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We show that a vapor of multilevel atoms driven by far-off-resonant laser beams, with the possibility of

interference of two Raman resonances, is highly efficient for creating parity-time symmetric profiles of

the probe-field refractive index, whose real part is symmetric and imaginary part is antisymmetric in

space. The spatial modulation of the probe-field susceptibility is achieved by a proper combination of

standing-wave strong control fields and of Stark shifts induced by far-off-resonance laser fields. As

particular examples we explore a mixture of isotopes of rubidium atoms and design a parity-time

symmetric lattice and a parabolic refractive index with a linear imaginary part.
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While non-Hermitian operators obeying pure real spec-
tra, for example the Bogoliubov–de Gennes [1] equations,
linear stability problem for nonlinear waves, or simply a
parabolic potential with linear imaginary part [2], have
been known in physics for a long time, it was only due to
Ref. [3] that the fundamental importance of such operators
became widely recognized. It was discovered in Ref. [3]
that there exists a wide class of complex potentials of the
Schrödinger equation obeying pure real spectra, and that
this property is intrinsically related to the parity (P ) and
time (T ) symmetries of physical systems. This discovery
triggered the discussion [4] on the fundamentals of quan-
tum mechanics whose axioms are based on Hermitian
operators for observables. Further growth of interest in
the theory of parity-time (PT ) symmetric potentials was
originated by suggestions of implementation of PT sym-
metry in a waveguide with gain and absorption [5], on
the basis of the analogy between quantum mechanics
and optics where the refractive index plays the role of
the potential in the Schrödinger equation. In optics a
PT -symmetric refractive index obeying gain and loss
has been experimentally realized using four-wave mixing
in an Fe-doped LiNbO3 substrate [6]. The possibility of
optical realization of PT -symmetric potentials motivated
various suggestions of practical applications, such as non-
reciprocal wave propagation [6–8], implementation of a
coherent perfect absorber [9], and giant wave amplification
[10]. Experimental realization of PT symmetry using
plasmonics [11] and synthetic lattices using optical cou-
plers [12] were also reported.

The mentioned experimental observations of the PT
symmetry were either performed in pure dissipative wave-
guides (see Refs. [8,13]) whose PT interpretation relies
on the linearity of the system, which allows for scaling out
the average decay of the field, or in systems having gain
and loss localized in the transverse direction leading to an
effectively discrete system whose description is reduced to

a PT -symmetric dimer, i.e., to coupled hot and cold spots
(see Refs. [6,11]). The goal of this Letter is to show that
using an alternative optically active media, namely vapors
of multilevel atoms driven by control fields with proper
Raman resonances and by a far-off-resonant laser field, it is
possible to create a spatially distributed PT -symmetric
refractive index, i.e., one having the property nðxÞ ¼
n�ð�xÞ, with n being the probe-field refractive index.
To this end we start by recalling recent achievements in

the creation of large susceptibilities in atomic vapors con-
trolled by external laser beams. While such systems are
intrinsically dissipative, it was suggested in Ref. [14] and
shown experimentally in Ref. [15] that, using the destruc-
tive interference in the imaginary part of susceptibility, it is
possible to achieve large real refractive indexes while
keeping the absorption small enough. Recently, the idea
of using two far-off-resonant control fields for realizing
high susceptibility with nearly zero absorption of a probe
field was developed theoretically [16] and confirmed
experimentally [17]. An alternative way of achieving a
similar effect was proposed in Ref. [18] where two �
systems were explored for exciting two Raman resonances
(see also Ref. [19]).
Because the above mentioned schemes use the interfer-

ence of two Raman resonances, one of which results in
gain and another in absorption, the imaginary part of the
probe-field susceptibility appears as a nonmonotonic func-
tion of the frequency with both positive (gain) and negative
(absorbing) domains. An even more remarkable property is
the possibility to design distributions where real and imagi-
nary parts of the susceptibility appear, respectively, as even
and odd functions of the probe-field frequency [16–19].
Because for a monochromatic beam the change ! ! �!
is equivalent to the change t ! �t, the last property can be
viewed as a time inversion symmetry. Thus our goal can be
formulated as completing this symmetry by the symmetry
in the coordinate space.
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To achieve this goal we choose a scheme based on a
mixture of two species of � atoms, similar to the one
explored in Ref. [18]. The involved atomic states will be
assigned as jg; si (ground state), ja; si (lower state), and
je; si (excited state), and hereafter s ¼ 1; 2 indicates the
species of the atoms (see Fig. 1). The species have atomic
densities N1 and N2, respectively (N ¼ N1 þ N2 being
total atomic density). �p is the half Rabi frequency of

the probe-field coupling jg; si $ je; si, and �1;2 are half

Rabi frequencies of two control fields coupling ja; si $
je; si. All fields are far-off resonant, which is guaranteed by
the condition �s � �s, where �s ¼ !e;s �!a;s �!c is

the one-photon detuning, with @!l;s (l ¼ g; a; e) being the

eigenenergy of the state jl; si and !p (!c) being the center

frequency of the probe (control) field. Notice that one can
explore different cases by changing the signs of the two-
photon detuning, defined by �s ¼ !a;s �!g;s � ð!p �
!cÞ. In Fig. 1(a) we show the proposed scheme where
�1 > 0 and �2 < 0, which corresponds to the
PT -symmetric lattice obtained below. In our configura-
tion, the first scheme (s ¼ 1) exhibits two-photon absorp-
tion for the probe field while the second one (s ¼ 2)
provides two-photon gain.

Spatial modulation of the probe-field susceptibility can
be achieved by using x-dependent control fields [with half
Rabi frequency �sðxÞ]. Such fields, however, affect both
one- and two-photon detunings. Therefore we explore the
second possibility, which is the modulation of relative
energy-level shifts along the x direction, resulting in the
dependence �s ¼ �sðxÞ. This task can be achieved if a
strong, far-detuned, continuous-wave laser field ESðxÞ�
cosð!StÞ, where ES and !S are, respectively, amplitude
and frequency, is applied to the system. This field

originates the Stark shifts of energy levels with the expres-
sion �ES;sðxÞ ¼ � 1

4�l;sE
2
SðxÞ, where �l;s is the scalar

polarizability of the level jl; si. Below ESðxÞ is referred
to as the Stark field. If within the required accuracy one can
consider �g;s � �a;s, i.e., that the difference of Stark shifts

between the ground-state sublevels is negligible (this is the
situation we consider below), then �s is not affected by the
Stark field while �sðxÞ ¼ �s � ð�e;s � �g;sÞE2

SðxÞ=ð4@Þ.
Thus the Stark field allows one to manipulate the spatial
distribution of the one-photon detunings �sðxÞ, on the one
hand, and, on the other hand, being far-off resonant does
not lead to the power broadening of lines due to the low
rate of transitions [20].
Because the Stark shift usually appears in the second

order of the perturbation theory, it requires relatively
strong electric fields. Taking into account the character-
istics of available lasers, this may impose strong limita-
tions, because the characteristic scale of the spatial
modulation of �sðxÞ is of the order of the wavelength of
the Stark field �S. For the typical order of the control-field
amplitudes Ec � 102 V=cm (�1;2 � 2�� 514 MHz), the
required amplitude of the Stark field must be 3 orders of
magnitude larger, i.e., ES � 105 V=cm (for more detailed
estimates see below). Being focused into a spot with di-
ameter� 30 �m, this requires laser powers on the order of
100 W. Nowadays such powers can be achieved using, say,
quantum cascade lasers [21,22] operating at micron wave-
lengths (in Ref. [21] it was �S ¼ 4:45 �m, which will be
used in our estimates).
For the described model the susceptibility of the probe

field is computed from the density-matrix formalism
within the rotating-wave approximation and has a similar
functional form as obtained in Ref. [18]. However, an
essential difference appears here: to introduce spatial sym-
metry we use x-dependent control fields �1;2ðxÞ and an

additional Stark field resulting spatial dependence of the
one-photon detunings �1;2ðxÞ. Thus we have

�pðxÞ
�0

¼ �1 � i�ag

½�1 þ�1ðxÞ � i�eg�ð�1 � i�agÞ � j�1ðxÞj2

��
j�2ðxÞj2½�2ðxÞ þ i�ea��1

½�2 þ�2ðxÞ � i�eg�ð�2 � i�agÞ � j�2ðxÞj2
:

(1)

Here �0 ¼ N1d
2
eg;1=ð"0@Þ and � ¼ N2d

2
eg;2=N1d

2
eg;1 char-

acterizethe ratio between the species densities considered
as a free parameter, with "0 being the vacuum permittivity
and deg;s standing for the dipole moment of the transition

between the ground and excited states of the sth system.
Generally speaking, in a warm vapor large Doppler

broadened line widths (typically �!=!� 10�6 [20])
may degrade the effectiveness of resonant schemes.
In our case, such broadening would not be important
for large one-photon detunings as it is of the order of the
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FIG. 1 (color online). (a) Two � systems and Raman transi-
tions used for obtaining a PT -symmetric refractive index.
Initially populated levels are indicated by the filled circles.
(b) Possible geometry for the suggested scheme. All notations
are defined in the text.
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two-photon detunings. It turns out, however, that the effect
of this line broadening can be significantly suppressed (by
the factor j!c �!pj=!c) if far-off-resonant copropagat-

ing beams (see, e.g., Ref. [23]) with frequencies close
enough are used. This is the case we will consider below.

Now our task is to determine the spatial distributions of
�sðxÞ and �sðxÞ ensuring the condition

	ðxÞ � nðxÞ � n�ð�xÞ ¼ 0; (2)

where nðxÞ ¼ nrðxÞ þ iniðxÞ � 1þ 1
2�pðxÞ, with x being

either arbitrary or belonging to some intervals (see below).
Unlike in the previous studies [16–18], where n was
spatially independent and the parameters ensuring the
enhanced reality of the refractive index were in focus,
here we are interested in a somehow opposite situation
and look for the parameters where the imaginary part of
the refractive index is appreciable and at the same time
satisfies the symmetry relation equation (2).

Because of the complexity of the relations among all
parameters involved in Eqs. (1) and (2), it is not obvious
a priori that the problem has a solution. Therefore we
proceed with an analysis of particular systems. To this
end we adopt the approach as follows. First, we define a
seed susceptibility, with the shape we would like to obtain,
say, �sdðx; 
j; �Þ, which contains a number of free parame-

ters 
j and �. Second, neglecting all terms within some

accuracy, say, of 10%, we compute analytical solutions for
�sd

s ðx; 
j; �Þ and �sd
s ðx; 
j; �Þ from Eq. (2). Third, we

substitute the obtained seed Rabi frequencies and Stark
shifts in Eq. (1). Due to the crude approximations we made,
the so-obtained susceptibility may still give significant
errors in Eq. (2). Our final step is to minimize the error
function 	ðx; 
j; �Þ using the control parameters 
j and �.

We first apply the above algorithm to obtain a
PT -symmetric lattice. Because the main limitation
for the lattice period is determined by the Stark field,
we require the period to be �S, i.e., �ðxÞ ¼ �ðxþ �SÞ.
The experimental geometry we bear in mind is illustrated
in Fig. 1(b). We further assume that each control field
consists of two almost parallel plane waves having x
components of the wave vector equal to kS ¼ 2�=�S,
i.e., to the Stark-field wave vector. The seed solution can
be chosen as �sd ¼ 
0 þ 
1 cos�þ i
2 sin�, where � ¼
kSx and 
0;1;2 are free parameters. As a particular atomic

vapor, we use a mixture of isotopes 87Rbðs ¼ 1Þ and
85Rbðs ¼ 2Þ and assign jg; si ¼ j5S1=2; F ¼ 1i, ja; si ¼
j5S1=2; F ¼ 2i, and je; si ¼ j5P1=2; F ¼ 1i for each

species.
To perform a numerical study, we further particularize

the problem by assuming that N1 ¼ 1:73� 1015 cm�3 and
N2 ¼ 1:57� 1015 cm�3 (thus N ¼ 3:30� 1015 cm�3).
The isotopes are loaded in a cell at approximately 363 K
and the coherence decay rates are estimated as �eg �
�ea ¼ 2�� 334 MHz and �ag ¼ 2�� 16 kHz [18].

With sufficiently high accuracy we can impose
�e;1 � �g;1 � �e;2 � �g;2 ¼ 2�@ � 0:1223 Hzðcm=VÞ2
and deg;1 � deg;2 ¼ 2:5377� 10�27 C cm [24], which

allows us to consider �1 � �2 ¼ �c. Other parameters
are chosen as !p � !c ¼ 2�� 3:77� 1014 s�1 (�p ¼
795 nm), � ¼ 0:91, �0 ¼ 0:57�eg, �1 ¼ 1:80�eg, and

�2 ¼ �0:01�eg. Then we solve equation �pð�sd
s ;�sd

s Þ ¼
�sd with respect to the real�sd

s and�sd
s . For j�2j 	 j�1j it

is possible to leave only the leading terms in �2 allowing
one to find the solutions explicitly. Finally, we substitute
�sd

s and �sd
s back into Eq. (1) and make 	ðxÞ as small as

possible by tuning the parameters 
0;1;2. Because the

obtained formulas have rather cumbersome forms they
are not presented here. Instead, we write down the final
expressions for the control-field Rabi frequency and for the
Stark-field amplitude by keeping the first significant
harmonics (i.e., the terms * 10�4),

ES ¼ E0½0:9698þ 0:0053 cos�� 0:0007 sin��;
�c ¼ �eg½1:5384þ 0:0122 cos�þ 0:0232 sin��;

where E0 ¼ 4� 105 V/cm [see Fig. 2(a)]. As we already
mentioned, the final shape of the susceptibility differs from
the ansatz �sd. We represent it also in a form of a Fourier
series by keeping the first significant harmonics, i.e.,
�pðxÞ ¼ �0p þ �1pðxÞ, where �0p � 0:2257 determines

the average (in space) refractive index and the periodic
part is given by

�1p � 0:0075 cos�þ 10�4½1:2244 cosð2�Þ
þ i3:9418 sin��: (3)

The real and imaginary parts of the refractive index are
shown in Fig. 2(b). We notice that there is a large differ-
ence between the magnitudes of the constant real part of
the susceptibility and its imaginary part. What is important,
however, is that the latter constitutes about 5% of the
variation of the real part. The real and imaginary parts of
the error function 	ðxÞ are approximately 1% and 2% of the
respective parts of nðxÞ.
Nowwe consider the propagation of the probe field along

the z direction in the described atomic vapor. Because in the
y direction the medium is homogeneous, in the paraxial
approximation the beam propagation is governed by the
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FIG. 2. (a) Spatial distributions of the control (solid line) and
Stark (dashed line) fields required for producing the
PT -symmetric lattice. (b) Spatial distributions of the real (solid
line) and imaginary (dashed line) parts of the refractive index.
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equation 2ikp
@�p

@z þ @2�p

@x2
þ k2p�1pðxÞ�p ¼ 0, where kp ¼

!p

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �0p

p

is the probe-field wave vector. The beam of

constant amplitude in the y direction is chosen only for
convenience; one can consider any waveguide structure in
the y direction that results only in the renormalization of the

constants in this equation. By the ansatz �pðx; zÞ ¼
~�ðxÞeibz, where b is the propagation constant, we obtain
d2 ~�
d�2

þ k2p
k2
S

�1pð�Þ ~� ¼ � ~�, where � ¼ 2kp
k2
S

b. Taking into

account the well-known results on periodic potentials [25]
and rapid decay of Fourier harmonics in the expansion
equation (3), one expects that with high accuracy the
spectrum of � is indeed pure real. To check this, in
Figs. 3(a) and 3(b) we show � obtained numerically for
the susceptibility including all terms until the leading
ones violate the condition in Eq. (2) (the latter have
amplitudes & 10�5).

Let us now show that the described procedure is structur-
ally stable, i.e., that small deviations of system parameters do
not break the obtainedPT symmetry. To this end,we test the
method with respect to the change of mutual concentration of
the species. More specifically we have changed the obtained
� by 10%and repeated the calculation described by the above
algorithm (i.e., we did not use� as a matching parameter any
more). We indeed find that now the accuracy with which
the condition in Eq. (2) is satisfied is lower [see Figs. 3(a)
and 3(b)] but the imaginary parts are still very small (of the
order of10�3 [26]). In Fig. 3we also illustrate the propagation
for an input Gaussian beam in the discussed PT -symmetric
[Fig. 3(c)] and non-PT -symmetric [Fig. 3(d)] structures.

The input probe beam �pðz ¼ 0Þ ¼ e�0:1ðkSxÞ2 propagates

a much longer distance in the PT -symmetric medium com-
pared to that in the non-PT -symmetric onewhere absorption
is observed.

The described approach can be modified to produce
other shapes of the refractive index. To illustrate this,
now we show how to obtain a PT -symmetric parabolic
refractive index [2]. The main idea is based on the fact that
PT symmetry can be satisfied only locally in space. Then
one can cut undesirable non-PT -symmetric distribution
of the refractive index by choosing the location of the
finite-size vapor cell with respect to the domain where
the control and Stark fields produce local PT symmetry.
We still consider the mixture of the rubidium isotopes,
but now taking 85Rb as the first (s ¼ 1) and 87Rb as the
second (s ¼ 2) systems. We choose N1 ¼ 5:01�
1018 cm�3 and N2 ¼ 1:88� 1016 cm�3, � ¼ 0:375�
10�2, �1 ¼ 3:56� 10�4�eg, and �2 ¼ 3:93� 10�3�eg,

without changing the other parameters. The described
procedure of the choice of the control and Stark fields
is performed to satisfy Eq. (2) only locally in space.
In particular, this is achieved by taking �c ¼ �egð2þ
0:2�þ 0:009�2Þ and ES ¼ E0ð0:3695� 0:1375�Þ, illus-
trated in Fig. 4(a). The spatial modulation of the refractive
index now has a complex form, illustrated in Fig. 4(b).
If the atomic cell (limited, say, by Bragg mirrors) is situ-
ated as shown in Fig. 4(b), the refractive index inside the
cell, with the real and imaginary parts being, respectively,
parabolic and linear, ensures the condition of Eq. (2) with
very high accuracy. The real and imaginary parts of the
error function 	ðxÞ are approximately 0.2% and 0.4% of the
respective parts of nðxÞ. The susceptibility inside the cell is
described by �p ¼ 0:2021� 0:0007�2 � i0:0006�, which

obviously satisfies the condition of PT symmetry.
To conclude, we suggested a possibility of creating

PT -symmetric profiles of the refractive index in a mixture
of near resonant atomic gases. An important property of the
proposed scheme is the possibility of generating various
index profiles in one vapor and changing the system pa-
rameters in situ, say, by varying the control and Stark fields.
While we used the well-studied rubidium isotopes, the
proposed scheme allows for further generalization and
improvement using other atomic isotopes, other atomic
configurations, mixtures of more than two isotopes,
monoatomic vapors with more than two control fields, etc.
Adding more control parameters opens possibilities for
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experimental implementation of nonlinear PT -symmetric
susceptibilities [27], as well as for creation of combined
linear and nonlinear ones [28].
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