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We propose a scheme to generate temporal vector optical solitons in a lifetime broadened five-state atomic
medium via electromagnetically induced transparency. We show that this scheme, which is fundamentally
different from the passive one by using optical fibers, is capable of achieving distortion-free vector optical
solitons with ultraslow propagating velocity under very weak drive conditions. We demonstrate both analyti-
cally and numerically that it is easy to realize Manakov temporal vector solitons by actively manipulating the
dispersion and self- and cross-phase modulation effects of the system.
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I. INTRODUCTION

The vector nature of light propagating in a nonlinear me-
dium has led to the discovery of a class of solitons, i.e.,
vector optical solitons, which are the solutions of two
coupled nonlinear Schrödinger �NLS� equations describing
the envelope evolution of two polarization components of an
electromagnetic field. In recent years, considerable attention
has been paid to the temporal �1–8� and spatial �9–13� vector
optical solitons in various nonlinear systems. Due to their
remarkable property, vector optical solitons have promising
applications for the design of new types of all-optical
switches and logic gates �14�.

Up to now, most vector optical solitons are produced in
passive media such as optical fibers �4–14�, in which far-off
resonance excitation schemes are employed in order to avoid
unmanageable optical attenuation and distortion. However,
due to the lack of distinctive energy levels, the nonlinear
effect in such passive media is very weak. Consequently, to
form vector solitons very high input light power and ex-
tended propagation distance are required. The propagating
velocity of the vector solitons produced in passive media is
also very close to c, the speed of light in vacuum. On the
other hand, the lack of distinctive energy levels and transi-
tion selection rules also makes an active control very diffi-
cult. In particular, it is hard to realize Manakov �15� temporal
vector optical solitons in optical fibers because the ratio be-
tween self-phase modulation �SPM� and cross-phase modu-
lation �CPM� is not unity and there is also detrimental energy
exchange between two polarization components due to the
existence of the four-wave mixing effect. Manakov vector
optical solitons are of great interest, not only because the
coupled NLS equations describing them have interesting
mathematical properties but also such solitons may have
promising practical applications, e.g., for realizing all-optical
computing �16�. Different from spatial Manakov vector op-
tical solitons, which have been observed more than 10 years
ago �11�, temporal Manakov vector optical solitons have not
been realized in experiment up to now.

It is well known that nonlinear optical processes can be
largely enhanced by utilizing resonant atomic systems �17�.
Unfortunately, attempts to use resonance enhancement have
long been frustrated for many years by the problem associ-
ated with serious optical absorption. However, this paradigm
has been challenged by the theoretical and experimental
studies on electromagnetically induced transparency �EIT�
�18�, which has received considerable interest in recent
years. For a three-state atomic system under EIT condition,
the absorption of a probe laser field tuned to a strong one-
photon resonance can be largely suppressed by the quantum
interference effect induced by a coupling laser field, and
hence an initially highly opaque optical medium may be-
come transparent. The optical wave propagation in such sys-
tem possesses many striking physical features, including the
significant reduction of group velocity �19,20� and the tre-
mendous enhancement of Kerr nonlinearity of the probe field
�21,22�. Recently, the resonant EIT media have been used to
realize the polarization qubit phase gate �23� and reversible
memory devices for the photon-polarization qubit �24�.

In this work, we propose an EIT scheme to generate tem-
poral vector optical solitons in a resonant five-level atomic
system. We show that two continuous-wave �cw� control
fields established prior to the injection of a pulsed probe field
induce a quantum interference effect, which can suppress
largely the absorption of the two orthogonal polarization
components of the probe field. The scheme suggested here is
fundamentally different from the passive ones due to the ex-
istence of distinctive energy levels that make an active ma-
nipulation on the dispersion and nonlinear effects of the sys-
tem possible. In addition, contrary to all passive schemes the
vector optical solitons produced in the present system may
have ultraslow propagating velocity and their production
needs only very weak input power and very short propagat-
ing distance. Furthermore, the controllability of the present
scheme allows us also to realize easily temporal Manakov
vector optical solitons by actively adjusting the parameters
of the system. Notice that scalar ultraslow optical solitons
and soliton pairs in EIT media have been investigated re-
cently �25–29�. The formation of the weak-light scalar spa-
tial solitons and the two-component Thirring-type spatial
solitons have also been investigated in EIT-based systems*Corresponding author. gxhuang@phy.ecnu.edu.cn
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�30–33�. However, up to now there has been no study on the
ultraslow vector optical solitons in an active optical medium.
Our study represents an achievement in this direction and the
results may have potential application in optical information
processing and engineering.

The paper is arranged as follows. In the next section, the
theoretical model under study is introduced and its solution
in linear regime is presented. In Sec. III, an asymptotic ex-
pansion on the Maxwell-Schrödinger equations is made and
the coupled NLS equations governing the time evolution of
two polarization components of the probe field are derived
by means of a method of multiple scales. In Sec. IV, weak-
light ultraslow vector soliton solutions are provided and their
stability and controllability during propagation are discussed
in detail. In addition, the collisions between two ultraslow
vector solitons are also investigated numerically. Finally, the
last section contains a discussion and summary of the main
results of our work.

II. MODEL AND SOLUTION IN LINEAR REGIME

Consider a lifetime broadened five-level system �e.g., a
Zeeman split atomic gas� interacting with a weak, linear-
polarized pulsed probe field of central frequency and two
strong, linear-polarized cw control fields of frequencies
�c1 / �2�� and �c2 / �2��, respectively. The two polarization
components of the probe field drive, respectively, the transi-
tions from �3�↔ �2� and �3�↔ �4�, while the two control
fields drive, respectively, the transitions from �1�↔ �2� and
�5�↔ �4� �see Fig. 1�a��. The atoms are trapped in a cell at
enough low temperature to cancel Doppler broadening and
reduce interatomic collisions. A possible arrangement of ex-
perimental apparatus is shown in Fig. 1�b�.

The electric field of the system can be written as E
= ��̂+Ep++ �̂−Ep−�exp�i�kpz−�pt��+ êc1Ec1 exp�i�kc1 ·r−�c1t��
+ êc2Ec2 exp�i�kc2 ·r−�c2t��+c.c. Here �̂+= �x̂+ iŷ� /�2 ��̂−

= �x̂− iŷ� /�2� is the probe-field unit vector of the �+ ��−�
circular polarization component with the envelope Ep+ �Ep−�,
which drives the transition �3�↔ �4� ��2�↔ �3��. êc1 �êc2� is
the unit vector of the control field with the envelope Ec1
�Ec2�, which drives the transition �1�↔ �2� ��4�↔ �5��. Thus
the system is composed of two EIT � configurations, both of
them share the ground-state level �3� �23,24�.

The Hamiltonian of the system has the form Ĥ= Ĥ0+ Ĥ�,

where Ĥ0 describes a free atom and Ĥ� describes the inter-
action between the atom and the optical field. In the
Schrödinger picture, the state vector of the systems is ex-
pressed by ���t��s=� j=1

5 Cj�z , t��j�, where �j� is the eigenstate

of Ĥ0. Under electric-dipole and rotating-wave approxima-
tions, the Hamiltonian of the system takes the form

Ĥ = �
j=1

5

� j�j�	j� + �
�c1 exp�i�kc1 · r − �c1t���2�	1�

+ �p1 exp�i�kpz − �pt���2�	3�

+ �p2 exp�i�kpz − �pt���4�	3�

+ �c2 exp�i�kc2 · r − �c2t���4�	5� + H.c.� , �1�

where � j is the energy of state �j�, �p1=−�p23· �̂−�Ep− /�,
�p2=−�p43· �̂+�Ep+ /�, �c1=−�p21· êc1�Ec1 /�, and �c2

=−�p45· êc2�Ec2 /� are one-half Rabi frequencies with pij be-
ing the electric-dipole matrix element associated with the
transition from �j� and �i�.

In order to investigate the dynamics of the system, it is
more convenient to employ an interaction picture to elimi-
nate the fast dependence on the spatial-temporal variables,
which is obtained by making the transformation Cj
=Aj exp
i�k j ·r− �� j /�+	 j�t��, with k1=kpez−kc1, k2=k4

=kpez, k3=0, k5=kpez−kc2, 	1=
p−
c1, 	2=
p, 	3=0, 	4
=
p+�, and 	5=
p+�−
c2. The detunings are defined
as 
p= ��2−�3� /�−�p, 
c1= ��2−�1� /�−�c1, and 
c2= ��4

−�5� /�−�c2. �= �2�B /��gB is the Zeeman shift of the upper
atomic sublevel with �B the Bohr magneton, g the gyromag-
netic factor, and B the applied magnetic field. Then under
electric-dipole and rotating-wave approximations we obtain
the Hamiltonian in the interaction picture

Ĥint = ���
p − 
c1��1�	1� + 
p�2�	2�

+ �
p + ���4�	4� + �
p + � − 
c2��5�	5��

+ ���c1�2�	1� + �p1�2�	3�

+ �p2�4�	3� + �c2�4�	5� + H.c.� . �2�
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FIG. 1. �Color online� �a� Energy levels and excitation scheme
of the lifetime broadened five-level atomic system. �p is the Rabi
frequency of the weak probe field with the �− ��+� component
coupling to the energy levels �3� and �2� ��3� and �4��. �c1 ��c2� is
the Rabi frequency of strong cw control field coupling to the energy
levels �1� and �2� ��5� and �4��. 
cl �l=1,2� and 
p are detunings,
�= �2�B /��gB with B the applied magnetic field. �b� Possible ar-
rangement of experimental apparatus. Ec represents the control field
and Ep+ �Ep−� represents the �− ��+� component of the probe field,
respectively.
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Using the Schrödinger equation i�� ���t��int /�t
=Hint���t��int with ���t��int= �A1 ,A2 ,A3 ,A4 ,A5�T �T repre-
sents transpose� one can readily obtain the equations govern-
ing the atomic response of the system,

� �

�t
+ id1A1 = − i�c1

� A2, �3a�

� �

�t
+ id2A2 = − i�c1A1 − i�p1A3, �3b�

� �

�t
+ id4A4 = − i�c2A5 − i�p2A3, �3c�

� �

�t
+ id5A5 = − i�c2

� A4, �3d�

with � j=1
5 �Aj�2=1. In Eqs. �3a�–�3d� we have defined d1

= �
p−
c1�− i1 /2, d2=
p− i2 /2, d3=−i3 /2, d4= �
p+��
− i4 /2, and d5= �
p+�−
c2�− i5 /2 with  j.

To obtain the equations of motion for �p1�z , t� and
�p2�z , t�, we use the Maxwell equation

�2E −
1

c2

�2E

�t2 =
1

�0c2

�2P

�t2 �4�

with

P = Na
p21A2A1
� exp�i�kc1 · r − �c1t��

+ p23A2A3
� exp�i�kpz − �pt��

+ p43A4A3
� exp�i�kpz − �pt��

+ p45A4A5
� exp�i�kc2 · r − �c2t�� + c.c.� .

Under slowly varying envelope approximation, Eq. �4� is
reduced to

i� �

�z
+

1

c

�

�t
�p1 − �32A2A3

� = 0, �5a�

i� �

�z
+

1

c

�

�t
�p2 − �34A4A3

� = 0; �5b�

in Eqs. �5a� and �5b�, �32=Na�p32· �̂−�2�p / �2��0c� and �34

=Na�p34· �̂+�2�p / �2��0c�, with Na being the atomic density,
�0 the vacuum dielectric constant.

Before solving the nonlinearly coupled equations
�3a�–�3d�, �5a�, and �5b�, let us first examine the linear exci-
tations of the system, which may provide useful hints of the
weak nonlinear theory developed in the next section. Assum-
ing �p1, �p2, and Aj �j=1,2 ,4 ,5� are small and proportional
to exp
i�k���z−�t�� so that the atomic ground state �3� is not
depleted �i.e., A3=1�, one can obtain two branches of linear
dispersion relation for the linear excitations,

k1��� =
�

c
+ �32

� − d1

D1���
, �6�

k2��� =
�

c
+ �34

� − d5

D2���
, �7�

corresponding to �− and �+ components of the probe field,
respectively. In Eqs. �6� and �7� we have defined D1���
= ��c1�2− ��−d1���−d2� and D2���= ��c2�2− ��−d4���−d5�.

Shown in Fig. 2�a� is the absorption spectra of �p1 �solid
line� and �p2 �dashed line� when taking �c1=�c2=1.0
�107 s−1 �EIT case�. The other parameters are chosen as
2�4==2��6.0 MHz, 1�3�5=10−4, �32��34
=1.0�109 cm−1 s−1, 
p=
c1=
c2=0, and �=2.0�106 s−1.
We see that due to the contribution of the control fields
Autler-Townes doublets open for both absorption spectra. In
addition, near the central frequency of the probe field �i.e.,
�=0� one has Im�k1��0 and Im�k2��0, i.e., the absorption
of the probe field is almost completely suppressed. In con-
trast, when the control fields are switched off, i.e., �c1
=�c2=0 �non-EIT case�, the absorption of the probe field is
maximum near �=0, as shown in Fig. 2�b�. The physical
reason of the suppression of the probe-field absorption
shown in the EIT case �Fig. 2�a�� is that the two strong
control fields induce a quantum destructive interference ef-
fect, which make the population in the levels �2� and �4�
vanish and hence the two polarization components of the
probe field become transparent in this five-level resonant
system.

−5 0 5
0

50

100

ω (107 s−1)

Im(k
1
)

Im(k
2
)

(a)

−5 0 5
0

50

100

ω (107 s−1)

Im(k
1
)

Im(k
2
)

(b)

FIG. 2. �Color online� Absorption spectra Im�k1���� �solid line�
and Im�k2���� �dashed line� for the probe field component �p1 and
�p2. �a� EIT case ��c1=�c2=1.0�107 s−1�. �b� Non-EIT case
��c1=�c2=0�.
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Although the absorption of the system can be largely sup-
pressed by the introduction of the control fields, the disper-
sion effect may be significant for the probe pulse with a
shorter temporal width. Figure 3 shows the dimensionless
probe field intensity ��p1�z , t� /�p1�0,0��2 when propagating
to the distance z=0.1 cm �curve 2� and 0.2 cm �curve 3�. A
similar plot for ��p2�z , t� /�p2�0,0��2 can also be obtained.
The initial condition is a Gaussian pulse with the form
�p1�0, t�=�p1�0,0�exp�−t2 / �2�0

2�� �curve 1�, with �0=1.0
�10−8 s and other parameters being the same as those used
in Fig. 2. We see that due to the dispersion effect of the
system, the probe pulse spreads rapidly. The main contribu-
tion for the pulse spread is mainly due to the group-velocity
dispersion of the system.

III. ASYMPTOTIC EXPANSION AND COUPLED
NLS EQUATIONS

We are interested in a shape-preserving propagation of the
probe pulse, which is desirable for the applications of optical
information processing and transmission. As shown in the
last section, the dispersion effect of the system makes the
probe pulse broaden and hence one should find a way to stop
the dispersion to obtain a stable pulse propagation in the
system. In the following we show that if using a probe pulse
with larger intensity, the self-phase modulation and cross-
phase modulation effects of the two components of the probe
field can balance the group-velocity dispersion and form
weak-light ultraslow vector solitons in the system.

To this aim, we apply the standard method of multiple
scales �34� to investigate the weak nonlinear evolution of
the probe field. We make the asymptotic expansion Aj

=�l=0
� �lAj

�l�, �p1=�l=1
� �l�p1

�l�, and �p2=�l=1
� �l�p2

�l� with A3
�0�

=1 and Aj
�0�=0 �j=1,2 ,4 ,5�, where � is a small parameter

characterizing the small population depletion of the ground
state and all quantities on the right-hand side of the
asymptotic expansion are considered as functions of the mul-
tiscale variables zl=�lz �l=0,1 ,2� and tl=�lt �l=0,1�. Sub-
stituting such expansion into Eqs. �3a�–�3d� and �4�, we ob-
tain

� �

�t0
+ id1A1

�l� + i�c1
� A2

�l� = M�l�, �8a�

� �

�t0
+ id2A2

�l� + i�c1A1
�l� + i�p1

�l� = N�l�, �8b�

� �

�t0
+ id4A4

�l� + i�c2A5
�l� + i�p2

�l� = P�l�, �8c�

� �

�t0
+ id5A5

�l� + i�c2
� A4

�l� = Q�l�, �8d�

and

i� �

�z0
+

1

c

�

�t0
�p1

�l� − �32A2
�l� = R�l�, �9a�

i� �

�z0
+

1

c

�

�t0
�p2

�l� − �34A4
�l� = T�l�, �9b�

where the quantities M�l�, N�l�, P�l�, Q�l�, R�l�, and T�l� on the
right-hand side of the above equations have been given in the
Appendix.

It is convenient to express Eqs. �8a�–�8d�, �9a�, and �9b�
in the following forms:

L̂1�p1
�l� = S1

�l�, �10a�

L̂2�p2
�l� = S2

�l�, �10b�

A1
�l� =

1

i�c1
�N�l� − � �

�t0
+ id2A2

�l� − i�p1
�l�� , �10c�

A2
�l� = −

1

�32
�R�l� − i� �

�z0
+

1

c

�

�t0
�p1

�l�� , �10d�

A4
�l� = −

1

�34
�T�l� − i� �

�z0
+

1

c

�

�t0
�p2

�l�� , �10e�

A5
�l� =

1

i�c2
�P�l� − � �

�t0
+ id4A4

�l� − i�p2
�l�� , �10f�

where the explicit expressions of the operators L̂1, L̂2 and
the quantities S1

�l� and S2
�l� in Eqs. �10a� and �10b� have also

been given in the Appendix.
It is easy to find the leading order �l=1� solution of Eqs.

�10a� and �10b�,

�p1
�1� = F1 exp
i�k1���z0 − �t0�� , �11a�

�p2
�1� = F2 exp
i�k2���z0 − �t0�� , �11b�

where F1,2 are yet to be determined envelope functions of the
slow variables t1, z1, and z2. The expressions of Aj

�1�

�j=1,2 ,4 ,5� can also be obtained readily by using Eqs.
�10c�–�10f�, which are omitted here.
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|Ω
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2

1

2

3

FIG. 3. �Color online� The dimensionless probe wave intensity
��p1�z , t� /�p1�0,0��2 when propagating to the distance z=0.1 cm
�curve 2� and 0.2 cm �curve 3�, respectively. The initial condition is
a Gaussian pulse with the form �p1�0, t�=�p1�0,0�exp�−t2 / �2�0

2��
�curve 1�, with �0=1.0�10−8 s and other parameters being the
same as those used in Fig. 2.
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At the second order �l=2�, the solvability conditions for
obtaining divergence-free solution for �p1

�2� and �p2
�2� requires

i� �F1

�t1
+ Vg1

�F1

�z1
 = 0, �12a�

i� �F2

�t1
+ Vg2

�F2

�z1
 = 0, �12b�

with Vg1=1 /K11 and Vg2=1 /K21, where K11=1 /c
+�32���c1�2+d1

2� / ���c1�2−d1d2�2 and K21=1 /c+�34���c2�2
+d5

2� / ���c2�2−d4d5�2 are the group velocities of the �− and
�+ components of the probe field.

With the above results we go to the third order �l=3�. The
solvability conditions in this order yields the coupled NLS
equations governing the spatial-temporal evolution of F1,2,

i
�F1

�z2
−

K12

2

�2F1

�t1
2 − �W11�F1�2 + W12�F2�2�e−2�̄1z2F1 = 0,

�13a�

i
�F2

�z2
−

K22

2

�2F2

�t1
2 − �W21�F1�2 + W22�F2�2�e−2�̄2z2F2 = 0,

�13b�

where

K12,22 = − 2�32,34
d2,4��c1,c2�2 + 2d1,5��c1,c2�2 + d1,5

3

���c1,c2�2 − d2,4d1,5�3 ,

�14�

W11,22 = − �32,34
d1,5��d1,5�2 + ��c1,c2�2�

D1,2�D1,2�2
, �15�

W12,21 = − �32,34
d1,5��d5,1�2 + ��c2,c1�2�

D1,2�D2,1�2
. �16�

In Eqs. �12a�, �12b�, �13a�, and �13b� we have defined
K1j = ��� jk1��� /�wj���=0 and K2j = ��� jk2��� /�wj���=0

�j=0,1 ,2 , . . .�. The coefficients K12 and K22 characterize the
group-velocity dispersion, W11 and W22 characterize the
SPM, and W12 and W21 characterize the CPM of the �− and
�+ components of the probe field, respectively, �̄1,2=�2�1,2
with �1,2=Im�K10,20�.

By introducing 
= �1 /Vg1−1 /Vg2� /2, Vg=2Vg1Vg2 / �Vg1

+Vg2�, and �= t−z /Vg, Eqs. �13a� and �13b� can be written as
the dimensionless form

i� �

�s
+ gA1u1 + ig


�u1

��
−

gD1

2

�2u1

��2 − �g11�u1�2 + g12�u2�2�u1

= 0, �17a�

i� �

�s
+ gA2u2 − ig


�u2

��
−

gD2

2

�2u2

��2 − �g22�u2�2 + g21�u1�2�u2

= 0, �17b�

after returning to the original variables, where s=z /LD, �

=� /�0, ul= ��pl /U0�exp�−iK̃l0z�, �K̃l0=Re�Kl0��, gAl=�lLD

�l=1,2�, g
=sgn�
�LD /L
, gD1=K12 / �K22�, gD2=sgn�K22�,
and glm=Wlm / �W22� �l ,m=1,2�. In these expressions we
have defined the characteristic dispersion length LD
=�0

2 / �K22�, and the characteristic group velocity mismatch
length L
=�0 / �
�, with �0 being the characteristic pulse
length of the probe field. Since our aim is to obtain soliton
solutions, in Eqs. �17a� and �17b� we have assumed the char-
acteristic dispersion length LD is equal to the characteristic
nonlinear length of the system, which is defined by LNL
=1 / �U0

2�W22��.

IV. VECTOR SOLITON SOLUTIONS

Because of the highly resonant character of the system,
the coefficients in the coupled NLS equations �17a� and
�17b� are generally complex and hence a soliton solution
does not exist. However, due to the EIT effect induced by the
two cw control fields the imaginary parts of these complex
coefficients can be much smaller than their corresponding
real parts. This important property leads Eqs. �17a� and �17b�
to be nearly integrable and hence shape-preserving vector
optical soliton solutions are possible that can propagate for
an extended distance without significant deformation in the
system.

It is easy to obtain bright-bright, bright-dark, and dark-
dark vector soliton solutions of Eqs. �17a� and �17b� when
disregarding the small imaginary parts of the coefficients.
The bright-bright vector soliton solution reads as

u1 = V1 sech�A� + Bs�exp�i�P1� + Q1s�� , �18a�

u2 = V2 sech�A� + Bs�exp�i�P2� + Q2s�� , �18b�

if the parameters fulfill the condition g22gD1=g12gD2.
Here we have defined P1= �B+g
A� / �gD1A�, P2= �B
−g
A� / �gD2A�, Q1=−P1g
−gD1�A2−P1

2� /2, Q2=P2g


−gD2�A2−P2
2� /2, and V2= ��gD1A2−g11V1

2� /g12�1/2.
A bright-dark vector soliton solution is given by

u1 = V1 sech�A� + Bs�exp�i�P1� + Q1s�� , �19a�

u2 = V2 tanh�A� + Bs�exp�i�P2� + Q2s�� , �19b�

where P1= �B+g
A� / �gD1A�, P2= �B−g
A� / �gD2A�,
Q1=−P1g
−gD1�A2−P1

2� /2−g12V2
2, Q2=P2g
+gD2P2

2 /2

−g22V2
2, and V2= ��g11V1

2−gD1A2� /g12�1/2.
One can also obtain the dark-dark vector soliton solution

u1 = V1 tanh�A� + Bs�exp�i�P1� + Q1s�� , �20a�

u2 = V2 tanh�A� + Bs�exp�i�P2� + Q2s�� , �20b�

where P1= �B+g
A� / �gD1A�, P2= �B−g
A� / �gD2A�, Q1

=−P1g
+gD1�2A2+P1
2� /2, Q2=P2g
+gD2�2A2+P2

2� /2, and
V2= �−�g11V1

2+gD1A2� /g12�1/2. In Eqs. �18a�, �18b�, �19a�,
�19b�, �20a�, and �20b� A, B, and V1 are free parameters
�A�0�.
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The formation of the vector optical soliton solutions given
above are due to the balance between the group-velocity dis-
persion and nonlinearity �i.e., SPM and CPM� effects. We
stress that since the SPM and the CPM coefficients defined
by Eqs. �15� and �16� satisfy the following relation,

W11W22 = W12W21, �21�

then all three types of vector soliton solutions listed in Eqs.
�18a�, �18b�, �19a�, �19b�, �20a�, and �20b� are allowed in our
system. This is very different from conventional systems
�such as optical fibers�, where the system parameters allow
usually only one type of vector soliton.

We now give a practical example to show that a realistic
atomic system can be found that allows the bright-bright
vector optical soliton described above. We consider a cold
alkali atomic vapor with the decay rates 2�4=0.5
�107 s−1 and 1�3�5=1.0�104 s−1. We take �32
��34=1.0�109 cm−1 s−1 �Na�1010 cm−3�, �c1=�c2=1.6
�108 s−1, 
p=1.0�108 s−1, �=2.0�106 s−1, 
c1=0,
and 
c2=3.0�106 s−1. With the above parameters, we
obtain K10=−6.41+0.10i cm−1, K20=−6.38+0.10i cm−1,
K11= �14.62−0.47i��10−8 cm−1 s, K21= �14.72−0.47i�
�10−8 cm−1 s, K12= �−4.56+0.25i��10−15 cm−1 s2,
K22= �−4.64+0.26i��10−15 cm−1 s2, W11= �−9.37+0.15i�
�10−16 cm−1 s2, W12= �−9.44+0.15i��10−16 cm−1 s2, W21

= �−9.34+0.15i��10−16 cm−1 s2, and W22= �−9.40+0.15i�
�10−16 cm−1 s2. Notice that the imaginary parts of these
quantities are indeed much smaller than their relevant real
parts. As mentioned above the physical reason for such small
imaginary parts is due to quantum interference effect induced
by two cw control fields �i.e., EIT effect�. We obtain L


=116.8 cm and LD=0.8 cm with �0=6.0�10−8 s and U0
=3.7�107 s−1. The dimensionless coefficients read g


=0.007, gD1=−0.98, gD2=−1.0, and g11�g12�g21�g22
=−1.0. The group velocities of the two polarization compo-
nents are given by

Re�Vg1� = 2.28 � 10−4c , �22�

Re�Vg2� = 2.26 � 10−4c , �23�

respectively, which means that the two polarization compo-
nents of the vector optical soliton propagate with nearly
matched, ultraslow propagating velocities comparing with c.

As we have emphasized, different from the passive media
such as optical fibers �4–9,11–13� the parameters of our
present EIT medium can be actively manipulated. Conse-
quently, the coefficients of Eqs. �17a� and �17b� can be easily
adjusted to allow us to realize a temporal Manakov system,
which is a completely integrable and can be solved by
inverse-scattering transform �15�. In fact, with the param-
eters given above, Eqs. �17a� and �17b� can be written as the
quasi-Makakov system

i
�u1

�s
+

1

2

�2u1

��2 + ��u1�2 + �u2�2�u1 = R1, �24a�

i
�u2

�s
+

1

2

�2u2

��2 + ��u2�2 + �u1�2�u2 = R2, �24b�

with R1,2�u1,2��−0.08iu1,2, describing a linear absorption ef-
fect. Because R1,2 is a small quantity they can be taken as
perturbations �36,37� in the leading-order approximation. Af-
ter neglecting R1,2 the vector soliton solution of Eqs. �24a�
and �24b� is given by �15�

u1 = cos � sech���eis/2, �25�

u2 = sin � sech���eis/2, �26�

with � being a free real parameter. Note that since the in-
jected probe field is linearly polarized, the two polarization
components should have equal amplitude, i.e., �=� /4.

Shown in Fig. 4 is the evolution of the �− circular polar-
ization component of the probe field versus dimensionless
time t /�0 and distance z /LD �the plots for the �+ circular
polarization component are very similar, thus not shown�.
The figure is obtained by numerically integrating Eqs. �24a�
and �24b� with complex coefficients by using a split-step
Fourier transform method and the bright-bright soliton solu-
tion given above as an initial condition. To demonstrate the
dispersion and nonlinear effects and their balance, we change
the probe field amplitude U0 while we keep other parameters
the same as those given above. Figure 4�a� shows the result
when the dispersion is dominant over the nonlinearity, i.e.,
U0�0���K22 /W22�. We see that in this case the probe
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FIG. 4. ��p1 /U0� as the function of the dimensionless time t /�0

and distance z /LD. �a� Dispersion dominant case with U0=3.7
�106 s−1. �b� The case of a balance between the dispersion and
nonlinearity with U0=3.7�107 s−1.
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field spreads significantly. However, if we choose U0�0

=��K22 /W22�, i.e., there is a balance between the dispersion
and the nonlinearity, a shape-preserving propagation of vec-
tor optical soliton over a long distance to 4LD is achieved, as
clearly shown in Fig. 4�b�.

The input power of the vector optical soliton can be cal-
culated by Poynting’s vector. It is easy to get the average flux
of energy over carrier-wave period

P̄1 = P̄1
max sech2��t − z/Vg1�/�0� , �27�

P̄2 = P̄2
max sech2��t − z/Vg2�/�0� . �28�

If choosing �p23���p43�=2.1�10−27 cm C, R� �the beam ra-
dius of the probe laser� =0.01 cm, and the other parameters
the same as those given above, one obtains the peak power

of the vector soliton P̄1
max� P̄2

max=8.9�10−4 mW. Thus to
generate an ultraslow vector optical soliton in the present
active EIT system only very low input power is needed. This
is drastically different from the vector optical soliton genera-
tion schemes in fiber-based passive media �4–9,11–14�
where much higher input power of several tens of watts �8�
or more is needed in order to bring out the nonlinear effect
required for the soliton formation.

The property of the collision between two solitons is one
of the most intriguing aspects in soliton dynamics. By using
numerical simulations we have also investigated the feature
of the collision between two ultraslow vector optical solitons
in the present resonant system. Shown in Fig. 5 are the wave
forms for several different two-soliton collisions in the �−

circular polarization component of the probe field. A
similar result for �+ circular polarization component is also
obtained but not shown here. The initial condition in the
simulation is chosen as u1�z=0�= ��2 /2�sech��−3.0�
�exp�−i�� + ���2 /2�sech��+3.0�exp�i��+�1�� and
u2�z=0�= ��2 /2�sech��−3.0�exp�−i��+ ��2 /2�sech��+3.0�
�exp�i��+�2��, where �= t /�0, � determines the initial rela-
tive amplitudes, and �1 and �2 denote the initial relative
phases of the two solitons. As in conventional coupled NLS
equations �34�, our simulations also show that the collision
property of the solitons depends on the relative amplitudes
and the relative phases of the solitons.

Figure 5�a� shows the result with �=1 and �1=�2=0. We
see that in this case the interaction between the two solitons
is attractive. The physical reason for the attraction is that the
light intensity in the central region of the collision is in-
creased by the overlap of the two solitons due to attractive
interaction, which leads to an increase of the refractive index
and hence attracts more light to the central region. Because
of the particle property the solitons pass through each other
and then propagate stably. However, a small attenuation oc-
curs due to the absorption nature of the system.

In Fig. 5�b� we show the collision between the two soli-
tons for �=1 and �1=�2=�. Different from Fig. 5�a�, in this
case the interaction between the two solitons is repulsive.
This is because the refractive index is lowered when the two
solitons overlap each other in the central region of the colli-

sion. A small phase �position� shift can be observed during
the collision.

Shown in Fig. 5�c� is the two-soliton collision for �
=0.5, �1=� /2, and �2=0. We find that in this case one soli-
ton is completely absorbed while the other one undergoes no
apparent deformation. This interesting inelastic colliding
phenomenon of solitons in a two-component system has
been also reported in Ref. �35�, where the authors demon-
strated that exact two-soliton solutions of the Manakov equa-
tions display a similar behavior. The collision property of
solitons described above may have promising applications
for all-optical information processing and engineering �e.g.,
for the design of soliton switching, etc.�.

FIG. 5. The wave form of ��p1 /U0� for several different two-
soliton collisions. �a� �=1 and �1=�2=0, �b� �=1 and �1=�2=�,
�c� �=0.5, �1=� /2, and �2=0.
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V. FURTHER DISCUSSION AND CONCLUSION

To make a further confirmation on the ultraslow vector
soliton solutions obtained above and check their stability, we
have made additional numerical simulations starting directly
from Eqs. �3a�–�3d�, �5a�, and �5b� without using any ap-
proximation. Figure 6 provides the simulation result by tak-
ing the soliton wave form u1,2�z=0�=2 sech�2�2t /�0� as an
initial condition �shown by the dotted-dashed line�. We see
that after propagating the distance z=1.2 cm, the main part
of both polarization components ��p1 /U0� and ��p2 /U0� re-
mains a soliton �shown by the solid and the dashed line,
respectively�. However, a radiation appears on the tail of the
soliton, which is contributed by the high-order dispersion
and high-order nonlinear effects of the system that are not
included in the analytical approach given above �38�.

In conclusion, we have proposed a scheme to produce
temporal vector optical solitons in a lifetime broadened five-
level atomic system via electromagnetically induced trans-
parency. We have shown that, different from the optical soli-
tons obtained in passive media such as optical fibers, the
vector optical solitons in our active resonant system can be
generated under very low light intensity and they have ul-
traslow propagating velocity. We have demonstrated both
analytically and numerically that by using the present
scheme it is easy to realize temporal Manakov vector optical
solitons by actively manipulating the dispersion and nonlin-
ear effects of the system. Due to their robust propagation
nature, the ultraslow vector optical solitons suggested in this
present work may have potential application in optical infor-
mation processing and engineering under a weak-light level.
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APPENDIX

1. Expressions of M„l…, N„l…, P„l…, Q„l…, R„l…, and T„l…

The explicit expressions of terms on the right-hand side of
Eqs. �8a�–�8d�, �9a�, and �9b� are given by

M�1� = N�1� = P�1� = Q�1� = R�1� = T�1� = 0, �A1a�

M�2� = −
�

�t1
A1

�1�, �A1b�

M�3� = −
�

�t1
A1

�2�, �A1c�

N�2� = −
�

�t1
A2

�1�, �A1d�

N�3� = −
�

�t1
A2

�2� − i�p1
�1�A3

��2�, �A1e�

P�2� = −
�

�t1
A4

�1�, �A1f�

P�3� = −
�

�t1
A4

�2� − i�p2
�1�A3

��2�, �A1g�

Q�2� = −
�

�t1
A5

�1�, �A1h�

Q�3� = −
�

�t1
A5

�2�, �A1i�

R�2� = − i� �

�z1
+

1

c

�

�t1
�p1

�1�, �A1j�

R�3� = − i� �

�z1
+

1

c

�

�t1
�p1

�2� − i
�

�z2
�p1

�1� + �32A2
�1�A3

��2�,

�A1k�

T�2� = − i� �

�z1
+

1

c

�

�t1
�p2

�1�, �A1l�

T�3� = − i� �

�z1
+

1

c

�

�t1
�p2

�2� − i
�

�z2
�p2

�1� + �34A4
�1�A3

��2�.

�A1m�

2. Expressions of L̂l and S1
„l… and S2

„l…

The expressions of the operators L̂1, L̂2 and the quantities
S1

�l� and S2
�l� in Eqs. �10a� and Eqs. �10b� are defined by

-4 0 4 8
0

1.0

2.0

t/τ0

FIG. 6. �Color online� The bright-bright vector soliton evolution
obtained by integrating directly from Eqs. �3a�–�3d�, �5a�, and �5b�
without any approximation. The solid line �dashed line� is the result
for ��p1 /U0� ���p2 /U0�� after propagating to the distance is z
=1.2 cm. The dotted-dashed line is the initial condition used in the
simulation.
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L̂1 = − i� �

�z0
+

1

c

�

�t0
���c1�2 + � �

�t0
+ id1� �

�t0
+ id2� − i�32� �

�t0
+ id1 ,

L̂2 = − i� �

�z0
+

1

c

�

�t0
���c2�2 + � �

�t0
+ id4� �

�t0
+ id5� − i�34� �

�t0
+ id5 ,

S1
�l� = �32�i�c1M�l� − � �

�t0
+ id1N�l�� − ���c1�2 + � �

�t0
+ id1� �

�t0
+ id2�R�l�,

S2
�l� = �34�i�c2Q�l� − � �

�t0
+ id5P�l�� − ���c2�2 + � �

�t0
+ id4� �

�t0
+ id5�T�l�.
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