − r1)ρ (3)
44,41(t0, z0, r′

1, r1, t1, z2)

⎞
⎟⎠. (A7)

Notice that to obtain the solutions of ρ
(3)
31 , equations for some two-body density matrix elements ραβ,μν must be solved. These

two-body density matrix elements are nonzero starting at the second order, so they can be assumed to have the form ραβ,μν =
ε2ρ

(2)
αβ,μν + ε3ρ

(3)
αβ,μν + · · · . The second-order solution has the form ρ

(2)
α1,β1 = a(2)

α1,β1|�p|2 (α, β = 2, 3, 4), where a(2)
α1,β1 satisfy

the following equations:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω + d21 0 0 �∗
c 0 0

0 ω + d31 0 �c 0 �∗
a

0 0 ω + d41 − V/2 0 0 �a

�c �∗
c 0 2ω + d21 + d31 �∗

a 0

0 0 0 �a 2ω + d21 + d41 �∗
c

0 �a �∗
a 0 �c 2ω + d31 + d41

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a(2)
21,21

a(2)
31,31

a(2)
41,41

a(2)
21,31

a(2)
21,41

a(2)
31,41

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

a(1)
31

0

a(1)
21

0

a(1)
41

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A8)

With these results, the third-order equations of the two-body density matrix elements (which are too lengthy and thus are not writ-
ten explicitly down here) can be solved, which have the solution of the form ρ

(3)
αβ,μν = a(3)

αβ,μν |�p(r′, t )|2�p(r, t ), where a(3)
αβ,μν

are functions of r′ − r and ω. The solution of ρ
(3)
44,41 can be written as ρ

(3)
44,41(r′

1, r1, t0, t1) = a(3)
44,41|F (r′

1, t1)|2F (r1, t1)ei(Kz0−ωt0 ),
with

a(3)
44,41 = A0 + A1V (r′ − r) + A2V (r′ − r)2 + A3V (r′ − r)3

B0 + B1V (r′ − r) + B2V (r′ − r)2 + B3V (r′ − r)3 + B4V (r′ − r)4
. (A9)

Here An and Bn (n = 0, 1, 2, 3, 4) are complex constants depending on the spontaneous emission decay rate �αβ , the dephasing
rate γ

dep
αβ , the detuning �α , and the half Rabi frequencies �a and �c; their explicit expressions are too lengthy and thus are

omitted here.
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With the expression of a(3)
44,41 at hand, we can acquire the solution of ρ

(3)
31 up to the third-order approximation through solving

Eq. (A7). Then, from the solutions of ρ
(1)
31 , ρ

(2)
31 , and ρ

(3)
31 given above and by a solvability condition, we obtain the nonlinear

equation for the envelope function F :

i
∂F

∂z2
= − 1

2kp

(
∂2F

∂x2
1

+ ∂2F

∂y2
1

)
+ K2

2

∂2F

∂t2
1

+
∫

d3r′
1H (r′

1 − r1)|F (r′
1, z2, t1)|2 F (r1, z2, t1), (A10)

where H (r′
1 − r1) = κ13Nad21�

∗
aa(3)

44,41(r′
1 − r1, ω)/D(ω) is the nonlocal nonlinear response function contributed by the

Rydberg-Rydberg interaction. Last, combining Eqs. (A3) and (A10), we obtain Eq. (6) in the main text.
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