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Abstract: We investigate the electromagnetically induced transparency
(EIT) and nonlinear pulse propagation in a Λ-type three-level atomic gas
filled in a slot waveguide, in which electric field is strongly confined inside
the slot of the waveguide due to the discontinuity of dielectric constant.
We find that EIT effect can be greatly enhanced due to the reduction of
optical-field mode volume contributed by waveguide geometry. Comparing
with the atomic gases in free space, the EIT transparency window in the slot
waveguide system can be much wider and deeper, and the Kerr nonlinearity
of probe laser field can be much stronger. We also prove that using slot
waveguide ultraslow optical solitons can be produced efficiently with
extremely low generation power.
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1. Introduction

Over the past two decades, quantum interference phenomena has attracted much attention due
to their fundamental interest and promising applications for optical and quantum information
processing. One of such phenomena is electromagnetically induced transparency (EIT), which
can be used to substantially enhance the efficiency of nonlinear optical processes in addition
to a large suppression of optical absorption [1]. Another noticeable effect of EIT is drastic
reduction of group velocity of optical pulses, which has important applications such as slow
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light [2, 3], quantum memory [4–6], quantum phase gates [7, 8], and slow light solitons [9, 10].
However, up to now most works on EIT and optical pulse propagations have been performed

with atomic gases in bulk samples [1]. Since optical pulses in such systems are unguided plane
waves, interaction strength between optical pulses and quantum emitters is limited and thus
EIT effect is weak. It is desirable to use optical waveguides where optical fields are guided and
optical energy is concentrated in small spatial regions. Such structures can be used to not only
for enhancing EIT effect, but also for raising the efficiency of nonlinear optical processes based
on gases phase media such as atoms or molecules. In recent years, there have been several works
on EIT and related studies in waveguide structures where atomic or molecular gases are filled
in low-index regions, including hollow-core photonic crystal fibers [11–17], nanofibers [18],
and so on.

Guiding light in low-refractive-index materials (e.g air) is thought to be prohibited in con-
ventional waveguides based on total internal reflection. Usually, multiple dielectric layers [11]
or hollow-core photonic crystal fibers [12–17] based on external reflections are adopted. How-
ever, in order to have high reflections, such structures have relatively large dimensions and are
wavelength sensitive. In 2004, Almeida et al. [19] proposed a novel structure called slot waveg-
uide, which consists of a nanometer-size slot filled with a low-index material and embedded in
high-index materials. In such structure, light is also guided by total internal reflection but it
can be tightly confined and hence largely enhanced in the slot region [20, 21]. Recently, There
have been a large amount of research activities on guiding and confining light by using slot
waveguides [22–32].

In this article, we propose a scheme to enhance quantum interference effect by using a Λ-
type three-level atomic gas filled in a slot waveguide, in which electric field is strongly confined
inside the slot of the waveguide due to the discontinuity of dielectric constant. We find that the
EIT effect can be greatly enhanced due to reduction of optical-field mode volume contributed
by waveguide geometry. Comparing with atomic gases in free space, the EIT transparency
window in the slot-waveguide system is much wider and deeper, and Kerr nonlinearity of probe
laser field is much stronger. We also demonstrate that using the slot waveguide ultraslow optical
solitons can be produced more efficiently and their generation power is extremely low.

The rest of the article is organized as follows. Sec. 2 describes our theoretical model. Sec. 3
studies the linear propagation of probe field and analyzes its EIT characters. Sec. 4 discusses
nonlinear pulse propagation in the slot waveguide system. Finally, the last section summarizes
the main results obtained in this work.

2. Model

The slot waveguide we adopt is similar to that suggested in Ref. [19], which is shown in the left
part of Fig. 1. It consists of a very thin slot (with width 2a in z-direction) of low-index material
(with index nS) embedded between two thick rectangular regions (with width b− a on both
sides) of high-index material (with index nH ), both surrounded by a low-index cladding (with
index nC). Sizes in the x- and y-directions of each rectangular region are much larger than a
and b. It has been shown [19] that such slot waveguide has the ability for concentrating electro-
magnetic (EM) field of transverse magnetic (TM) modes basically within the slot region, and
hence is very attractive for enhancing radiation-matter interaction. The expressions of guided
TM eigenmodes of eigenfrequencies ωm(k‖) are given in Appendix A. Here k‖ = (k2

x + k2
y)

1/2

with kx and ky being respectively the wavenumbers in x- and y-directions. The physical rea-
son of the confinement and enhancement of TM modes is quite simple. For interfaces with
high-index contrast, Maxwell’s equations require a continuity of normal component of electric
displacement vector, which gives that electric field in the slot region is (nH/nS)

2 times higher
than that in the high-index region.
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Fig. 1. Left: Schematic of slot waveguide structure. The slot width (index nS) is 2a, the width of
the high-index silicon slabs (index nH ) is 2b− 2a. The index of the cladding material is nC . Right:
Level diagram of the three-level atomic system. Ground state |1〉 couples to the exited |2〉 and |3〉 with
the control field Ωc and the probe field Ωp. Δ2 and Δ3 are the detunings of control and probe fields,
respectively. Γ31 (Γ32) is the spontaneous emission decay rate from |3〉 to |1〉 (|2〉). Γ12 and Γ21 are
incoherent population exchange rates. Below the level diagram is the coordinate system chosen for
theoretical calculations. The slot region is |z| ≤ a, and the slabs are in the region a < |z|< b.

Since kx, ky can take any continuous values, and m takes non-zero integers (i.e. m =
1,2,3, · · · ), the guided TM eigenmodes propagate in the xy-plane but is confined in the slot
region of the waveguide. For simplicity, we study the lowest-order (i.e. m = 1) TM guided
mode, and assume kx = 0, ky = k without loss of generality. Then from the Appendix A we
have k‖ = (0,k,0), k̂‖ = ey, k‖ = k, and

ETM(r, t) = ∑
k

√
h̄ω1(k)
2ε0V1

u1,k(z)a1(k)e
i[ky−ω1(k)t] + c.c., (1a)

u1,k(z) =
c

2
√

N1ω1(k)n2(z)

[
kH1,k(z)ez + i

dH1,k(z)

dz
ey

]
. (1b)

Here ω1(k) = (κ2
H1+k2)1/2c/nH = (k2−γ2

S1)
1/2c/nS, V1 is the mode volume, ey (ez) is the unit

vector along the y (z) direction, u1,k(z) is the mode function satisfying
∫ ∞
−∞ dz|u1,k(z)|2 = V1,

ε(z) ≡ n2(z) is dielectric function with n(z) = nS (|z| < a), nH (a < |z| < b), and nC (|z| > b)
(see Fig. 1). The concrete expressions of V1 and N1 (normalized constant) can be found in the
Appendix A (i.e. Eq. (27) ) for m = 1.

For convenience, we take k as a function of ω1. Replacing ω1 by ω , the electric-field expres-
sion of the lowest-order TM guided mode reads ETM(r, t) = ∑ω Eω(

W1
V1
)

1
2 u1,ω(z)ei[k(ω)y−ωt)] +

c.c., with u1,ω(z) ≡ {c/[
√

N1ωn2(z)]}{[kH1,ω(z)ez + i[dH1,ω(z)/dz]ey}. Here k(ω) =

[n2
Hω2/c2 − κ2

H1]
1/2 = [γ2

S1 + n2
Sω2/c2]1/2 and Eω =

√
h̄ω

2ε0W1
a1(ω), with W1 being the mode

volume without the slot (its expression is given in the Appendix B (i.e. Eq. (30) ) for m = 1),
which is taken to be a reference mode volume for the discussions in the following.

Our aim is to investigate the resonant interaction between the TM-mode of EM field and
quantum emitters that are embedded in the slot of the waveguide. For simplicity, we assume the
media in the slot and the cladding regions are air (i.e. nS = nC = 1), and the quantum emitters
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are gaseous atoms with a Λ-type three-level configuration (see the right part of Fig. 1), which
is filled in the slot region. Atomic energy levels are two ground states |1〉 and |2〉 and one
exited state |3〉, which couple with a weak, pulsed probe field with center angular frequency
ωp = kp/c and half Rabi frequency Ωp (i.e. |1〉→ |3〉 transition) and a strong, continuous-wave
control field of center angular frequency ωc = kc/c and half Rabi frequency Ωp (i.e. |2〉 → |3〉
transition). Γ31 (Γ32) is the spontaneous emission decay rate from |3〉 to |1〉 (|2〉). Γ21 (Γ12) is
the incoherent population exchange rate from |1〉 to |2〉 (|2〉 to |1〉), introduced to reflect the
transient relaxation process of the atoms entering and leaving interaction region. We assume
that both the probe and control fields belong to the lowest-order TM guided mode given in
Eq. (1), which has the form

ETM(r, t) = ∑
l=p,c

El

(
W1

V1

) 1
2

u1,l(z)exp{i[k(ωl)y−ωlt]}+ c.c.. (2)

The Hamiltonian of the system in interaction picture reads

Ĥ =−h̄
3

∑
j

Δ j| j〉〈 j|− h̄[ζ ∗
p (z)Ω

∗
p|1〉〈3|+ζ ∗

c (z)Ω
∗
c |2〉〈3|+h.c.], (3)

where Δ3 ≡ ωp − (ω3 −ω1) and Δ2 ≡ ωp −ωc − (ω2 −ω1) are respectively the one- and two-

photon detunings, ζp(z)≡ (W1
V1
)

1
2 e31 ·u1,p(z) and ζc(z)≡ (W1

V1
)

1
2 e32 ·u1,c(z) are respectively the

mode functions of the probe and control fields, Ωp ≡ p31Ep/h̄ and Ωc ≡ p32Ec/h̄ are respec-
tively their corresponding half Rabi frequencies, with e jl the unit vector of the electric dipole
matrix element p jl , i.e. p jl = e jl p jl .

Taking Doppler effect into account, the equation of motion of σ jl , i.e. the density matrix
elements in the interaction picture, are given by

i
∂
∂ t

σ11 + iΓ21σ11 − iΓ12σ22 − iΓ13σ33 +ζ ∗
p (z)Ω

∗
pσ31 −ζp(z)Ωpσ∗

31 = 0, (4a)

i
∂
∂ t

σ22 − iΓ21σ11 + iΓ12σ22 − iΓ23σ33 +ζ ∗
c (z)Ω

∗
cσ32 −ζc(z)Ωcσ∗

32 = 0, (4b)

i
∂
∂ t

σ33 + i(Γ13 +Γ23)σ33 −ζ ∗
p (z)Ω

∗
pσ31 +ζp(z)Ωpσ∗

31

−ζ ∗
c (z)Ω

∗
cσ32 +ζc(z)Ωcσ∗

32 = 0, (4c)(
i

∂
∂ t

+d21

)
σ21 −ζp(z)Ωpσ∗

32 +ζ ∗
c (z)Ω

∗
cσ31 = 0, (4d)(

i
∂
∂ t

+d31

)
σ31 −ζp(z)Ωp(σ33 −σ11)+ζc(z)Ωcσ21 = 0, (4e)(

i
∂
∂ t

+d32

)
σ32 −ζc(z)Ωc(σ33 −σ22)+ζp(z)Ωpσ∗

21 = 0, (4f)

where d21 = −(kp − kc)v+Δ2 + iγ21, d31 = −kpv+Δ3 + iγ31 and d32 = −kcv+(Δ3 −Δ2)+
iγ32 (with v the atom velocity), Γ j = ∑ j>i Γi j and γi j = (Γi +Γ j)/2+ γcol

i j are population and
coherence decay rates, respectively. Here Γi j represents the spontaneous emission decay rate
from state | j〉 to state |i〉, γcol

i j are dephasing rates, and Γ21 is the incoherent population exchange
from state |1〉 to state |2〉. Note that the atom-photon interactions in waveguide geometries may
introduce some undesirable effects, such as the atomic collisions with waveguide walls and
the adhesion to the walls [17]. We assume these interfacial effects can be weakened by using
similar experimental techniques as did in Refs. [13, 16, 17], like coating the inner walls with
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some materials (i.e. paraffin) or using light-induced atomic desorption. Note that the controlling
field Rabi frequency Ωc in our system is strong enough, so that the change of the decay rate
due to the confinement of atoms plays no significant role.

The electric polarization intensity of the system reads

P = Na

∫ ∞

−∞
dv f (v)[p13σ31ei(kpy−ωpt) +p23σ32ei(kcy−ωct) + c.c.], (5)

where Na is atomic concentration, f (v) = 1/(
√

πvT )exp[−(v/vT )
2] is Maxwell velocity dis-

tribution, vT =
√

2kBT/M is the most probable speed at temperature T , with M the atomic
mass and kB the Boltzmann constant. Because the integration over the Maxwell distribution is
not easy to analyze, as did in Refs. [33, 34] we replace it by the modified Lorentzian velocity
distribution f (v) = vT/[

√
π(v2 + v2

T )].
The motion of the electric field is controlled by Maxwell equation, which under the slowly

varying envelope approximation reduces to

i

(
∂
∂y

+
1
c
〈n2(z)〉

neff

∂
∂ t

)
Ωp +

c
2ωpneff

∂ 2Ωp

∂x2 +κ13

∫ ∞

−∞
dv f (v)〈σ31(v,z)〉= 0, (6)

where κ13 = Nωp|p13|2/(2ε0h̄cneff) and neff = ck(ωp)/ωp is the effective refraction index. The
quantity 〈Q(z)〉 ≡ ∫ ∞

−∞ dzζ ∗(z)Q(z)/
∫ ∞
−∞ dz|ζ (z)|2 for any function of Q(z).

3. EIT characters

3.1. Base state

When the probe field is absent (i.e. Ωp = 0), the Maxwell-Bloch (MB) Eqs. (4), (6) have the
steady-state solution

σ (0)
11 =

Γ12(Γ13 +Γ23)X1 +(Γ12 +Γ13)|ζ (z)Ωc|2
X2

, (7a)

σ (0)
22 =

Γ21(Γ13 +Γ23)X1 +Γ21|ζ (z)Ωc|2
X2

, (7b)

σ (0)
33 =

Γ21|ζ (z)Ωc|2
X2

, (7c)

σ (0)
32 =−ζ (z)Ωc

d32

Γ21(Γ13 +Γ23)X1

X2
, (7d)

and σ (0)
21 = σ (0)

31 = 0, where X1 = {[kcv− (Δ3 −Δ2)]
2 + γ2

32}/2γ32 and X2 = (Γ12 +Γ21)(Γ13 +
Γ23)X1 +(Γ12 + 2Γ21 +Γ13)|ζ (z)Ωc|2. Note that we have taken ζc(z) ≈ ζp(z) ≡ ζ (z) because
ωp ≈ ωc.

From (7) we see that, due to the incoherent population exchange, there are population oc-
cupation in all three levels. However, the population in states |2〉 and |3〉 are small because
generally Γ21 and Γ12 are small. When Γ21 = Γ12 = 0, one has σ11 = 1 and σ jl = 0 ( j, l �= 1).

3.2. EIT characters

We now study the solution of linear excitations of the system, which can be done by linearizing

the MB Eqs. (4) and (6) around the base state (7). Taking σ j j = σ (0)
j j ( j = 1,2,3), σ32 = σ (0)

32 ,
and assuming Ωp and σ j1 are small quantities proportional to exp[i(K(ω)y−ωt)], we obtain
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the linear dispersion relation

K(ω) =
1∫ ∞

−∞ dz|ζ (z)|2
∫ ∞

−∞
dz|ζ (z)|2

{ω
c

n2(z)
ne f f

+κ13

∫ ∞

−∞
dv f (v)

ζ (z)Ωcσ∗(0)
32 +(ω +d21)(2σ (0)

11 +σ (0)
22 −1)

|ζ (z)Ωc|2 − (ω +d21)(ω +d31)

}
.

(8)

Different from the case in free space [34], here we must calculate two-fold integration. The
first one is the second term in the brace, which is a statistical average on atomic velocity v.
Such integration can be calculated by the use of residue theorem [34]. Taking kpv as a com-
plex number, we find two poles in the lower half complex plane, given by kpv = −ikpvT and
kpv = −i{γ2

32 + 2γ32(Γ12 + 2Γ21 +Γ13)|ζ (z)Ωc|2/[(Γ12 +Γ21)Γ3]}1/2 ≡ −iη . For calculating
the integration, we take a contour consisting of the lower half complex plane and real axis. The
use of residue theorem gives

K(ω) =
∫ ∞

−∞
dz|ζ (z)|2

(
ω
c

n2(z)
neff

+K1(z)+K2(z)

)/∫ ∞

−∞
dz|ζ (z)|2, (9)

where K1 is the contribution from the first pole point kpv =−ikpvT :

K1(z) =
√

πκ13

{
|ζ (z)Ωc|2Γ21Γ3(−iΔωD − iγ32)

+(ω + iγ21)[Γ12Γ3(−Δω2
D + γ2

32)+2γ32(Γ12 −Γ21 +Γ13)|ζ (z)Ωc|2]
}

/{
(−Δω2

D +η2)(Γ12 +Γ21)Γ3[|ζ (z)Ωc|2 − (ω + iγ21)(ω + iΔωD + iγ31)]
}
,

(10)

and K2 is the contribution from the second pole point kpv =−iη

K2(z) =
√

πκ13ΔωD

{
|ζ (z)Ωc|2Γ21Γ3(−iη − iγ32)

+(ω + iγ21)[Γ12Γ3(−η2 + γ2
32)+2γ32(Γ12 −Γ21 +Γ13)|ζ (z)Ωc|2]

}
/{

η(Δω2
D −η2)(Γ12 +Γ21)Γ3[|ζ (z)Ωc|2 − (ω + iγ21)(ω + iη + iγ31)]

}
.

(11)

The integration on z in Eq. (9) is a spatial average due to the EM field confinement by the
waveguide geometry, which must be done numerically.

The expression of the imaginary part of K(ω) at ω = 0, i.e. Im(K0), is given by

Im(K0) =
1∫ ∞

−∞ dz|ζ (z)|2
∫ ∞

−∞
dz|ζ (z)|2

∫ ∞

−∞
dv f (v)

κ13γ21

|ζ (z)Ωc|2 + γ21γ31

×
(

1− Γ21Γ3X1 +3Γ21|ζ (z)Ωc|2
(Γ21 +Γ12)Γ3X1 +(2Γ21 +Γ12 +Γ13)|ζ (z)Ωc|2

)
.

(12)

From Eq. (9) to Eq. (12) we obtain the following conclusions:
(1). The linear dispersion relation K(ω) depends strongly on the slot width 2a due to the

factor (W1/V1)
1/2 appeared in the mode function ζ (z). Shown in Fig. 2(a) is the probe-field

absorption spectrum Im(K) as a function of ω for different slot width. The red solid, black
dashed and blue dashed-dotted lines are for 2a= 50,30 and 10 nm, respectively. We see that: (i)
For three different slot widths, an EIT transparency window (i.e. the dip near ω = 0) is opened.
(ii) The width of the EIT transparency window becomes larger as the slot width 2a decreases,
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Fig. 2. (a): Im(K) as a function of frequency ω for different slot width 2a. The red solid, black dashed,
and blue dashed-dotted lines are for the slot width 2a = 50,30 and 10 nm, respectively. (b): Im(K0) as
a function of |Ωc| for different slot width 2a. The red solid, black dashed, and blue dashed-dotted lines
are for the slot width 2a = 50,30,10 nm, respectively.

which means that quantum interference effect is enhanced when the slot width decreases. The
physical reason of the enhancement of EIT effect is due to the reduction of EM-field mode
volume, which results in (W1/V1)

1/2 � 1 and hence the giant enhancement of the interaction
between light and atoms.

(2). The minimum of the absorption, i.e. Im(K0), depends not only on Ωc but also on the slot
width. Fig. 2(b) shows the profile of Im(K0) as a function of Rabi frequency |Ωc| for different
slot width 2a, where the red solid, black dashed and blue dashed-dotted lines are for 2a= 50,30
and 10 nm, respectively. One sees that: (i) For a given Ωc, Im(K0) for smaller slot width is
obviously much smaller than that for larger slot width. As the slot width decreases, the EIT
transparency window can be not only widened but also deepened dramatically. (ii) The EIT
transparency window with a smaller slot width can be obtained with a much smaller Ωc than
that with a larger slot width, which means that the confinement provided by the waveguide
geometry can be used to get an EIT more easily than that without the confinement. Note that
when plotting Fig. 2 we have used a practical example with the D1 line transition of 87Rb atoms,
by selecting|5S1/2, F = 1〉, |5S1/2, F = 2〉, and |5P1/2, F = 1〉 as the atomic states |1〉, |2〉, and
|3〉, respectively. The system parameters used are κ13 = 1.0× 109 cm−1s−1, Ωc = 1.0× 108

s−1, Γ31 = Γ32 = 1.0×107 s−1, and Γ21 = 10−4Γ31.
(3). The incoherent population exchange (i.e. nonzero Γ21) plays no significant role on the

probe-field absorption when Ωc is very large. However, it has non-negligible influence when
Ωc is not too large, reflected in the second term (i.e. the term related to Γ21) in the bracket
of Eq. (12) which contributes a obvious reduction to the absorption of the probe field. In fact,
by the incoherent population exchange the atoms undergo an active Raman gain process from
|2〉 → |3〉 → |1〉. Shown in Fig. 3(a) is Im(K) as function of frequency ω for Ωc = 1.0× 106

s−1 with Γ21 = 0 (red solid line), Γ21 = 0.5Γ12 (black dashed line) and Γ21 = Γ12 (blue dashed-
dotted line), respectively. We see that the absorption for Γ21 = Γ12 is much smaller than that
for Γ21 = 0. So a incoherent population exchange can be used to widen and deepen the EIT
transparency window. Fig. 3(b) shows the profile of Im(K0) as a function of |Ωc| with Γ21 = 0
(red solid line), Γ21 = 0.5Γ12 (black dashed line) and Γ21 = Γ12 (blue dashed-dotted line),
respectively. We see that for large |Ωc|, there is no obvious difference in Im(K0) for different
Γ21; but for small |Ωc| the effect caused by Γ21 can be observed clearly.
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Fig. 3. (a): Im(K) as a function of ω . (b): Im(K0) as a function of |Ωc| with Γ21 = 0 (red solid line),
Γ21 = 0.5Γ12 (black dashed line) and Γ21 = Γ12 (blue dashed-dotted line), respectively.

4. Kerr nonlinearity and ultraslow optical solitons

4.1. Kerr nonlinearity of the system

From the MB Eqs. (4) and (6), we obtain the probe field susceptibility

χp =

∫ ∞

−∞
dv f (v)

Na|p13|2
ε0h̄

〈σ31(v,z)〉
Ωp

≈ χ(1)
p + χ(3)

pp |Ep|2, (13)

where Ep = h̄Ωp/p31, χ(1)
p and χ(3)

pp are respectively first-order (linear) and third-order (Kerr)
susceptibilities, with the expressions given by

χ(1)
p =

Na|p13|2
ε0h̄

∫ ∞

−∞
dz|ζ (z)|2

∫ ∞

−∞
dv f (v)

×d21d∗
32(σ

(0)
33 −σ (0)

11 )−|ζ (z)Ωc|2(σ (0)
33 −σ (0)

22 )

d∗
32(d21d31 −|ζ (z)Ωc|2)

/∫ ∞

−∞
dz|ζ (z)|2, (14a)

χ(3)
pp =

Na|p13|4
ε0h̄3

1∫ ∞
−∞ dz|ζ (z)|2

∫ ∞

−∞
dz|ζ (z)|2

∫ ∞

−∞
dv f (v)

×|ζ (z)|2
[
id32ζ (z)ΩcZ1Z4 − (2d21|d32|2 −d32|ζ (z)Ωc|2)Z2

−(d21|d32|2 −2d32|ζ (z)Ωc|2)Z3

]/[
iZ1|d32|2(|ζ (z)Ωc|2 −d21d31)

]
, (14b)

where Z1 = (Γ12 + Γ21)(Γ13 + Γ23)|d32|2 + 2γ32(Γ12 + 2Γ21 + Γ13)|ζ (z)Ωc|2, Z2 =
[(Γ12 + Γ23)|d32|2 + 4γ32|ζ (z)Ωc|2](Z5 − c.c.) + (Γ12 − Γ13)[(d∗

32ζ ∗(z)Ω∗
cZ∗

4) − c.c.], Z3 =
(Γ21 + Γ13)[(d∗

32ζ ∗(z)Ω∗
cZ∗

4)− c.c.]− [(−Γ21 + Γ23)|d32|2 + 2γ32|ζ (z)Ωc|2](Z5 − c.c.), Z4 =

[−d31σ∗(0)
32 − ζ ∗(z)Ω∗

c(σ
(0)
11 −σ (0)

33 )]/(|ζ (z)Ωc|2 − d21d31) and Z5 = [ζ (z)Ωcσ (0)
32 + d∗

21(σ
(0)
11 −

σ (0)
33 )]/(|ζ (z)Ωc|2 −d∗

21d∗
31).

The Kerr effect can be enhanced due to the confinement effect induced by the waveguide
geometry. When the slot width 2a decreases, the confinement of the light field increases because
the factor (W1/V1) in the expression |ζ (z)|2 increases. Shown in Fig. 4 is the real part of the

third-order susceptibility, i.e. Re(χ(3)
pp ), as a function of detunning Δ3 for different slot width

2a, where the red solid, black dashed and blue dashed-dotted lines are for 2a = 50,25 and 5
nm, respectively. Parameters are the same as those used in Fig. 2 with a small air (εS = 1) slot
embedded between the silicon (εH = 14) slabs. We see that the Kerr effect for large confinement
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(2a = 5 nm) is much larger than that for small confinement (2a = 50 nm). Hence the effect of
self-phase modulation becomes stronger as the slot size 2a goes smaller, which indicates that
in the slot waveguide the efficiency of producing ultraslow optical solitons may be higher than
that in free space.

4.2. Asymptotic expansion and nonlinear envelope equation

We now turn to study possible optical solitons in the system, which is especially interesting
for the present slot waveguide geometry because the light power density in such system is
increased and diffraction is suppressed in the confined direction, and thus optical solitons are
easy to produce than in free space [9, 10]. Such study is also of practical interest in optical
information processing and transmission in quantum hybrid systems when shape-preserving
probe pulses with low light power are needed.

To this end, we employ the method of multiple scales to solve the MB equations for
nonlinear propagation problems developed in Ref. [10]. Taking the asymptotic expansion

σi j =∑l=0 ε(l)σ (l)
i j , Ωp =∑l=1 ε(l)Ω(l)

p , where σ (0)
i j is the base state solution given by Eq. (7) and

ε is a dimensionless small parameter characterizing the amplitude of the probe field. To obtain
a divergence-free expansion, all quantities on the right hand side of the expansion are consid-
ered as functions of the multi-scale variables yβ = εβ y (β = 0,1,2) and tβ = εβ t (β = 0,1).

Substituting the expansion into the MB Eqs. (4) and (6), we obtain a series of equations for σ (l)
i j

and Ω(l)
p , which can be solved order by order.

At the first order (l = 1), we obtain the linear solution

Ω(1)
p = Feiθ , (15a)

σ (1)
31 =

(ω +d21)(2σ (0)
11 +σ (0)

22 −1)+ζ (z)Ωcσ∗(0)
32

|ζ 2(z)Ωc|2 − (ω +d21)(ω +d31)
ζ (z)Feiθ , (15b)

σ (1)
21 =− (ω +d31)σ

∗(0)
32 +ζ ∗

c (z)Ω∗
c(2σ (0)

11 +σ (0)
22 −1)

|ζ 2(z)Ωc|2 − (ω +d21)(ω +d31)
ζ (z)Feiθ , (15c)

with other σ (1)
i j = 0. Here θ = K(ω)y0 −ωt0, with F being a yet to be determined envelope
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function depending on the slow variables (t1, y1,y2) and K(ω) being the linear dispersion rela-
tion given by Eq. (8).

At the second order (l = 2), the condition of the solution in this order is divergence-free
requires i [∂F/∂y1 +(1/vg)∂F/∂ t1] = 0, where vg = ∂K/∂ω is the group velocity of the en-
velope function F . The explicit expressions of the second-order solution are omitted here for
saving space.

At the third order (l = 3), we obtain the closed equation for F :

i
∂F
∂y2

+
c

2ωpneff

∂ 2F

∂x2
1

− K2

2
∂ 2F

∂ t2
1

−W |F |2Fe−2ᾱy2 = 0, (16)

where K2 ≡ ∂ 2K/∂ω2, and

W =−κ13

∫ ∞

−∞
dz|ζ (z)|4

∫ ∞

−∞
dv f (v)

ζ (z)Ωca
∗(2)
32 +(ω +d21)(2a(2)11 +a(2)22 )

|ζ 2(z)Ωc|2 − (ω +d21)(ω +d31)

/∫ ∞

−∞
dz|ζ (z)|2,

(17)
and α = Im(K) = ε2ᾱ . The explicit expressions of a(2)11 , a(2)22 , a(2)32 have been given in Appendix
C.

Returning to the original variables, Eq. (16) becomes

i

(
∂
∂y

+α
)

U +
c

2ωpneff

∂ 2U
∂x2 − K2

2
∂ 2U
∂τ2 −W |U |2U = 0, (18)

where τ = t − y/vg and U = εFe−αy. Equation (18) is of the form of nonlinear Schrödinger
(NLS) equation, but has complex coefficients and hence is not integrable generally. If a non-
linear localized pulse is produced, it may be highly unstable during propagation. However, if
a realistic set of system parameters under some conditions can be found so that the imaginary
part of the coefficients can be much smaller than their real part, it is possible to obtain a shape-
preserving soliton solution that can propagate for a rather long distance without significant
distortion. In fact, such parameter set can indeed be found near the EIT transparency window
(see below), so the imaginary parts of the coefficients are very small. In this way Eq. (18) can
be written into the dimensionless form

i
∂u
∂ s

+
∂ 2u
∂σ2 +2u|u|2 = id0u+d1

∂ 2u
∂ξ 2 , (19)

where s = −z/(2LD), σ = τ/τ0, ξ = x/R⊥ and u = U/U0. LD = τ2
0/K̃2 is the characteristic

dispersion length, R⊥ is the beam radius in x-direction and U0 = 1/τ0

√
K̃2/W̃ is typical Rabi

frequency of the probe field, with K̃2 and W̃ denoting respectively the real parts of K2 and W .
In Eq. (19), d0 = LD/LA and d1 = LD/Ldiff are two dimensionless coefficients, with LA = 1/2α
the characteristic absorption length and Ldiff = ωpneffR2

x the characteristic diffraction length,
respectively. Under the condition d0,d1 � 1, Eq. (19) reduces to an integrable NLS equation,
which allows multi-soliton solutions. A single soliton solution reads

u = 2β sech [2β (σ −σ0 +4δ s)]exp[−2iδσ −4i(δ 2 −β 2)s− iφ0], (20)

where β , δ , σ0 and φ0 are real free parameters that determine the amplitude (also width),
propagating velocity, initial position, and initial phase of the soliton, respectively. Taking β =
1/2, δ = σ0 = φ0 = 0, we have u = 2β sechexp(is); or in terms of Rabi frequency

Ωp =
1
τ0

√
K̃2

W̃
sech

[
1
τ0
(t − y

ṽg
)

]
exp

[
iK̃0y+ i

y
2LD

]
, (21)
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Fig. 5. (a) The three-dimensional plot of the wave shape |Ωp/U0|2 as a function of z/LD and t/τ0. The
solution is numerically obtained from Eq. (14) with full complex coefficients taken into account. The
values of parameters are given in the text. (b): The interaction between two identical bright solitons.

with K̃0 = Re(K0). Equation (21) describes a bright soliton traveling with velocity ṽg = Re(vg).
We now consider a practical example for the formation of the optical soliton given above.

We choose 87Rb D1-line transition, with system parameters given by κ13 = 1.0×109 cm−1s−1,
Δ2 = 2.5× 105 s−1, Δ3 = 5.9× 107 s−1 and slot width 2a = 10 nm. In this case, the coeffi-
cients in Eq. (21) are K2 = (1.59+ 0.14i)× 10−14 cm−1s−2 and W = (5.1+ 0.36i)× 10−15

cm−1s−2. We see that the imaginary parts of these coefficients are indeed much smaller than
their corresponding real parts. The physical reason of so small imaginary parts is due to the
quantum interference effect induced by the control field, by which the role of population and
coherence decay rates for the propagation of the soliton is largely suppressed. When taking
τ0 = 1.5×10−7 s, Rx = 0.05 cm we have the characteristic lengths LD = 1.4 cm, LA = 38.4 cm
and Ldiff = 107 cm, which ensure the validity of neglecting absorption and diffraction of the
probe pulse when propagating a distance not much larger than the dispersion length, i.e. d0 � 1
and d0 � 1 is satisfied. With these parameters we obtain the group velocity Vg = 1.6×10−5c.
Consequently, the optical soliton obtained travels with an ultraslow propagating velocity in the
system.

The input power for generating the ultraslow optical soliton may be estimated by cal-
culating Poyntings vector. The average flux of energy over carrier-wave period is P̄/S0 =
(P̄max/S0)sech2[(t − z/Ṽg)/τ0] with the peak power P̄max = 2ε0cnpS0(h/p31)

2K̃2/(W̃τ2
0 ). Here,

np = nneff + cK̃0/ωp is the refractive index and S0 is the cross section area of the probe beam.
With the values of coefficients given above, we obtain P̄max = 1.19 μW. Thus, very low input
power is needed for generating the ultraslow optical soliton in the slot waveguide system.

In order to make a further confirmation of the soliton solutions and check their stability, a nu-
merical simulation is carried out. Shown in Fig. 5(a) is the three-dimensional plot for the wave
shape |Ωp/U0|2 as a function of z/LD and t/τ0. The initial condition of the simulation is given
by Ωp(0,σ) =U0sech(t/τ0). We see that the amplitude of the soliton undergoes only a slight
decrease and its width undergoes slight increase due to the influence of the small imaginary
parts of the coefficients. The properties of collision between two ultraslow optical solitons are
also investigated numerically by taking Ωp(0,σ) =U0sech(t/τ0−5)+U0sech(t/τ0+5) as the
initial condition without any approximation. As time goes on, they collide, pass through, and
depart from each other, as shown in Fig. 5(b). The two solitons recover their initial waveforms
after the collision.
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5. Conclusion

We have investigated the EIT and nonlinear pulse propagation in a Λ-type three-level atomic
gas filled in a slot waveguide, in which electric field is strongly confined inside the slot of
the waveguide due to the discontinuity of dielectric constant. We have found that the EIT ef-
fect can be largely enhanced due to reduction of optical-field mode volume contributed by the
waveguide geometry. In comparison with the atomic gases in free space, the EIT transparency
window in the slot waveguide system are much wider and deeper, and the Kerr nonlinearity of
the probe laser field are much stronger. We have also proved that by using the slot waveguide
ultraslow optical solitons via EIT can be produced efficiently with extremely low generation
power. The present work opens an avenue to the study EIT-related quantum coherence in nano-
sized systems and the results presented may have promising applications for optical information
processing and transmission.

Appendix

A. TM-modes of EM field and mode volume in the slot waveguide

For the slot waveguide, the EM field can be divided into transverse electric (TE) and transverse
magnetic (TM) parts, i.e. E = ETE+ETM and H = HTE+HTM. The confinement and enhance-
ment of EM field near the slot region is contributed by the TM part. By solving Maxwell’s
equations in the absence of atoms, we can obtain the TM eigenmode solutions with the coordi-
nate system chosen in Fig. 1 as

HTM
m,k‖(r, t) = (k̂‖ × ez)Hm,k‖(z)ei(k‖·r−ωmt) + c.c., (22a)

ETM
m,k‖(r, t) =

i
ωm(k‖)ε0ε(z)

[−ik‖Hm,k‖(z)ez +
d Hm,k‖(z)

dz
k̂‖]e

i(k‖·r−ωmt) + c.c.,(22b)

where k‖ = (kx,ky,0) (kx, ky are arbitrary real numbers) is the wavevector in the xy plane,

k̂‖ = k‖/|k‖| and ez are respectively the unit vectors in the k‖- and z-directions, ωn(k‖) is the
eigenfrequency with m = 1,2,3 · · · , and ε(z)≡ n2(z) is dielectric function with n(z) (refractive
index) taking the value nS for |z|< a, nH for a < |z|< b, and nC for |z|> b (see Fig. 1).

The function Hm,k‖(z) in Eq. (22) satisfies the equation

d2

dz2 Hm,k‖(z)+

[(ω
c

)2
n2(z)− k2

‖

]
Hm,k‖(z) = 0, (23)

with the boundary conditions Hm,k‖(z), dHm,k‖(z)/dz being continuous at the interfaces z =
±a,±b. For guided modes, an additional condition Hm,k‖(z)→ 0 for z →±∞ is also required.
Then one obtains [19]

HTM
m,k‖(z) =

⎧⎪⎨
⎪⎩

cosh(γSmz), |z|< a

Cm cos[κHm(|z|−a)]+Dm sin[κHm(|z|−a)], a < |z|< b

Em exp [−γSm(|z|−b)], |z|> b

(24)

where Cm = cosh(γSma), Dm = [n2
HγSm/(n2

SκHm)]sinh(γSma), Em = {cosh(γSma)cos[κHm(b−
a)] + [n2

HγSm/(n2
SκHm)]sinh(γSa)sin[κHm(b − a)]}, with κHm = [n2

Hω2
m(k‖)/c2 − k2

‖]
1/2 and

γSm = [k2
‖ −n2

Sω2
m(k‖)/c2]1/2. The eigenvalue ωm(k‖) is determined by the equation

tan

[
κHm(b−a)− arctan

(
γSmn2

H

κHmn2
S

)]
=

γSnn2
H

κHmn2
S

tanh(γSma). (25)
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In fact, the eigenfrequency ωm depends only on k‖ = (k2
x +k2

y)
1/2, i.e. ωm = ωm(k‖). Obviously,

the guided eigenmodes given above propagate in the xy-plane but confined basically in the slot
region.

Using the formula U = 1
2

∫
d3r

(
εE2 +μH2

)
with U being EM-field energy and ε and μ

(= μ0) being respectively the permittivity and permeability, we obtain the second-quantization
form of the TM part

ETM(r, t) = ∑
kx,ky

∞

∑
m=1

√
h̄ωm

2ε0Vm
um,k‖(z) âm(k)ei(k‖·r−ωmt) +h.c., (26a)

HTM(r, t) = ∑
kx,ky

∞

∑
m=1

√
h̄ωm

2ε0Vm
(k̂‖ × ez)

ε0c√
Nm

Hm,k‖(z) âm(k)ei(k‖·r−ωmt) +h.c., (26b)

where um,k‖(z) = {c/[
√

Nmωmn2(z) ]}[ezk‖Hm,k‖(z) + ik̂‖dHm,k‖(z)/dz] is the mode function

with
∫ ∞
−∞ dz|um,k‖(z)|2 = Vm, âm(k) and â†

m(k) are creation and annihilation operators of TM
photons. In our present study, we assume that the photon numbers in both control and probe
fields are much larger than one, so âm(k) and â†

m(k) are taken as dimensionless numbers with
âm(k) = an(k) and â†

m(k) = a∗m(k).
The quantity Vm appeared in Eq. (26) is the (effective) mode volume given by

Vm = S

{
1

2γSm

[
sinh(2γSma)+2E2

m

]
+

a
2

+(C2
m +D2

m)(b−a)+
1

2κHm
(C2

m −D2
m)sin[2κHm(b−a)]

}
/Nm, (27a)

Nm = ω2
m/(cP)2, (27b)

where S is the transverse area of the waveguide in the xy-plane, and P= (k2
‖+γ2

S )[sinh(2γSma)+

2E2
m]/(2γSn4

S) + n2
Hω2

m(C
2
m + D2

m)(b − a)/c2 + CmDmω2
m cos[2κH(b − a)]/(4c2κHmn2

H) +
ω2

m(C
2
m −D2

m)sinh[2κH(b−a)]/(4c2κHmn2
H).

B. TM-modes and mode volume of EM field without the slot

For conventional slab waveguide (i.e. the waveguide shown in Fig. 1 but with the slot width
2a = 0), the TM-modes of the EM field have the same form of Eq. (22), but here n(z) takes the
values nH for |z|< b, and nC for |z|> b, we have

HTM
m,k‖(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sinφm exp

(
z+b
2b

ψm cosφm

)
, z <−b

cos
(

ψm
z
b

sinφm

)
, −b < z < b

sinφm exp

(
b− z
2b

ψm cosφm

)
, z > b

(28)

where φm = (n2
Hω2

m(k‖)/c2−k2
‖)

1/2L and ψm = (2bωm/c)(n2
H −n2

C)
1/2. The eigenvalue ωm(k‖)

is determined by the equation ψm sinφm = mπ −2φm (m = 1,2,3, · · · ). The second-quantization
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form of the EM field reads

ETM(r, t) = ∑
kx,ky

∞

∑
m=1

√
h̄ωm

2ε0Wm
um,k‖(z) ân(k)ei(k‖·r−ωmt) +h.c., (29a)

HTM(r, t) = ∑
kx,ky

∞

∑
m=1

√
h̄ωm

2ε0Wm
(k̂‖ × ez)

ε0c√
Mm

Hm,k‖(z) âm(k)ei(k‖·r−ωmt) +h.c.,(29b)

where um,k‖(z) = {c/[
√

Mmωmn2(z) ]}[ezk‖Hm,k‖(z)+ ik̂‖dHm,k‖(z)/dz] is the mode function

with
∫ ∞
−∞ |um,k‖(z)|2dz = Wm. âm(k) and â†

m(k) are creation and annihilation operators of TM
photons, Wm is the mode volume given by

Wm = S
{

b[2sin2 φm +ψm cosφm]/(ψm cosφm)

+ bsin(2ψm sinφm)/(2ψm sinφm)}/Mm, (30a)

Mm = ω2
m/(cG)2, (30b)

with G = [2k2
‖bsin2 φm]/(ψm cosφm)+ sin2 φm[ψm cosφm +ψ2

m/2+ψ2
m sin(2ψm sinφm)]/(2b).

C. Expressions of a(2)i j appearing in Eq. (17)

a(2)11 = −i

{[
i(Γ12 +Γ23)−2|ζ 2(z)Ωc|2

(
1

d32
− 1

d∗
32

)]

·
[ (ω +d∗

21)(2σ (0)
11 +σ (0)

22 −1)+ζ ∗(z)Ω∗
cσ (0)

32

|ζ 2(z)Ωc|2 − (ω +d∗
21)(ω +d∗

31)
− c.c.

]

+i(Γ12 −Γ13)
[
− ζ ∗(z)Ω∗

c

d32

(ω +d∗
31)σ

(0)
32 +ζ (z)Ωc(2σ (0)

11 +σ (0)
22 −1)

|ζ 2(z)Ωc|2 − (ω +d∗
21)(ω +d∗

31)
+ c.c.

]}
/[

i(Γ12 +Γ21)(Γ13 +Γ23)− (2Γ21 +Γ12 +Γ13)|ζ 2(z)Ωc|2
(

1
d32

− 1
d∗

32

)]
, (31a)

a(2)22 =
i

Γ12 −Γ13

[ (ω +d∗
21)(2σ (0)

11 +σ (0)
22 −1)+ζ ∗(z)Ω∗

cσ (0)
32

|ζ 2(z)Ωc|2 − (ω +d∗
21)(ω +d∗

31)
− c.c.

−i(Γ21 +Γ13)a
(2)
11

]
, (31b)

a(2)32 =
1

d32

[ (ω +d∗
31)σ

(0)
32 +ζ (z)Ωc(2σ (0)

11 +σ (0)
22 −1)

|ζ 2(z)Ωc|2 − (ω +d∗
21)(ω +d∗

31)
−ζ (z)Ωc(a

(2)
11 +2a(2)22 )

]
. (31c)
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