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We propose a scheme to realize the quantum random walk in a coherent five-level atomic system via electro-
magnetically induced transparency (EIT). From optical Bloch equations describing the dynamics of the elec-
tromagnetic field and atomic population and coherence, we show that two circular-polarized components of a
probe field display different dispersion properties and hence acquire different phase-shift modifications when
passing through atomic cells. We demonstrate that the quantum coherence and interference owing to the EIT
effect result in a low absorption of the probe field and hence provide a possibility of realizing a many-step
phase-shift quantum random walk. The scheme may be used to experimentally highlight the characteristics of
quantum random walk and lead to a promising application for quantum computation. © 2008 Optical Society
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of America
OCIS codes: 270.0270, 200.3050.

1. INTRODUCTION

It is well known that for certain computational tasks,
quantum algorithms are more efficient than classical ones
[1]. To date, there are several general techniques known
for developing and analyzing quantum algorithms.
Fourier sampling, which is typified by the seminal work
of Simon [2] and Shor [3], and amplitude amplification,
which originated in the seminal work of Grover [4]. Yet
there is still a search for new quantum algorithms that
can be practically realized. In this direction, the quantum
version of some classical algorithms has also attracted
much attention. Quantum random walk (QRW) is one of
such example.

The concept of QRW was first proposed in 1993 by Aha-
ronov et al. [5]. As a quantum analog of the classical ran-
dom walk, QRWs are receiving much attention [6]. Unlike
the classical case, the state of a QRW at a given time is
described by probability amplitude instead of probability.
Thus the behavior of QRWs displays drastic differences
from that of classical random walks [7,8]. The motivation
of studying quantum versions of random walks lies in
both practical applications and fundamental interests. In
addition, the study of QRWs provides an engine for find-
ing not only new quantum algorithms but also an ex-
ample of quantum coherent control over single atoms or
photons in physical systems. The algorithms based on
QRWs have also been introduced in [9,10].

Although any system designed for quantum computing
can also be used to perform a QRW, most quantum com-
puters have yet to be built on a large scale for practical
application. Random walks might exhibit specifics that
could ease their implementation in certain physical sys-
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tems, making use of the structure of the graph underlying
the walk or the character of the coin, for example. Such
an implementation does not necessarily constitute a full
fledged quantum computer but could still be well suited to
study random walks or to solve algorithmic problems
based on them. In this spirit several proposals for various
physical systems have been made, including trapped ions
[11], cavity QED [12,13], linear optical scheme [14,15],
classical implementation [16], optical lattice [17], and
Bose-Einstein condensate [18]. Omne- and two-
dimensional QRWs in an array of optical traps for neutral
atoms have been proposed [19]. Some experiments have
also been reported to implement the QRW and the related
algorithms [20,21].

In this paper we propose a new experimental scheme to
implement a one-dimensional discrete many-step phase-
shift QRW in a coherent atomic system via electromag-
netically induced transparency (EIT). The essential fea-
ture of an EIT-based system is that quantum coherence
and interference is induced by applying a strong coupling
laser field; the absorbtion of a probe field tuned to a
strong one-photon resonance can be largely suppressed
and hence an initially highly opaque optical medium be-
comes transparent. In addition to the low optical absorp-
tion, the EIT effect can be used to slow down the propa-
gating velocity of the probe field and study the nonlinear
optics at a low light level down to single photons [22,23].
It has also been shown that ultraslow optical solitons may
exist in EIT-based atomic media [24—28]. Recent studies
show that the EIT technique may be applied to quantum
information and computation [29-32]. In the present
QRW scheme, two circular-polarized components of a
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probe field are taken as 2° of freedom of a probe single-
photon wave packet. They experience different dispersion
properties and hence acquire different phase-shift modifi-
cations, which are used to realize a phase-shift QRW. The
low absorption owing to the EIT effect makes it possible
to execute enough iterations in atomic cells and hence
provide the possibility to realize the many-step QRW.

This paper is organized as follows. Section 2 describes
the physical model based on a coherent five-level atomic
system with an EIT configuration. Section 3 presents a
brief introduction of a one-dimensional QRW and gives a
detailed discussion about the implementation of the QRW
with the EIT-based system. Finally, Section 4 contains a
discussion and summary of our main results.

2. PHYSICAL MODEL

We consider a cold lifetime-broadened five-level atomic
system that interacts with a weak pulsed probe field of
central frequency w,/(27) and a strong continuous-wave
coupling field of frequency w,./(27) [see Fig. 1(a)]. The sys-
tem can be realized in Zeeman-split alkali atoms, such as
a Rubidium atomic gas, with an nS-nP-nD level
scheme. Here, n denotes the principal quantum number
while S, P, and D denote the azimuthal quantum num-
bers characterizing the angular momentum. The atomic
gas is trapped in a cell with enough low temperature to
cancel Doppler broadening and atomic collisions. The
probe field is tuned to the lower nS <« nP transition and
propagates along the direction of an external magnetic
field B while the coupling field is tuned to the upper
nP—nD transition, and its propagating direction is per-
pendicular to the external magnetic field. Notice that a
similar system has also been proposed to study long-
range interactions and entanglement of slow single-
photon pulses [33]. To implement a QRW different from
the classical one, we need at least four atomic cells in a
row with identical length and Hadamard gates located be-
fore each cell. The possible experimental apparatus for
the QRW is shown in Fig. 1(b).

The electric field vector of the system can be written as
E=(Xe,,+y&,,)expli(k,z—wyt)]+eé.e. expli(k.r—wt)]+c.c.,
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where r=x or y, X, §, and &, are the unit vectors denoting
the polarization directions of the probe and coupling laser
fields with relevant envelopes represented by ¢, €,,, and
g,, respectively. Using the relations £=(&,+¢.)/\2 and §
=(&,—€.)/ (i\e@), where €, and €_ are the unit vectors de-
noting, respectively, right-circularly (¢*) and left-
circularly (o) polarizations, the probe pulse can be con-
sidered as a superposition of the o* and ¢~ components,
ie., E, =~(%+8p++ € g, )expli(kyz _L‘)Pt)] +c.c. with g,,=(g,,
—i€p,)/\2 and sp_=(spx+iepy)/\e’2. The ¢~ component of
the probe field drives the transition |1)—|2), and the o*
component drives the transition |1) —|3). The linearly ()
polarized coupling field drives the transitions |2)— [4) and
|3)—|5). Thus both o* and o~ components of the probe
field form an EIT ladder configuration with the coupling
field. In an interaction picture, the evolution equations for
atomic populations o;; (i=1-5) are

. . * *
g11=— l[Qplel + Qp2031 = Q019 - szffls] + 91099

+ 31033 + 41044 + U'51055, (1a)
O99 =~ i[Qp10'12 + QZO'42 - Q;10'21 - Q.094]

=099 + T49044 + 590755, (1b)
O33=— i[Qp2U13 + Qj%s - Q;21731 - Q.035] - T'3033

+ Iy3044 + I'530755, (1c)
Oy = —i[9c024—9:0'42] —Tyoy, (1d)
055 = = i[ Qo035 — 053] — 5055, (le)

and the evolution equations for atomic coherence oj;
@@+#j,1,j=1-5) read

1p=- i[Q;1(0'22 —op)+ 9220'32 - Q014+ A,015]
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(a) Energy level diagram and excitation scheme of a lifetime-broadened five-level atomic system that interacts with a weak

pulsed probe field of Rabi frequency (), and a strong continuous-wave coupling field of Rabi frequency (,; A, and A, are relevant one- and
two-photon detunings. The linearly polarized probe field can be considered as a superposition of the right (¢*) and left (¢7) circular-
polarized components with the Rabi frequencies (),; and ()5, respectively. (b) Possible experimental apparatus. H, Hadamard gate; BS,

beam splitter; M, high reflective mirror.
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3= =il 093 + O (33— 011) = Qo5 — Aoy

a1+ 713
Ty Y (2b)

- . * * *
O14=— l[Qp1024 + Qp2034 Qo - A o14]

Tyt vy
2

014, (2¢)

. . * * *
O15=— l[Qples + ng‘fss - 90013 +4,015]
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o1+ Tg1+ yo3

- 92
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Ooq=—1[Qp1014+ Q:(0'44 = 0g9) = (A +A,)094]
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Na|pSP‘2 [|Qc|2 + ApAc + FPFD + L(ApFD - Acrp)](Ac - ZFD)
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035 = = i[ Qo5+ O (055 = 033) + (A, + Ap) 0735]

g1+ 5+ v35

- , 21
9 O35 ( 1)

. . . Fy+T5+ a5
045 =~ i1[ Q095 — Qo+ 2A,045] - T%s,
(2j)
where O,1=—(Psp* €,€,,)/h, Qpo=—(Psp-€_£€,_)/h, and Q.
=—(ppp-€.£.)/h are the Rabi frequencies with pgp (ppp)
being the electric dipole matrix element associated with
the transition nS—nP (nP<nD); A,=upgiB/h (A,
= ,uBg%B/h) is the detuning of the right-circularly (left-
circularly) polarization component of the probe field with
up being the Bohr magneton and gl (g%) being the Landé
factor of the level nP (nD); I'y=T"y;+ 45+ 43 and I'5=T5;
+I'59+ 53 are total decay rates of the states |4) and |5),
with I';; denoting the spontaneous emission decay rate
from state [i) to state |j) and y;; denoting the dephasing
rate.
The electric susceptibilities y, for the ¢* and ¢~ compo-
nents of the probe field are given by

Na|pSP‘2 021 NalpSP|2 031
— 0 X= (5 ©®

hEO ‘Q'pl ’ ﬁé’o Qp2 ’

X+=—

where N, is the density of the atomic gas and ¢; is the
vacuum dielectric constant. We assume that the particles
in the system are initially populated in the state |1). If the
intensity of the probe field is much weaker than that of
the coupling field, the depletion of the ground state |1) is
not significant and hence one has o1;=1, 0;;=0 (=2 to
5), and 0;;~0 (i,j=2 to 5, i #j). The solutions for 0y; and
031 in the linear regime can be readily obtained using the
Fourier transform technique as in [24,25]. As a result sus-
ceptibilities of the two polarization components of the
probe field are given by

X+ = fieg

]Va|pSP|2 [|Qc|2 + ApAc + l—‘Pl—‘D - l(ApFD - AcFP)](Ac + lFD)

Q[+ 2(8,A, + Tplp)[ Q2 + (A2 + TE)(AZ+TD)

(4a)

X-=

at w=0 (w denotes a frequency deviation from the center
frequency of the probe field w,). For simplicity we have set
I'g1=I'3;=I'p and I'y=I'5=Ip; v;; is much less than I'p and
I'p.

In Fig. 2 we have shown the dispersion spectrum Re y.
[panel (a)]l and absorption spectrum Im y,. [panel (b)] of
Q1 (solid curves) and ()9 (dashed curves), which corre-

fieg Ot +2(8,A, + Tpl'p)|Q )2 + (A2 + TE)(AZ +T3)

(4b)

[

spond to the real part and the imaginary part of the re-
spective susceptibilities. In plotting Fig. 2 a realistic set of
system parameters (see Subsection 3.B) have been
adopted. We see that the atomic medium is transparent to
both polarization components of the probe field near w
=0, where normal dispersion also occurs. The physical
reason for this transparency is owing to the quantum in-
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Fig. 2. (a) Dispersion (Re y.) and absorption (Im y,) spectra for
Q1 (solid curve) and (), (dashed curve) with a particular set of
parameters (see Subsection 3.B). (b) Absorption spectra for (),
(solid curve) and (), (dashed curve) with the same parameters.

terference effect (i.e., the EIT effect) induced by the cou-
pling field, which makes the QRW possible in the present
resonant atomic system.

3. IMPLEMENTATION OF A PHASE-SHIFT
QUANTUM RANDOM WALK

A. One-Dimensional Quantum Random Walk

Before the discussion of physical implementation of a
QRW in the EIT-based coherent atomic system, for com-
pleteness we give a simple introduction of a QRW on a
line. A discrete-time QRW can be realized by repeatedly

applying a unitary evolution operator U on a Hilbert
space formed by tensor product H¢®HP, where HC is
called a coin Hilbert space and 7 is called a position Hil-
bert space. For a line with grid-length 1, H” is spanned by
basis {|x):x e 7}, which indicates the site where a particle
is located in. HC is spanned by two basis states |R) and
IL). At each time interval the particle can move one step
to either the left site or the right site, each direction with
1/2 probability. The state in HC determines the direction

of the motion of the particle. The conditional translation S
thus has the following action on the basis states:
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SIRx)=|Rx+1), S|Lx)=|L,x-1). (5)

In each iteration the quantum walk is implemented by
the Hadamard operation,

I:Illl
=\5_§1_1’ (6)

on the coin states to bring them into a superposition state
with equal probability. The Hadamard operation is a nec-
essary part of the quantum walk and works pro in many
quantum algorithms. Then, the evolution operator U is
given by U=8-(H®I). Let |¢n)=(0)"|) be the state of
the system after N iterations. The probability p(x,N) to
observe a particle in the position space after NV iterations
is given by

p(,N) = (x| Tr(|gwX g |x). (7)

The probability distribution arising from repeated appli-

cations of U (i.e., quantum walk) is significantly different
from the distribution from a classical walk. It is well
known that for the classical random walk on a line the
probability of the particle at a certain site approaches a
Gaussian function centered around its initial position af-
ter a large number of iterations. However, the quantum
version of such a walk displays very different behavior. If
we start with the state |)=|R,0), by repeatedly applying

the evolution operator 0, we will obtain a right-biased
probability distribution; if we start from the state |i)
=|L,0), we will get a left-biased distribution. The variance
of the quantum walk grows quadratically with the num-
ber of iterations N, i.e., 02« N?, which is very different
from the classical result o?«N. The physical reason for
the differences between the quantum and classical walks
is owing to the interference effect existing intrinsically in
quantum systems.

B. Implementation of Quantum Walk in Coherent
Atomic Systems

Now we present a possible scheme for the implementation
of the QRW based on the coherent atomic system via EIT.
In our scheme the coin Hilbert space HC is spanned by the
two different polarization components of the probability
field, i.e., {|L)=|0"),|R)=|0")}. The position Hilbert space
HP is spanned by the phases of both polarization compo-
nents and augmented by the coin Hilbert space. The state
space used for the QRW is the tensor product of the “coin”
and “position” spaces, i.e., HC ® HF.

As in [29-32], we assume that the input probe field is
prepared as a polarized single-photon wave packet, which
can be expressed as a superposition of two circular-
polarized states, i.e., |)=a7|o7)+a'|o*), where |oF)
=[ dwf(w)ai(w)|0> with &(w) being a Gaussian distribution
of incident wave packets centered at the frequency w,,.
The photon field operators undergo a transformation
while propagating through the atomic medium of length
L,ie., a.(w)—a.(oexplion.(w)L/c}, where n,(w) is the
real part of the refractive index. If n.(w) varies slowly
over the bandwidth of the wave packet, one gets
|o*) — exp(—ip,)|o*) with ¢i=wyn (w,)L/c=w,L/c
+w, Re[x.]L/(2¢) = ¢o+A¢., where Ag, is the phase-shift
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modification. Under a realistic set of parameters, |Ag,|
=|A¢_|=A¢ can be satisfied. The transmission of the out-
put of the two polarization components can be character-
ized by T,=exp(-a,L). Owing to the EIT effect, we have
T,.=1, i.e., the absorption of the probe field can be negli-
gibly small.

In each iteration of the QRW, we first apply the
Hadamard operation to the coin space, i.e., each polariza-
tion component of the single-photon wave packet is
brought into a superposition of two circular states with
equal probability,

1

Hl|o*, ) = —=[|o*, )  [0™, )] (8)

\,’E
Experimentally, one can realize the above transformation
by placing two —#/2 phase shifters at the input and out-
put ports and a lossless symmetric beam splitter between
them. A lossless symmetric beam splitter supplemented
with two —-7/2 phase shifters can be viewed as a
Hadamard gate acting on a location qubit [34]. Second,
both probe field circular components propagate through a
single atomic cell of length L, and their phases move a
step to either the left site or the right site, i.e.,

Slo*, i) =0, dr=1), 9)
with ¢,=dg+kAp (k=0,1,2,...). Thus we complete one
iteration of the QRW. Finally, the QRW is implemented by

the repeated action on the state of the operator Hand S ;

after N iterations the final state |¢(N))=[SH|¥(0)),
which can be written as

N
[N = > [Runlo®s i)+ Lynlo™,¢p)],  (10)
k=-N

with the probability amplitude of the right- and left-
circularly polarization states with ¢, at the N iteration

1

Ry n= TE(Rk-LAH +Lyin-1), (11a)
\}J
1

Lyy= T§(Rk—1,N—1 - Lpiin-1)s (11b)
\’

where Ry, o=L;, (=0 if k#0 and R} _1=L; _1=0. Equations
(11a) and (11b) are the standard QRW equations [16].

To demonstrate the possibility of the physical imple-
mentation of the QRW, we consider the cells of cold *Rb
atomic gases. The experimental parameters are chosen as
B:ZO G, F212F31=5.9 MHZ (FZZ, 5P1/2), F4:F5
=0.8 MHz (F=2, 5Dj5), and N,=7.5%X10° cm™3. The de-
tunings are given as A,=1.95X 10851 and A,=1.17
%108 s7! (the Landé factor gh=-1/9 for the level F=2,
5Py, and g%:l/ 15 for the level F=2, 5D3/, which have
been used to calculate the detunings). The undesirable
atom field couplings can be excluded owing to the far-off
resonance. The Rabi frequency of the coupling field is Q,
=1.0x108 s71 and the probe field is Q,=1.0% 106 571,
Thus, the probe field intensity I,=5¢[E,[*=6.5
%X 1076 W em~2. We remark that the intensity of a single
800 nm photon per nanosecond on an area of 1 um is I,
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=2.5X10"2 W cm~2. This shows that our scheme can be
operated with single photons. The length of each atomic
cell is taken as L=0.2 cm. With the above parameters, we
obtain y,=F2.57x107°+i3.02x1077. We see that the
imaginary parts of the probe field susceptibilities for both
components are much less than their relevant real parts.
Thus the absorption of the system is greatly suppressed,
and the coherence is well preserved. The transmission
and the rotation angle for each single cell are given by
T,=T_=0.995, ¢y=50007rad, A¢,=-0.2rad, and A¢_
=0.2rad. We see that large rotations with extremely
small absorption for both probe field circular components
are realized in each atomic cell owing to the EIT effect in-
duced by the coupling field.

We consider the QRW that is implemented in many
atomic cells arranged on a line. Each atomic cell has the
parameters given above. Then, the grid-length of the po-
sition space is A¢$=0.2 rad. To investigate the quantum
walk we take two particular initial states. The first one is
E,(z=0)=XE,, exp(-iwyt)+c.c. (i.e., £,,=0), and the sec-
ond one is E,(z=0)=(X+¥)E, exp(-iwyt)+c.c. (ie, &£,
=&,,=&,). In Fig. 3 we have shown the quadrature phase
distribution (QPD) after five iterations. The black (gray)
histogram (QW1) (QW2) is the result for the distribution
calculated from the first (second) initial state. The white
histogram denotes the distribution of corresponding clas-
sical walk (CW). The abscissa in the figure is sin ¢. From
Fig. 3 we see that owing to the quantum interference ef-
fect of the system, the shape of the distribution function is
right-biased when starting from the first initial state and
unbiased from the second initial state. The distribution
functions of the quantum walk are quite different from
the classical one.

In addition, we have also simulated the outcome of ho-
modyne measurement and thereby obtained the related
QPD on the orthogonal axis to the initial coherent state.
The simulated variance of the QPD as a function of the
number of iterations is given in Fig. 4. From Fig. 4 we see
that the variance of the quantum walk is basically iden-

o
o

Il QW1
[ Qw2
N 1cw J

o
2]

Quadrature phase distribution
I © I
R & £

o
pry
T

J AN A 4 i

-1 -0.5 0 0.5 1

Fig. 3. QPD after five iterations, where QW1 (black histogram)
denotes the distribution calculated from the initial state E, (z
=0)=%E,, exp(-iwyt)+c.c. (i.e., £,=0), QW2 (gray histogram)
denotes the distribution calculated from the initial state E, (z
=0)=(X+¥)E, exp(—iwyt) +c.c. (i.e., £,,=E,,=E,), and CW (white
histogram) denotes the distribution of a classical walk. The ab-
scissa is sin ¢.




C44 J. Opt. Soc. Am. B/Vol. 25, No. 12/December 2008

0.9

o
©
:

o ©°
o N
: :

o
2
:

Vaéiange of QPD

o
)

0.1

4 6 10
Number of iterations

Fig. 4. Curves of the quadrature phase variance as a function of
the number of interactions for the grid-length A¢=0.2 rad. The
squares connected to the solid curve denotes the quantum walk,
and the triangles connected to the dashed curve denotes the clas-
sic walk.

tical to that of the classic walk for the initial three itera-
tions, and the initial values of both variances are nonzero
owing to the width of the initial coherent state. However,
beyond three iterations the quadratic speed up of phase
diffusion for the quantum walk surpasses that for the
classic walk. From Fig. 4 we also see that the spreading
rate of the quantum walk is approximately linear from
three to ten iterations. Note that the QPD gives a good
approximation of the phase distribution only for small ¢.
For larger ¢ or beyond ten iterations the practical spread-
ing rate will decrease.

The most important merit of the EIT-based system is
the high transmission ratio for the probe field passing
through the atomic cells. The reason for such high trans-
mission is that the absorption of the probe field is greatly
suppressed owing to the EIT-effect, and there are nearly
no reflection losses at the entrance plane since the index
of refraction of the atomic gas is close to unity. As is well
known, wave plates can also produce phase shift, where
the absorption effect is negligible owing to the frequency
of the probe field that is far away from the resonant re-
gime. However, there are serious reflection losses owing
to a larger reflection index of the plates. Specifically, the
ratio of the reflection losses is given by [(n—1)/(n+1)]?;
here we have assumed that the incident field is orthogo-
nal to the entrance plane and n is the reflection index of
the plates. If we take n=1.54 (quartz wave plates), the
ratio of the reflection losses is 4.5% for each plate, i.e., the
transmission ratio is 95.5%, which is lower than that of a
single atomic cell reaching 99.5% (T,=T_=0.995). For re-
alizing a QRW, it usually needs more wave plates than
atomic cells, thus the apparatus using wave plates will be
much less efficient. Another important merit of the EIT-
based system is that the rotation angle for each single
cell, i.e., the grid-length, can be easily controlled by ad-
justing parameters, such as the magnetic field and cou-
pling field intensity. We can implement QRWSs on various
graphics (line or circle) without changing the system.

4. DISCUSSION AND SUMMARY

The motivation of this paper is to present a novel experi-
mental scheme for QRW that is simple in principle and

Li et al.

easy to realize practically. In our scheme the implementa-
tion of QRW is realized by using a Rubidium atomic gas
with a double ladder EIT configuration, which is very dif-
ferent from all QRW schemes proposed until now. The
EIT scheme has many important advantages in compari-
son with the previous schemes [11-18] for QRW. One of
them is that the EIT system has a very high transmission
rate for the probe field passing through atomic gas cells,
which is very important for implementing a many-step
QRW. The reason for such high transmission is that the
absorption of the probe field is greatly suppressed by the
ElIT-effect induced by the control field, and there is nearly
no reflection loss at the entrance plane. Another advan-
tage of the EIT-based system is that such a system is
simple and can be manipulated actively in a controllable
way. We can implement QRWSs on various graphics with-
out changing the system.

In conclusion, in this paper we have proposed a scheme
for implementing the QRW in a cold five-state atomic sys-
tem via EIT. From the optical Bloch equations that de-
scribe the dynamics of electromagnetic field and atomic
population and coherence, we have shown that two circu-
lar components of the probe field have different dispersion
properties and hence acquire different phase-shift modifi-
cations when passing through the atomic cells. We have
demonstrated that the quantum coherence and interfer-
ence owing to the EIT effect lead to a very low absorption
of the probe field and hence provide a possibility of imple-
menting enough iterations and thus realizing a many-
step phase-shift QRW. We have carried out a detailed in-
vestigation on how to implement the quantum walk based
on realistic cold atomic systems. Our scheme may be used
to experimentally highlight the difference between the
quantum and classical walks and may have a promising
application for quantum computation.
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