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We propose a scheme to realize the quantum random walk in a coherent five-level atomic system via electro-
magnetically induced transparency (EIT). From optical Bloch equations describing the dynamics of the elec-
tromagnetic field and atomic population and coherence, we show that two circular-polarized components of a
probe field display different dispersion properties and hence acquire different phase-shift modifications when
passing through atomic cells. We demonstrate that the quantum coherence and interference owing to the EIT
effect result in a low absorption of the probe field and hence provide a possibility of realizing a many-step
phase-shift quantum random walk. The scheme may be used to experimentally highlight the characteristics of
quantum random walk and lead to a promising application for quantum computation. © 2008 Optical Society
of America
OCIS codes: 270.0270, 200.3050.
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. INTRODUCTION
t is well known that for certain computational tasks,
uantum algorithms are more efficient than classical ones
1]. To date, there are several general techniques known
or developing and analyzing quantum algorithms.
ourier sampling, which is typified by the seminal work
f Simon [2] and Shor [3], and amplitude amplification,
hich originated in the seminal work of Grover [4]. Yet

here is still a search for new quantum algorithms that
an be practically realized. In this direction, the quantum
ersion of some classical algorithms has also attracted
uch attention. Quantum random walk (QRW) is one of

uch example.
The concept of QRW was first proposed in 1993 by Aha-

onov et al. [5]. As a quantum analog of the classical ran-
om walk, QRWs are receiving much attention [6]. Unlike
he classical case, the state of a QRW at a given time is
escribed by probability amplitude instead of probability.
hus the behavior of QRWs displays drastic differences

rom that of classical random walks [7,8]. The motivation
f studying quantum versions of random walks lies in
oth practical applications and fundamental interests. In
ddition, the study of QRWs provides an engine for find-
ng not only new quantum algorithms but also an ex-
mple of quantum coherent control over single atoms or
hotons in physical systems. The algorithms based on
RWs have also been introduced in [9,10].
Although any system designed for quantum computing

an also be used to perform a QRW, most quantum com-
uters have yet to be built on a large scale for practical
pplication. Random walks might exhibit specifics that
ould ease their implementation in certain physical sys-
0740-3224/08/120C39-7/$15.00 © 2
ems, making use of the structure of the graph underlying
he walk or the character of the coin, for example. Such
n implementation does not necessarily constitute a full
edged quantum computer but could still be well suited to
tudy random walks or to solve algorithmic problems
ased on them. In this spirit several proposals for various
hysical systems have been made, including trapped ions
11], cavity QED [12,13], linear optical scheme [14,15],
lassical implementation [16], optical lattice [17], and
ose–Einstein condensate [18]. One- and two-
imensional QRWs in an array of optical traps for neutral
toms have been proposed [19]. Some experiments have
lso been reported to implement the QRW and the related
lgorithms [20,21].
In this paper we propose a new experimental scheme to

mplement a one-dimensional discrete many-step phase-
hift QRW in a coherent atomic system via electromag-
etically induced transparency (EIT). The essential fea-
ure of an EIT-based system is that quantum coherence
nd interference is induced by applying a strong coupling
aser field; the absorbtion of a probe field tuned to a
trong one-photon resonance can be largely suppressed
nd hence an initially highly opaque optical medium be-
omes transparent. In addition to the low optical absorp-
ion, the EIT effect can be used to slow down the propa-
ating velocity of the probe field and study the nonlinear
ptics at a low light level down to single photons [22,23].
t has also been shown that ultraslow optical solitons may
xist in EIT-based atomic media [24–28]. Recent studies
how that the EIT technique may be applied to quantum
nformation and computation [29–32]. In the present
RW scheme, two circular-polarized components of a
008 Optical Society of America
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robe field are taken as 2° of freedom of a probe single-
hoton wave packet. They experience different dispersion
roperties and hence acquire different phase-shift modifi-
ations, which are used to realize a phase-shift QRW. The
ow absorption owing to the EIT effect makes it possible
o execute enough iterations in atomic cells and hence
rovide the possibility to realize the many-step QRW.
This paper is organized as follows. Section 2 describes

he physical model based on a coherent five-level atomic
ystem with an EIT configuration. Section 3 presents a
rief introduction of a one-dimensional QRW and gives a
etailed discussion about the implementation of the QRW
ith the EIT-based system. Finally, Section 4 contains a
iscussion and summary of our main results.

. PHYSICAL MODEL
e consider a cold lifetime-broadened five-level atomic

ystem that interacts with a weak pulsed probe field of
entral frequency �p / �2�� and a strong continuous-wave
oupling field of frequency �c / �2�� [see Fig. 1(a)]. The sys-
em can be realized in Zeeman-split alkali atoms, such as

Rubidium atomic gas, with an nS−nP−nD level
cheme. Here, n denotes the principal quantum number
hile S, P, and D denote the azimuthal quantum num-
ers characterizing the angular momentum. The atomic
as is trapped in a cell with enough low temperature to
ancel Doppler broadening and atomic collisions. The
robe field is tuned to the lower nS↔nP transition and
ropagates along the direction of an external magnetic
eld B while the coupling field is tuned to the upper
P↔nD transition, and its propagating direction is per-
endicular to the external magnetic field. Notice that a
imilar system has also been proposed to study long-
ange interactions and entanglement of slow single-
hoton pulses [33]. To implement a QRW different from
he classical one, we need at least four atomic cells in a
ow with identical length and Hadamard gates located be-
ore each cell. The possible experimental apparatus for
he QRW is shown in Fig. 1(b).

The electric field vector of the system can be written as
= �x̂�px+ ŷ�py�exp�i�kpz−�pt��+ êc�c exp�i�kcr−�ct��+c.c.,

ig. 1. (a) Energy level diagram and excitation scheme of a li
ulsed probe field of Rabi frequency �p and a strong continuous-w
wo-photon detunings. The linearly polarized probe field can be
olarized components with the Rabi frequencies �p1 and �p2, res
eam splitter; M, high reflective mirror.
here r=x or y, x̂, ŷ, and êc are the unit vectors denoting
he polarization directions of the probe and coupling laser
elds with relevant envelopes represented by �px, �py, and

c, respectively. Using the relations x̂= ��̂++ �̂−� /�2 and ŷ
��̂+− �̂−� / �i�2�, where �̂+ and �̂− are the unit vectors de-
oting, respectively, right-circularly ��+� and left-
ircularly ��−� polarizations, the probe pulse can be con-
idered as a superposition of the �+ and �− components,
.e., Ep= ��̂+�p++ �̂−�p−�exp�i�kpz−�pt��+c.c. with �p+= ��px

i�py� /�2 and �p−= ��px+ i�py� /�2. The �− component of
he probe field drives the transition �1�→ �2�, and the �+

omponent drives the transition �1�→ �3�. The linearly ���
olarized coupling field drives the transitions �2�→ �4� and

3�→ �5�. Thus both �+ and �− components of the probe
eld form an EIT ladder configuration with the coupling
eld. In an interaction picture, the evolution equations for
tomic populations �ii �i=1–5� are

�̇11 = − i��p1
* �21 + �p2

* �31 − �p1�12 − �p2�13� + �21�22

+ �31�33 + �41�44 + �51�55, �1a�

�̇22 = − i��p1�12 + �c
*�42 − �p1

* �21 − �c�24�

− �2�22 + �42�44 + �52�55, �1b�

�̇33 = − i��p2�13 + �c
*�53 − �p2

* �31 − �c�35� − �3�33

+ �43�44 + �53�55, �1c�

�̇44 = − i��c�24 − �c
*�42� − �4�44, �1d�

�̇55 = − i��c�35 − �c
*�53� − �5�55, �1e�

nd the evolution equations for atomic coherence �ij
i� j, i , j=1–5) read

�̇12 = − i��p1
* ��22 − �11� + �p2

* �32 − �c�14 + �p�12�

−
�21 + 	12

2
�12, �2a�

-broadened five-level atomic system that interacts with a weak
upling field of Rabi frequency �c; �p and �c are relevant one- and
ered as a superposition of the right ��+� and left ��−� circular-
ly. (b) Possible experimental apparatus. H, Hadamard gate; BS,
fetime
ave co
consid

pective
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�̇13 = − i��p1
* �23 + �p2

* ��33 − �11� − �c�15 − �p�13�

−
�31 + 	13

2
�13, �2b�

�̇14 = − i��p1
* �24 + �p2

* �34 − �c
*�12 − �c�14�

−
�4 + 	14

2
�14, �2c�

�̇15 = − i��p1
* �25 + �p2

* �35 − �c
*�13 + �c�15�

−
�5 + 	15

2
�15, �2d�

�̇23 = − i��p1�13 + �c
*�43 − �p2

* �21 − �c�25 − 2�p�23�

−
�21 + �31 + 	23

2
�23, �2e�

�̇24 = − i��p1�14 + �c
*��44 − �22� − ��c + �p��24�

−
�21 + �4 + 	24

2
�24, �2f�

�̇25 = − i��p1�15 + �c
*��45 − �23� + ��c − �p��25�

−
�21 + �5 + 	25

2
�25, �2g�

�̇34 = − i��p2�14 + �c
*��54 − �32� − ��c − �p��34�

−
�31 + �4 + 	34

2
�34, �2h�
p1 p2

s
s
s
a
b
=
r

�̇35 = − i��p2�15 + �c
*��55 − �33� + ��c + �p��35�

−
�31 + �5 + 	35

2
�35, �2i�

�̇45 = − i��c�25 − �c
*�43 + 2�c�45� −

�4 + �5 + 	45

2
�45,

�2j�

here �p1=−�pSP · �̂+�p+� /
, �p2=−�pSP · �̂−�p−� /
, and �c
−�pPD · êc�c� /
 are the Rabi frequencies with pSP �pPD�
eing the electric dipole matrix element associated with
he transition nS↔nP �nP↔nD�; �p=�BgF

pB /
 ��c
�BgF

dB /
� is the detuning of the right-circularly (left-
ircularly) polarization component of the probe field with
B being the Bohr magneton and gF

p �gF
d� being the Landé

actor of the level nP �nD�; �4=�41+�42+�43 and �5=�51
�52+�53 are total decay rates of the states �4� and �5�,
ith �ij denoting the spontaneous emission decay rate

rom state �i� to state �j� and 	ij denoting the dephasing
ate.

The electric susceptibilities �± for the �+ and �− compo-
ents of the probe field are given by

�+ = −
Na�pSP�2


�0

�21

�p1
, �− = −

Na�pSP�2


�0

�31

�p2
, �3�

here Na is the density of the atomic gas and �0 is the
acuum dielectric constant. We assume that the particles
n the system are initially populated in the state �1�. If the
ntensity of the probe field is much weaker than that of
he coupling field, the depletion of the ground state �1� is
ot significant and hence one has �11�1, �ii�0 (i=2 to
), and �ij�0 (i , j=2 to 5, i� j). The solutions for �21 and
31 in the linear regime can be readily obtained using the
ourier transform technique as in [24,25]. As a result sus-
eptibilities of the two polarization components of the
robe field are given by
�+ = −
Na�pSP�2


�0

���c�2 + �p�c + �P�D + i��p�D − �c�P����c − i�D�

��c�4 + 2��p�c + �P�D���c�2 + ��p
2 + �P

2���c
2 + �D

2 �
, �4a�

�− =
Na�pSP�2


�0

���c�2 + �p�c + �P�D − i��p�D − �c�P����c + i�D�

��c�4 + 2��p�c + �P�D���c�2 + ��p
2 + �P

2���c
2 + �D

2 �
, �4b�
t �=0 (� denotes a frequency deviation from the center
requency of the probe field �p). For simplicity we have set
21	�31=�P and �4	�5=�D; 	ij is much less than �P and
D.
In Fig. 2 we have shown the dispersion spectrum Re �±

panel (a)] and absorption spectrum Im �± [panel (b)] of
(solid curves) and � (dashed curves), which corre-
pond to the real part and the imaginary part of the re-
pective susceptibilities. In plotting Fig. 2 a realistic set of
ystem parameters (see Subsection 3.B) have been
dopted. We see that the atomic medium is transparent to
oth polarization components of the probe field near �
0, where normal dispersion also occurs. The physical
eason for this transparency is owing to the quantum in-
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erference effect (i.e., the EIT effect) induced by the cou-
ling field, which makes the QRW possible in the present
esonant atomic system.

. IMPLEMENTATION OF A PHASE-SHIFT
UANTUM RANDOM WALK
. One-Dimensional Quantum Random Walk
efore the discussion of physical implementation of a
RW in the EIT-based coherent atomic system, for com-
leteness we give a simple introduction of a QRW on a
ine. A discrete-time QRW can be realized by repeatedly
pplying a unitary evolution operator Û on a Hilbert
pace formed by tensor product HC � HP, where HC is
alled a coin Hilbert space and HP is called a position Hil-
ert space. For a line with grid-length 1, HP is spanned by
asis 
�x� :x�Z�, which indicates the site where a particle
s located in. HC is spanned by two basis states �R� and
L�. At each time interval the particle can move one step
o either the left site or the right site, each direction with
/2 probability. The state in HC determines the direction
f the motion of the particle. The conditional translation Ŝ
hus has the following action on the basis states:
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ig. 2. (a) Dispersion �Re �±� and absorption �Im �±� spectra for
p1 (solid curve) and �p2 (dashed curve) with a particular set of
arameters (see Subsection 3.B). (b) Absorption spectra for �p1
solid curve) and �p2 (dashed curve) with the same parameters.
Ŝ�R,x� = �R,x + 1�, Ŝ�L,x� = �L,x − 1�. �5�

n each iteration the quantum walk is implemented by
he Hadamard operation,

Ĥ =
1

�2
�1 1

1 − 1
 , �6�

n the coin states to bring them into a superposition state
ith equal probability. The Hadamard operation is a nec-
ssary part of the quantum walk and works pro in many
uantum algorithms. Then, the evolution operator Û is
iven by Û= Ŝ · �Ĥ � Î�. Let �
N�= �Û�N�
0� be the state of
he system after N iterations. The probability p�x ,N� to
bserve a particle in the position space after N iterations
s given by

p�x,N� = �x�Tr��
N��
N���x�. �7�

he probability distribution arising from repeated appli-
ations of Û (i.e., quantum walk) is significantly different
rom the distribution from a classical walk. It is well
nown that for the classical random walk on a line the
robability of the particle at a certain site approaches a
aussian function centered around its initial position af-

er a large number of iterations. However, the quantum
ersion of such a walk displays very different behavior. If
e start with the state �
0�= �R ,0�, by repeatedly applying

he evolution operator Û, we will obtain a right-biased
robability distribution; if we start from the state �
0�
�L ,0�, we will get a left-biased distribution. The variance
f the quantum walk grows quadratically with the num-
er of iterations N, i.e., �2�N2, which is very different
rom the classical result �2�N. The physical reason for
he differences between the quantum and classical walks
s owing to the interference effect existing intrinsically in
uantum systems.

. Implementation of Quantum Walk in Coherent
tomic Systems
ow we present a possible scheme for the implementation

f the QRW based on the coherent atomic system via EIT.
n our scheme the coin Hilbert space HC is spanned by the
wo different polarization components of the probability
eld, i.e., 
�L�= ��+� , �R�= ��−��. The position Hilbert space
P is spanned by the phases of both polarization compo-
ents and augmented by the coin Hilbert space. The state
pace used for the QRW is the tensor product of the “coin”
nd “position” spaces, i.e., HC � HP.
As in [29–32], we assume that the input probe field is

repared as a polarized single-photon wave packet, which
an be expressed as a superposition of two circular-
olarized states, i.e., �
�=�−��−�+�+��+�, where ��±�
�d�����a±

†����0� with ���� being a Gaussian distribution
f incident wave packets centered at the frequency �p.
he photon field operators undergo a transformation
hile propagating through the atomic medium of length
, i.e., a±���→a±���exp
i�pn±���L /c�, where n±��� is the
eal part of the refractive index. If n±��� varies slowly
ver the bandwidth of the wave packet, one gets

�±�→exp�−i�±���±� with �±=�pn±��p�L /c	�pL /c
� Re�� �L / �2c��� +�� , where �� is the phase-shift
p ± 0 ± ±
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odification. Under a realistic set of parameters, ���+�
���−�=�� can be satisfied. The transmission of the out-
ut of the two polarization components can be character-
zed by T±=exp�−�±L�. Owing to the EIT effect, we have
±	1, i.e., the absorption of the probe field can be negli-
ibly small.

In each iteration of the QRW, we first apply the
adamard operation to the coin space, i.e., each polariza-

ion component of the single-photon wave packet is
rought into a superposition of two circular states with
qual probability,

Ĥ��±,�k� =
1

�2
���±,�k� ± ���,�k��. �8�

xperimentally, one can realize the above transformation
y placing two −� /2 phase shifters at the input and out-
ut ports and a lossless symmetric beam splitter between
hem. A lossless symmetric beam splitter supplemented
ith two −� /2 phase shifters can be viewed as a
adamard gate acting on a location qubit [34]. Second,
oth probe field circular components propagate through a
ingle atomic cell of length L, and their phases move a
tep to either the left site or the right site, i.e.,

Ŝ��±,�k� = ��±,�k�1�, �9�

ith �k=�0+k�� �k=0,1,2, . . . �. Thus we complete one
teration of the QRW. Finally, the QRW is implemented by
he repeated action on the state of the operator Ĥ and Ŝ;
fter N iterations the final state �
�N��= �ŜĤ�N�
�0��,
hich can be written as

�
�N�� = �
k=−N

N

�Rk,N��+,�k� + Lk,N��−,�k��, �10�

ith the probability amplitude of the right- and left-
ircularly polarization states with �k at the N iteration

Rk,N =
1

�2
�Rk−1,N−1 + Lk+1,N−1�, �11a�

Lk,N =
1

�2
�Rk−1,N−1 − Lk+1,N−1�, �11b�

here Rk,0=Lk,0=0 if k�0 and Rk,−1=Lk,−1=0. Equations
11a) and (11b) are the standard QRW equations [16].

To demonstrate the possibility of the physical imple-
entation of the QRW, we consider the cells of cold 85Rb

tomic gases. The experimental parameters are chosen as
	20 G, �21	�31=5.9 MHz (F=2, 5P1/2), �4	�5
0.8 MHz (F=2, 5D3/2), and Na=7.5�109 cm−3. The de-

unings are given as �p=1.95�108 s−1 and �c=1.17
108 s−1 (the Landé factor gF

p =−1/9 for the level F=2,
P1/2 and gF

d =1/15 for the level F=2, 5D3/2, which have
een used to calculate the detunings). The undesirable
tom field couplings can be excluded owing to the far-off
esonance. The Rabi frequency of the coupling field is �c
1.0�108 s−1 and the probe field is �p=1.0�106 s−1.
hus, the probe field intensity Ip= c

2�0�Ep�2=6.5
10−6 W cm−2. We remark that the intensity of a single

00 nm photon per nanosecond on an area of 1 �m is I
ph
2.5�10−2 W cm−2. This shows that our scheme can be
perated with single photons. The length of each atomic
ell is taken as L=0.2 cm. With the above parameters, we
btain �±= �2.57�10−5+ i3.02�10−7. We see that the
maginary parts of the probe field susceptibilities for both
omponents are much less than their relevant real parts.
hus the absorption of the system is greatly suppressed,
nd the coherence is well preserved. The transmission
nd the rotation angle for each single cell are given by
+=T−=0.995, �0=5000� rad, ��+=−0.2 rad, and ��−
0.2 rad. We see that large rotations with extremely
mall absorption for both probe field circular components
re realized in each atomic cell owing to the EIT effect in-
uced by the coupling field.
We consider the QRW that is implemented in many

tomic cells arranged on a line. Each atomic cell has the
arameters given above. Then, the grid-length of the po-
ition space is ��=0.2 rad. To investigate the quantum
alk we take two particular initial states. The first one is
p�z=0�= x̂Epx exp�−i�pt�+c.c. (i.e., Epy=0), and the sec-

nd one is Ep�z=0�= �x̂+ ŷ�Ep exp�−i�pt�+c.c. (i.e., Epy
Epy=Ep). In Fig. 3 we have shown the quadrature phase
istribution (QPD) after five iterations. The black (gray)
istogram (QW1) (QW2) is the result for the distribution
alculated from the first (second) initial state. The white
istogram denotes the distribution of corresponding clas-
ical walk (CW). The abscissa in the figure is sin �. From
ig. 3 we see that owing to the quantum interference ef-

ect of the system, the shape of the distribution function is
ight-biased when starting from the first initial state and
nbiased from the second initial state. The distribution
unctions of the quantum walk are quite different from
he classical one.

In addition, we have also simulated the outcome of ho-
odyne measurement and thereby obtained the related
PD on the orthogonal axis to the initial coherent state.
he simulated variance of the QPD as a function of the
umber of iterations is given in Fig. 4. From Fig. 4 we see
hat the variance of the quantum walk is basically iden-
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ical to that of the classic walk for the initial three itera-
ions, and the initial values of both variances are nonzero
wing to the width of the initial coherent state. However,
eyond three iterations the quadratic speed up of phase
iffusion for the quantum walk surpasses that for the
lassic walk. From Fig. 4 we also see that the spreading
ate of the quantum walk is approximately linear from
hree to ten iterations. Note that the QPD gives a good
pproximation of the phase distribution only for small �.
or larger � or beyond ten iterations the practical spread-

ng rate will decrease.
The most important merit of the EIT-based system is

he high transmission ratio for the probe field passing
hrough the atomic cells. The reason for such high trans-
ission is that the absorption of the probe field is greatly

uppressed owing to the EIT-effect, and there are nearly
o reflection losses at the entrance plane since the index
f refraction of the atomic gas is close to unity. As is well
nown, wave plates can also produce phase shift, where
he absorption effect is negligible owing to the frequency
f the probe field that is far away from the resonant re-
ime. However, there are serious reflection losses owing
o a larger reflection index of the plates. Specifically, the
atio of the reflection losses is given by ��n−1� / �n+1��2;
ere we have assumed that the incident field is orthogo-
al to the entrance plane and n is the reflection index of
he plates. If we take n	1.54 (quartz wave plates), the
atio of the reflection losses is 4.5% for each plate, i.e., the
ransmission ratio is 95.5%, which is lower than that of a
ingle atomic cell reaching 99.5% �T+=T−=0.995�. For re-
lizing a QRW, it usually needs more wave plates than
tomic cells, thus the apparatus using wave plates will be
uch less efficient. Another important merit of the EIT-

ased system is that the rotation angle for each single
ell, i.e., the grid-length, can be easily controlled by ad-
usting parameters, such as the magnetic field and cou-
ling field intensity. We can implement QRWs on various
raphics (line or circle) without changing the system.

. DISCUSSION AND SUMMARY
he motivation of this paper is to present a novel experi-
ental scheme for QRW that is simple in principle and
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asy to realize practically. In our scheme the implementa-
ion of QRW is realized by using a Rubidium atomic gas
ith a double ladder EIT configuration, which is very dif-

erent from all QRW schemes proposed until now. The
IT scheme has many important advantages in compari-
on with the previous schemes [11–18] for QRW. One of
hem is that the EIT system has a very high transmission
ate for the probe field passing through atomic gas cells,
hich is very important for implementing a many-step
RW. The reason for such high transmission is that the
bsorption of the probe field is greatly suppressed by the
IT-effect induced by the control field, and there is nearly
o reflection loss at the entrance plane. Another advan-
age of the EIT-based system is that such a system is
imple and can be manipulated actively in a controllable
ay. We can implement QRWs on various graphics with-
ut changing the system.

In conclusion, in this paper we have proposed a scheme
or implementing the QRW in a cold five-state atomic sys-
em via EIT. From the optical Bloch equations that de-
cribe the dynamics of electromagnetic field and atomic
opulation and coherence, we have shown that two circu-
ar components of the probe field have different dispersion
roperties and hence acquire different phase-shift modifi-
ations when passing through the atomic cells. We have
emonstrated that the quantum coherence and interfer-
nce owing to the EIT effect lead to a very low absorption
f the probe field and hence provide a possibility of imple-
enting enough iterations and thus realizing a many-

tep phase-shift QRW. We have carried out a detailed in-
estigation on how to implement the quantum walk based
n realistic cold atomic systems. Our scheme may be used
o experimentally highlight the difference between the
uantum and classical walks and may have a promising
pplication for quantum computation.
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