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Korteweg de Vries Description of Dark Solitons in Bose—Einstein Condensates
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We investigate the dynamics of pulses in a cigar-shaped Bose—FEinstein condensate with repulsive atom—atom
interactions without using Thomas—Fermi approximation. In the linear level our results give the Bogoliubov
excitation spectrum for sound propagation with speed ¢ = co/\/i, where cq is the speed for the case without a
trap. We develop a Korteweg de Vries (KdV) description for dark soliton propagation in the system and show
that it is the quantum pressure that contributes the dispersion necessary for the formation of the dark solitons.
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The remarkable experimental realization of the
Bose—Einstein condensation of weakly interacting
atomic gases!!] has strongly stimulated the explo-
ration of nonlinear properties of matter waves. Non-
linear excitations, such as solitons and vortices, have
been observed?>=4 and the four-wave mixing in a
Bose-Einstein condensate (BEC) has also been real-
ized recently.l”] These studies support the new field of
nonlinear atom optics.

The properties of solitons in homogeneous systems
have been intensively studied.[®/ However, for a BEC,
in addition to an atom-atom interaction all the atoms
move in an external trap, which makes the the prob-
lem mathematically nontrivial. On the other hand,
the inhomogeneity also makes the dynamic behaviour
of solitons in the BEC considerably rich. For systems
such as rubidium and sodium atomic vapours in the
trap, in the case of no external drive force the solitary
excitations in the condensate belong to the type of
“dark” soliton because the interaction between atoms
is repulsive. Many theoretical studies on the dynam-
ics of dark solitons in BECs have appeared.[”=1% Re-
cently, Tsurumi and Wadati proposed an interesting
new approach for the soliton propagation in a cigar-
shaped BEC with a repulsive atomic interaction.!'!]
In addition to a Thomas—Fermi (TF) approximation,
they also assumed that an “interface” of the conden-
sate exists, and the interface is taken as an elastic
cylindrical shell, which is assumed to obey Newton’s
second law. Under these assumptions, they derived a
Korteweg—de Vries (KdV) equation using a reductive
perturbation method. Instead of a dark soliton, they
obtained a bump (i.e. anti-dark) soliton relative to the
background of the condensate. The velocity of the
bump soliton is larger than the sound speed.[!!] These
unexpected results contradict most of the studies on
solitons in BECs with repulsive interactions.[”=10 In
this letter, we analyse the reason for this contradic-
tion and try to answer this problem by developing

another KdV description for the soliton dynamics in
BECs with repulsive interactions.

At low temperatures, the dynamic behaviour of
interacting Bose gases is described by the time-
dependent Gross—Pitaevskii (GP) equation for the or-
der parameter!!!
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where [ dr|¥|? = N is the number of atoms in the con-
densate, g = 4wh?a/m is the interacting constant with
a being the s-wave scattering length (a > 0 for repul-
sive interactions). As in the experiment!*! we consider
a cigar-shaped harmonic trap with the elongated axis
in the z-direction. Thus we have
m
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where w, and w,; are the frequencies of the trap in
the z-direction and the transverse direction, respec-
tively. Expressing the order parameter in terms of
its modulus and phase, ¥ = y/nexp(ip), we obtain
a set of coupled equations for n and ¢. By intro-
ducing (z,y,2) = ay(2',y',2'),t = wIlt',n = non’
with a; = [h/(mwy)]/? and ny = N/a3, we have
the following dimensionless equations of motion after
dropping the primes:
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with For the case of an homogeneous system (i.e. Veyy(r) =
Q= 47TN_ drn = 1. 0) the co'rresponding sound speed is cg = 1/Qug in

aj our notation. Thus we have c/cy = 1/v/2. The factor

The last term on the left-hand side of Eq.(3),

e. (—V2y/n)/[24/n], is called the quantum pressure.
We can see that it is just the quantum pressure that
provides the dispersion of the system, as will be seen
below.

Because in the experiment!¥ w,/w, is small (~
0.03), as in Ref.[11] here and later we neglect the
third term on the left-hand side in Eq.(3). Then
we let v/n = F and assume F = A(z,t)G(z,y) and
¢ = —put + ¢©(z,t). Then G(z,y) satisfies

102 92 a 2 NG — oG
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Equation (4) is the well-known eigenvalue problem
of a two-dimensional harmonic oscillator in quantum
mechanics. Its ground-state solution is Go(z,y) =
exp[—(z? + y?)/2] with the eigenvalue v = vy = 1.
With these substitutions Egs.(2) and (3) now are
transformed into
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As in Ref.[12], to obtain Eq.(6) we have used Eq.(4)
with G = Gy and then multiplied G§ to Eq.(3)
and then integrated once with respect to z and y to
eliminate the dependence on = and y. This proce-
dure is equivalent to taking the system as quasi-one-
dimensiona][7-10- 13l

Let A = up + a(z,t) (up > 0) with (a,¢) =
(ao, o) expli(kz — wt)]+c.c., ug,ap and g belng the
constants, we obtain the hnear dispersion relation of

Egs.(5) and (6)

W=t k[2Q 24+ k22, (7)
where the positive (negative) sign corresponds to
the wave propagating to the right (left). We must
stress that the k2-term in the square-root of Eq. (7)
comes from the quantum pressure, denoted by the
term —(1/2)9?A/92? in Eq.(6). Equation (7) is a
Bogoliubov-type linear excitation spectrum. We see
that, to obtain the Bogoliubov excitation spectrum,
the quantum pressure plays an important role. From
Eq.(7) we obtain the sound speed of the system
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1/ V2 is due to the effect of the transverse confine-
ment of the system. This result is consistent with the
experiment for sound propagation.!'4

Now we consider the nonlinear excitations of the
system. Using the asymptotic expansion A = ug +
62(a(0) +e2qM) 4 )y = e((p(o) + 62()0(1) ++--), and
assuming that ) and /) (j = 0, 1, - - -) are the func-
tions of the multiple-scale variables £ = €(z — ct) and
T = €3t, where € is a smallness parameter characteriz-
ing the relative amplitude of the excitation, and then
substituting these into Egs.(5) and (6), we obtain
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for j =0, 1, ---. The concrete expressions of a¥) and
BU) are omitted here.

In the leading order (j = 0) we obtain p(©) =
(2¢/uo) [ déa® with a(®) being a function to be de-
termined. The solvability condition demands ¢ =

+4/Q/2uy. At the next order (j = 1), the solvabil-
ity condition results in the closed equation for a(®):
9a® 3¢ 5a0) 1 8340
@y 9% (10)
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Equation (10) is the KdV equation widely studied in
soliton theory.[!l We note that the dispersion term in
Eq.(10) (i.e. the term with third-order derivative with
respect to &) is also due to the contribution of the
quantum pressure of the system. Letting w = e2a(%)
and using the definition of £ and 7, we obtaln
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with Z = z — ct. The single-soliton solution is given

by
2 1/2
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where B is a positive constant reflecting the greyness

of the excitation, and zp is a constant denoting the
initial position of the soliton. Thus, exact to the first
order, the order parameter of the condensate takes the
form

¥ =y (1 — Bsech2{(2023)1/2[z —c(1- B)t
— 2]} ) expli(—pt + ¢)], (12)
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with
~ B u?
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Now we make some remarks on the results ob-
tained above: (i) From Eq.(12) we can see that the
excitation is a dark soliton, consistent with most of
the studies on soliton dynamics in BEC with a repul-
sive interaction.[*7~1 (i) The velocity of the dark
soliton is vy, = ¢(1— B), less than the sound speed c of
the system. In fact, it is just this property that makes
Burger et al.l*! identify the dark solitons in their ex-
periment in the BEC. To justify our approach we make
a comparison between our theoretical prediction with
the experimental result. In the experiment reported
by Burger et al.,[*l the greyness B of the dark soliton
is about 0.4 and the sound speed ¢ is 3.7mm/s. Thus
by our theory [see Eq.(12)] the dark soliton velocity
should be

vy =c¢(l — B) =2.2mm/s, (13)

which agrees well with the experimental result by
Burger et al [see Fig.3 of Ref.[4]]. (iii) The forma-
tion of the dark soliton given in Eq.(12) is due to
the balance between the nonlinearity and the disper-
sion of the system. The dispersion in the KdV equa-
tion (10) comes from the quantum pressure term in
Eq. (3). Thus we conclude that the quantum pressure
is important for the formation of the dark soliton and
hence the TF approximation (neglecting the quantum
pressure) is generally invalid for soliton dynamics in
BECs.

In their work, Tsurumi and Wadati®* made the
following three assumptions for the dynamics of the
condensate: (i) the pulse propagation is quasi-one-
dimensional; (ii) the TF approximation; and (iii) there
is an “interface” for the condensate, which is taken as
an elastic cylindrical shell and obeys Newton’s second
law. The second assumption (the TF approximation)
disregards the quantum pressure, thus the dispersion
of the system is neglected. By the third assumption,
a new equation for the motion of the elastic shell, not
resulting from the GP equation, was introduced. The
dispersion in their KdV equation results from this new

equation, and has an opposite sign compared with the
dispersion resulting from the quantum pressure in the
system. This is the reason why they could not ar-
rive at the Bogoliubov excitation spectrum in the lin-
ear case and why, in the weakly nonlinear case, they
obtained a bump soliton with a propagating velocity
larger than the sound speed of the system, thus contra-
dicting with the experiments and most of the existing
theoretical results.[*7—10]

In conclusion, we have investigated the dynamics
of nonlinear pulses in a cigar-shaped Bose—Einstein
condensate with a repulsive interaction. A KdV de-
scription for dark soliton propagation is developed
without using TF approximation. Our results show
that the quantum pressure is important for the for-
mation of the dark solitons in BEC. For further work
we just mention the effect of inhomogeneity in the z-
direction and soliton collisions.*®! A detailed study of
these problems should be carried out in another work.
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