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Improvement of the memory quality of optical pulse pairs in atomic systems via four-wave mixing
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We present a scheme to improve the memory quality of linear and nonlinear optical pulse pairs via four-wave
mixing (FWM) in an atomic gas. We show that in a linear regime the efficiency and fidelity of the memory
of the probe and Stokes pulses can be largely improved through an elimination of the fast-light mode (and
hence the suppression of the optical gain induced by the FWM process). We also show that in a nonlinear regime
the system may support stable optical soliton pairs with ultraslow propagation velocity and ultralow generation
power, which can also be stored and retrieved with a better quality. The improved optical pulse pair memory
suggested here may have promising applications in optical information processing and transformation.
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I. INTRODUCTION

In recent years, much attention has been paid to the study
of slow lights via electromagnetically induced transparency
(EIT), a typical quantum interference effect occurring in
three-level �-type atomic systems interacting resonantly with
two (i.e., probe and control) laser fields [1,2]. One of the
most important applications of EIT is optical pulse memory, a
very useful technique for optical information processing and
communication networks [3–6]. Based on dark-state polariton
inherent in EIT systems, the probe field can be mapped into
an atomic mode, stored temporarily, and then retrieved from
the atomic mode through switching off and on of the control
laser field [7–11].

EIT-based schemes for optical pulse memory are not nec-
essarily restricted to three-level �-type atomic systems. One
typical example is the generalization to a four-level system
with a double-�-type configuration. In an early work, Zibrov
et al. [12] showed that transporting and multiplexing of stored
light is possible in a double-� system. Later, many interesting
studies on optical memory using double-� systems (or their
variants) were carried out both theoretically and experimen-
tally, aiming to find new characters for the optical memory
that are absent in three-level systems, especially for realizing
pulse pair memories and even multimode memories [13–22].
However, the FWM process in double-� systems brings an
optical gain to both Stokes and probe fields, and hence lowers
the quality of the optical memory. Generally, such optical gain
is unavoidable for large optical depth, and thus with double-�
systems it is very difficult to realize an optical memory with
high efficiency and fidelity [23].

In this work, we present a scheme to improve the memory
quality of linear and nonlinear optical pulse pairs via the
four-wave mixing (FWM) process in a cold atomic gas with a
double-�-type level configuration. First, in the linear regime
we show that generally both probe and Stokes pulses co-
propagating in the system contain simultaneously two normal
modes, i.e., slow-light and fast-light modes, and the existence
of the fast-light mode severely lowers the memory quality of

both pulses. By suppressing the fast-light mode (and thereby
the optical gain to both Stokes and probe fields induced by
the FWM process) under a suitable physical condition, we
found that a significant improvement of the efficiency and
fidelity of the memory of the probe and Stokes pulses is
realizable. Then, we generalize our theoretical approach to
a weak nonlinear regime, and demonstrate that the system
may support stable optical soliton pairs, which have ultraslow
propagation velocity and ultralow generation power. These
optical soliton pairs can also be stored and retrieved with bet-
ter efficiency and fidelity than that of linear optical pulse pairs.
The improvement scheme for the memory quality of optical
pulse pairs suggested here may have promising applications
in optical information processing and transformation.

The remainder of the paper is arranged as follows. Sec-
tion II gives a description of the model under study. Section III
presents the result on stable linear optical pulse pairs and in-
vestigates their storage and retrieval. Section IV demonstrates
that stable optical soliton pairs and their storage and retrieval
are possible in the system. Finally, Sec. V summarizes the
main results obtained in this work.

II. MODEL

We start by considering a cold gas consisting of four-
state atoms with double-�-type level configuration, shown
in Fig. 1(a). States |1〉 and |2〉 are hyperfine splitting of
atomic ground state and |3〉 and |4〉 are two excited states.
The atoms are assumed to be initially prepared in the
ground state |1〉. A weak, pulsed probe laser field (with
center angular frequency ωp and wave number kp) couples
the transition |1〉 ↔ |3〉, while another weak, pulsed Stokes
field (with center angular frequency ωs and wave number
ks) couples the transition |2〉 ↔ |4〉 [24]. In addition, two
strong, continuous-wave control laser fields, i.e., control
field 1 (with center angular frequency ωc1 and wave num-
ber kc1) and control field 2 (with center angular frequency
ωc2 and wave number kc2), couple the transitions |1〉 ↔ |4〉
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FIG. 1. (a) Energy-level diagram and excitation scheme of the
double-� system. �p and �s (�c1 and �c2) are respectively half
Rabi frequencies of the probe and Stokes fields (control field 1
and control field 2); �j (j = 2, 3, 4) are detunings; �3 and �4 are
respectively decay rates of the levels |3〉 and |4〉. Black dots mean
that the population is initially prepared at the state |1〉. For light
propagation the system has two eigenmodes, i.e., slow-light and
fast-light modes, which are collective (normal) modes of the system
with linear dispersion relations respectively given by K+ and K−.
(b) Im(K±) as functions of ω [25] for �2 = �3 = 0 and �4 =
0.5 GHz. The dashed (solid) blue line is for �c1 = �c2 ≡ �c =
1.0 × 108 Hz (1.5 × 108 Hz); dashed-dotted (dashed-dotted-dotted)
red line is for K− mode for �c = 1.0 × 108 Hz (1.5 × 108 Hz). The
inset shows the detail of Im(K±) near ω = 0. (c) Re(K±) as functions
of ω. K+ is an absorptive (slow-light) mode, whereas K− is a gain
(fast-light) mode which contributes to the FWM gain in the optical
memory (see text for more detail).

and |2〉 ↔ |3〉, respectively. The total electric field in the
system can be expressed as E = Ec1 + Ep + Ec2 + Es =∑

l=c1,p,c2,s elElexp[i(klz − ωlt )] + c.c., where el (El) are the
unit polarization vectors (envelopes) of the electric field El .
For simplicity, we have assumed that all laser fields propagate
along the z direction.

Under electric-dipole and rotating-wave approximations,
the Hamiltonian of the system in the interaction picture is
given by

Ĥint = −h̄

4∑
j=2

�j |j 〉〈j | − h̄[�c1|3〉〈2| + �p|3〉〈1|

+�c2|4〉〈1| + �s |4〉〈2| + H.c.], (1)

where �p, �s , �c1, and �c2 are respectively half Rabi
frequencies of the probe field, Stokes field, control field
1, and control field 2, defined by �p = ( p31 · ep )Ep/h̄,
�s = ( p42 · es )Es/h̄, �c1 = ( p32 · ec1)Ec1/h̄, and
�c2 = ( p41 · ec2)Ec2/h̄, respectively. Here pj l is the
electric-dipole matrix element associated with the
transition |j 〉 ↔ |l〉; �2 = ωc2 − ωs − (E2 − E1)/h̄ =
ωp − ωc1 − (E2 − E1)/h̄, �3 = ωp − (E3 − E1)/h̄, and
�4 = ωc2 − (E4 − E1)/h̄ are detunings, with Ej the
eigenenergy of the state |j 〉.

The motion of the atoms is governed by the optical Bloch
equation, given by

ih̄

(
∂

∂t
+ �

)
σ = [Ĥint, σ ], (2)

where σ is a 4 × 4 density matrix describing the atomic
population and coherence and � is a 4 × 4 relaxation matrix
describing the spontaneous emission and dephasing of the sys-
tem. The explicit expression of Eq. (2) is given in Appendix A.

The propagation of the probe and the Stokes fields is
governed by the Maxwell equation, which under the slowly
varying envelope approximation is given by

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p(z, t ) + κ13 σ31(z, t ) = 0, (3a)

i

(
∂

∂z
+ 1

c

∂

∂t

)
�s (z, t ) + κ24 σ42(z, t ) = 0. (3b)

Here κ13 = Naωp|p13|2/(2ε0ch̄) and κ24 = Naωs |p24|2/
(2ε0ch̄) are coupling constants, with c the light speed in
vacuum and Na the atomic density.

Note that when deriving the above Maxwell-Bloch (MB)
equations (2) and (3), the following assumptions have been
made: (i) The probe and Stokes pulses have large transverse
sizes so that the diffraction effect of the system is negligible.
(ii) Both control fields are strong enough, so that their half
Rabi frequencies, i.e., �c1 and �c2, can be taken to be un-
depleted during the evolution of the probe and Stokes pulses.
However, when considering the storage and retrieval of the
probe and Stokes pulses, �c1 and �c2 will be assumed to be
changed slowly in time. (iii) The atomic gas is cold enough
and dilute enough, so that thee Doppler effect is negligible
and the interaction between atoms can be described by the
dephasing parameter γ

dep
j l (see Appendix A). (iv) In general,

phases of the four laser fields may play a role in the FWM
process; however, here for simplicity we assume they are zero
(i.e., all four Rabi frequencies are real). (v) Generally, the
FWM effect makes both the Stokes and probe fields acquire
not only the optical gain discussed in this work but also a
production of quantum (or vacuum) noise [23]. In our work,
we limit our study to the suppression of the optical gain. We
consider the case that the photon numbers in both the Stokes
and probe fields are large, and hence the quantum noise in the
system is negligible. In this situation, a semiclassical approach
to the system can be exploited.

III. STORAGE AND RETRIEVAL OF LINEAR
OPTICAL PULSES

A. Linear dispersion relation

The base-state solution (i.e., the steady-state solu-
tion when the probe and the Stokes fields are absent)
of the MB Eqs. (2) and (3) is given by σ

(0)
11 = (1 +

|d41|2
|�c2|2 )σ (0)

44 , σ
(0)
22 = �24

�13
(1 + |d32|2

|�c1|2 )σ (0)
44 , σ

(0)
33 = �24

�13
σ

(0)
44 , σ

(0)
32 =

−�24
�13

d∗
32

�∗
c1
σ

(0)
44 , and σ

(0)
41 = − d∗

41
�∗

c2
σ

(0)
44 , where σ

(0)
44 = 1/[2 +

�24(2 + |d32|2/|�c1|2)/�13 + |d41|2/|�c2|2]. If �4 is large,
the base-state solution is simplified to σ

(0)
11 ≈ 1 with all other

density matrix elements nearly zero.
When weak probe and Stokes fields are applied, the system

undergoes a linear evolution. In this case, the MB Eqs. (2) and
(3) can be solved through a Fourier transform, with the general
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solution given by

�p(z, t ) =
∫ ∞

−∞
dω[F+

p (ω)eiθ+ + F−
p (ω)eiθ−], (4a)

�∗
s (z, t ) =

∫ ∞

−∞
dω[G+(ω)F+

p (ω)eiθ+ + G−(ω)F−
p (ω)eiθ−],

(4b)

where θ± =K±z−ωt [25] and G± = (K±−ω/c−δ11)/δ12.
Here F+

p and F−
p are transform amplitudes, depending on

the boundary condition of the probe and Stokes fields [i.e.,
�p(0, t ) and �s (0, t )], see Eq. (6) below.

In the above expressions, K+ and K− are linear dispersion
relations of the system, which read

K±(ω) = ω

c
+ 1

2 [(δ11 − δ22)

±
√

(δ11 − δ22)2 − 4(δ12δ21 − δ11δ22)], (5)

where δ11 = κ13(α11σ
(0)
33 + β21σ

(0)
11 ), δ12 = κ13(α12σ

(0)
32 +

β22σ
(0)
41 ), δ21 = κ24(α21σ

(0)∗
32 + β11σ

(0)∗
41 ) and δ22 =

κ24(α22σ
(0)
22 + β12σ

(0)
44 ), with explicit expressions of αij (ω)

and βij (ω) presented in Appendix B. We see that the linear
dispersion relations have two branches, which means that the
system allows two eigenmodes, i.e., K+ and K− modes. Since
both the probe and the Stokes pulses are linear superpositions
of these two modes (or inversely each mode is a particular
linear composition of the probe and Stokes pulses), K+ and
K− modes have a character of collective excitations and
hence can be called normal modes of the system. Note that in
our scheme p13 ≈ p24 and κ13 = κ24, thus the linear optical
susceptibility of the system is given by χ± = Na |p13|2

ε0 h̄

K±
κ13

.
Shown in Fig. 1(b) is the imaginary parts of the

linear dispersion relation, i.e., Im[K±(ω)], as functions
of ω. When plotting the figure, we have chosen a cold
alkali 87Rb atomic gas, with atomic levels assigned as
|1〉 = |52S1/2, F = 1,mF = 0〉, |2〉 = |52S1/2, F = 2,mF =
0〉, |3〉 = |52P3/2, F = 2,mF = 1〉 and |4〉 = |52P3/2, F =
2,mF = −1〉. The system parameters are �12 = 5 × 103 Hz,
�13 = �23 = 5 × 106 Hz, �14 = �24 = 3 × 106 Hz, �2 =
�3 = 0, �4 = 10 GHz, κ13 = κ24 = 1.8 × 1010 cm−1s−1,
and Na = 3.3 × 1011 cm−3 [18,19,21,26]. In the figure,
the dashed (solid) blue line is for the K+ mode for
�c1 = �c2 ≡ �c = 1.0 × 108 Hz (1.5 × 108 Hz), the
dashed-dotted (dashed-dotted-dotted) red line is for the
K− mode for �c = 1.0 × 108 Hz (1.5 × 108 Hz). The inset
illustrates the detail of Im(K±) near ω = 0. Shown in Fig. 1(c)
is the real part of K±, i.e., Re(K±).

From Fig. 1(b), we see that the K+ mode is an absorp-
tive one [because Im(K+) > 0]; in addition, a transparency
window is opened in the profile of Im(K+), which becomes
wider when the control fields are increased. From Fig. 1(c), we
see that the group velocity (given by [∂Re(K+)/∂ω]−1) near
ω = 0 is positive and less than c (subluminal), hence the K+
mode is a slow-light mode [27]. On the contrary, Im(K−) is
negative [see the inset of Fig. 1(b)], thus the K− mode is a gain
mode. Since the group velocity of the K− mode is larger than
c and even can be negative (superluminal), it is a fast-light
mode. It is just this fast-light mode that results in an optical
gain to both the probe and Stokes fields, and thereby lowers

FIG. 2. Propagation of linear probe pulse (blue) and Stokes pulse
(red). In each panel, the upper (lower) part is for the probe (Stokes)
field, with the dashed line for the input (at z = 0) and solid line for
the output (at z = 5 cm). (a) Propagation without the suppression of
the K− mode. In this case, the probe and Stokes pulses contain both
the slow- and fast-light modes, and a large deformation occurs during
propagation. (b) Propagation with the suppression of the K− mode.
In this case, both the probe and Stokes pulses contain only the slow-
light mode and thus can keep their wave shapes during propagation
(except for some decay due to the absorption of the slow-light mode).

the quality of the propagation and memory of the probe and
Stokes pulses in the double-� system, see below.

B. Suppression of the fast-light mode

To confirm the above analytical conclusion, a numerical
simulation on the linear propagation of both probe and Stokes
pulses is carried out. Shown in Fig. 2(a) is the result of the
propagation of the probe pulse (blue color) and the Stokes
pulse (red color) as functions of time. The upper (lower)
part is for the probe (Stokes) pulse, with the dashed line
for the input (at z = 0) and solid line for the output (at z =
5 cm). The boundary condition (at z = 0) used is �p0(t )τ0 =
sech(1.5t/τ0) and �s0(t )τ0 = 0.5 sech(1.5t/τ0). System pa-
rameters are �c1 = �c2 = 1.0 × 108 Hz, τ0 = 1.0 × 10−6 s,
�2 = 10 MHz, �3 = 0, and �4 = 10 GHz, with other ones
the same as those used in Fig. 1(b). We see that both the
probe and Stokes pulses have indeed a significant deformation
(especially for the Stokes pulse) during propagation. The
reason is that both of them contain the slow-light (K+) mode
and the fast-light (K−) mode (which can be clearly seen by
the two peaks in the output pulses shown in the figure). Con-
sequently, to realize a stable propagation (and also memory)
of both pulses, one must eliminate the fast-light mode in the
system.

We now make an analysis for how to suppress the fast-light
mode. From Eq. (4) we obtain

F+
p = −G−

G+ − G−
�̃p + 1

G+ − G−
�̃∗

s , (6a)

F−
p = G+

G+ − G−
�̃p − 1

G+ − G−
�̃∗

s , (6b)

with �̃p ≡ �̃p(z, ω)|z=0 = 1
2π

∫
dt�p(0, t )eiωt and �̃s ≡

�̃s (z, ω)|z=0 = 1
2π

∫
dt�s (0, t )e−iωt . To eliminate the
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fast-light (K−) mode, one should suppress the value of
F−

p to zero, which, obviously, can be realized if the condition

�̃∗
s (z, ω)|z=0 = G+(ω)�̃p(z, ω)|z=0 (7)

can be satisfied.
Shown in Fig. 2(b) is the propagation of the probe and

Stokes pulses when condition (7) is fulfilled. The boundary
condition (at z = 0) is chosen as �p0(t )τ0 = sech(1.5t/τ0)
but �∗

s0(t ) = F−1[G+�̃p0], where F−1 means an inverse
Fourier transform. The system parameters used here are τ0 =
1.0 × 10−6 s, �c10 = �c20 = 1.0 × 108 Hz, �2 = 10 MHz,
�3 = 0, and �4 = 10 GHz. We see that both the probe and
Stokes pulses have nearly the same wave shapes and can keep
the wave shapes during propagation. The reason is that in
the present situation both probe and Stokes pulses contain
only the slow-light mode, and they have a common, ultraslow
group velocity Vg (it is approximately 1.78 × 10−5 c with
the system parameters given in the figure), except for some
decay in their amplitudes. Note that when plotting Figs. 2(a)
and 2(b), a nonzero �2 is chosen, which is to suppress the
dephasing effect between the two lower levels |1〉 and |2〉 (i.e.,
γ21).

To fulfill condition (7), one must prepare the system
with a particular Stokes field at the input boundary z = 0,
i.e., the seeded idler (i.e., the Stokes field) at the entrance
of the medium should be specially designed. Such design
of the seeded idler can be realized through a preparation of
the input Stokes pulse based on the properties of the system
[including the dispersion feature of K+(ω) mode since G+(ω)
is proportional to K+(ω)] [28].

C. Storage and retrieval of linear pulse pairs

Now we turn to considering the memory of linear probe
and Stokes pulses in the double-� system. To implement the
memory, it is needed to manipulate the two control fields
�c1 and �c2. Their switching off and on can be modeled by
the combination of two hyperbolic tangent functions of the
form [29]

�cj = �c0j

{
1 − 1

2
tanh

[
t − Toff

Ts

]
+ 1

2
tanh

[
t − Ton

Ts

]}
,

(8)

where �c0j (j = 1, 2) are constants, Toff and Ton are respec-
tively times of switching off and switching on, and Ts is
switching time. The storage time of the probe and the Stokes
pulses is given by Ton − Toff. The efficiency of the optical
memory for optical pulse l (l = p, s) can be characterized
by [30]

ηl=
∫ Toff

−∞
∣∣�in

l (t )
∣∣2

dt−∣∣∫ Toff

−∞
∣∣�in

l (t )
∣∣2

dt−∫ +∞
Ton

∣∣�out
l (t )

∣∣2
dt

∣∣∫ Toff

−∞
∣∣�in

l (t )
∣∣2

dt
.

(9)

The fidelity of the memory is characterized by ηlJ
2
l , with

J 2
l =

∣∣∫ Toff

−∞ �out
l (t )�in

l (t + �T )dt
∣∣2

∫ Toff

−∞
∣∣�out

l (t )
∣∣2

dt
∫ ∞
Ton

∣∣�in
l (t )

∣∣2
dt

, (10)

FIG. 3. Storage and retrieval of linear optical pulse pair. (a) The
case without suppression of the fast-light (K−) mode. The upper
(lower) part is the result of the memory of the probe (Stokes) pulse. In
each part, lines 1 to 6 are for the pulse propagating to z = 0, 1, 2, 3, 4,
and 5 cm, respectively. The solid and dashed magenta lines are
curves of |�c1τ0| and |�c2τ0|, respectively; they (when overlapped
completely) represent the switching off and on of the two control
fields. In this case the Stokes pulse has a bad retrieval [lower part of
(a)]. (b) The same as (a) but with suppression of the fast-light mode.
In this case the memory efficiency and fidelity of the Stokes pulse is
improved greatly compared with the case in (a) where the fast-light
mode is not suppressed.

where �in
l (t ) = �l (z, t )|z=0, �out

l (t ) = �l (z, t )|z=Lz
(Lz is

the length of the medium), and �T is the time interval
between the peak of the input pulse and that of the retrieved
pulse.

A numerical simulation is carried out on the stor-
age and retrieval of both the probe and Stokes pulses,
based on solving the MB Eqs. (2) and (3). Figure 3(a)
shows the result of the simulation in the presence of
the fast-light (K−) mode. The boundary condition (at
z = 0) used is �p0(t )τ0 = sech(1.5t/τ0) and �s0(t )τ0 =
0.5 sech(1.5t/τ0) [24], and system parameters are chosen
as Ts = τ0, Toff = 5 τ0 and Ton = 18 τ0, τ0 = 1.0 × 10−6 s,
�c10 = �c20 = 1.0 × 108 Hz, �2 = 10 MHz, �3 = 0, and
�4 = 10 GHz. In the figure, the upper (lower) part is the
memory result of the probe (Stokes) pulse. In each part,
lines 1 to 6 are for the pulse propagating to z = 0, 1, 2,
3, 4, and 5 cm, respectively. The solid (dashed) magenta
line represents the switching off and on of control field 1
(control field 2); they overlap completely since we have taken
�c1 = �c2. The memory efficiency and fidelity of the probe
(Stokes) pulse are found to be ηp = 62.84% and ηpJ 2

p =
62.47% (ηs = 2.17% and ηsJ

2
s = 2.10%), respectively. As

expected, in this case the Stokes pulse has a bad mem-
ory quality because it contains the fast-light mode (i.e., the
FWM gain).

Shown in Fig. 3(b) is the result of the simulation on
both the optical pulses with the suppression of the fast-light
(K−) mode. To suppress the fast-light mode, the boundary
condition (at z = 0) is chosen as �p0(t )τ0 = sech(1.5t/τ0)
but �∗

s0(t ) = F−1[G+�̃p0]. In addition, For eliminating the
significant dispersion effect that exists for linear pulses, we
choose �2 = 1.3 × 107 Hz without changing other system
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parameters. From the figure we obtain that the memory
efficiency and fidelity of the probe (Stokes) pulse are re-
spectively given by ηp = 52.11% and ηpJ 2

p = 50.55% (ηs =
45.38% and ηsJ

2
s = 44.50). We see that in this case the

memory efficiency and fidelity of the Stokes pulse is im-
proved greatly compared with the case without the sup-
pression of the FWM gain [the case of Fig. 3(a)], al-
though the memory quality of the probe pulse has a small
decrease.

IV. STORAGE AND RETRIEVAL OF OPTICAL SOLITONS

The results presented above are valid only for linear op-
tical pulses. Now we generalize our approach to a weak
nonlinear optical regime. It is well known that linear pulses
usually suffer a spreading due to the existence of dispersion,
which may result in a serious distortion of optical pulses.
For practical applications, it is desirable to obtain optical
pulses that are robust during the processes of propagation
and memory. One way to realize this is to employ the Kerr
nonlinearity to balance the dispersion in the system. Recent
studies have shown that ultraslow optical solitons are possible
in EIT systems [31,32] and they can also be stored and
retrieved [33,34].

A. Ultraslow optical soliton pairs

To obtain possible weak-light soliton pairs in the present
system, we employ the approach developed in Ref. [32]. Non-
linearly coupled envelope equations describing the evolution
of the probe and Stokes pulses can be derived from the MB
Eqs. (2) and (3) by using a method of multiple scales, which
read

i

(
∂

∂z
+ α+

)
U+ − K+

2

2

∂2U+

∂τ 2

− (W11|U+|2 + W12|U−|2)U+ = 0, (11a)

i

(
∂

∂z
+ α−

)
U− − K−

2

2

∂2U−

∂τ 2

− (W21|U+|2 + W22|U−|2)U− = 0, (11b)

where τ = t − z/Vg (Vg ≈ V +
g ), U+ = F+

p e−α+z, U− =
F−

p e−α−z (α± = ε−2Im[K±]), and K±
2 = ∂2K±/∂ω2 describe

second-order dispersions, and W11 and W22 (W12 and W21) are
coefficients of self-phase modulation (cross-phase modula-
tion). Explicit expressions of Wlm (l, m = 1, 2) are presented
in Appendix C.

To suppress the fast-light mode and hence the optical gain
due to the FWM, we assume that the system works under con-
dition (7), and hence U− can be neglected. In this situation,
only Eq. (11a) preserves; its solution can be easily obtained.
Then we have the probe and Stokes solitons with forms

�p(z, t ) = 1

τp

√
K̃+

2

W̃11
sech

[
1

τp

(
t − z

Ṽ +
g

)]
ei[K̃0−1/(2LD )]z,

(12a)

�s (z, t ) = G+(0)

τp

√
K̃+

2

W̃11
sech

[
1

τp

(
t− z

Ṽ +
g

)]
ei[K̃0−1/(2LD )]z,

(12b)

where K0 = K+(ω)|ω=0, and G+(0) = G+(ω)|ω=0. The tilde
means the real part of the quantity, i.e., K̃+

2 = Re(K+
2 )|ω=0

and W̃11 = Re(W11)|ω=0. We call Eqs. (12a) and (12b) the
optical soliton pair of the system.

By taking a set of realistic system parameters �c1 =
�c2 = 1.0 × 108 Hz, τ0 = 1.0 × 10−6 s, �2 = 1.0 × 107 Hz,
�3 = 2.3 × 108 Hz, κ23 = 2.4 × 1010 cm−1 Hz, and Na =
4.35 × 1011 cm−3, we obtain K0 = 19.57 + 0.08i cm−1 and
K̃+

2 = (9.86 + 0.33i) × 10−15 cm−1 s2. To get a Kerr non-
linearity that can balance the dispersion of the system, we
choose |�p,max|τ0 = 12 (here �p,max is the maximum am-
plitude of �p). Then we have W̃11 = (1.55 × 10−14 − 0.8 ×
10−17i) cm−1 s2. We see that imaginary parts of K0, K̃+

2 , and
W̃11 are much smaller than their real parts, which is due to the
EIT effect induced by the two control fields. With these results
we obtain Re(V +

g ) ≈ 1.28 × 10−5 c. Thereby, both the probe
and Stokes solitons travel with a common, ultraslow propagat-
ing velocity. The result means that the optical soliton pair is
quite robust during propagation thanks to the suppression of
the fast-light mode.

The light power for generating such an optical soliton pair
can be calculated by using the Poynting vector integrated over
the cross section S0 of the optical pulses [32]. By taking S0 =
1.0 mm2, we obtain the maximum light power for generating
such optical soliton pairs, given by Pmax ≈ 2.2 μW, which is
very low compared with that of the optical solitons produced
in other optical media (such as optical fibers).

B. Storage and retrieval of the optical soliton pairs

Lastly, we investigate the storage and retrieval of the
ultraslow optical soliton pair predicted above. To this end,
we solve the MB Eqs. (2) and (3) numerically by assuming
that both control fields �c1 and �c2 to be switched off and
on according to the form given by the expression (8). In the
numerical simulation, we take Ts = 1.0τ0, Toff = 5.0τ0, and
Ton = 18.0τ0, with other parameters the same as those used
in Fig. 3.

Shown in Fig. 4 are results of the storage and retrieval
of the ultraslow optical soliton pair. Figure 4(a) is for the
evolution of |�pτ0|, i.e., for the probe soliton component,
as a function of time t for different propagation distances z.
Lines 1 to 6 in each panel are for z = 0, 1, 2, 3, 4, and 5
cm, respectively. The solid and dashed purple lines are curves
of |�c1τ0| and |�c2τ0|, respectively; they (when overlapped
completely) represent the switching off and on of the two
control fields. Figure 4(b) is similar to Fig. 4(a), but for
|�sτ0|, i.e., the Stokes soliton component. In the simulation,
the input condition of the probe pulse at z = 0 is taken as
�p0(t )τ0 = 12 sech(1.5t/τ0), while the input condition of the
Stokes field is taken as F−1[G+�̃p0], i.e., fulfilling condition
(7) for suppressing the FWM gain.

From the figure we see that because of the balance between
the dispersion and the nonlinearity, the probe and the Stokes
pulses suffer less deformation (spreading) than the linear case
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FIG. 4. Storage and retrieval of the ultraslow optical soliton
pair. (a) Evolution of |�pτ0| for the probe soliton component as
a function of time t for different propagation distance z. Lines 1
to 6 are for the soliton propagating to z = 0, 1, 2, 3, 4, and 5
cm, respectively; the solid and dashed purple lines are curves of
|�c1τ0| and |�c2τ0|, respectively; they (when overlapped completely)
represent the switching off and on of the two control fields. (b) The
same as (a) but for |�sτ0|, i.e., the Stokes soliton component.

(Fig. 3) during the propagation. When both control fields
are switched off at t = Toff = 5.0τ0, both components of the
soliton pair disappear, and then they appear again when both
control fields are switched on again at t = Ton = 18.0τ0 [35].
In this nonlinear regime, the memory efficiencies of the probe
and Stokes components reach respectively ηp = 67.62%
and ηs = 61.91%, which is an increase of 16% compared
with the one in the linear regime. The memory fidelity
of the probe (Stokes) component reaches ηpJ 2

p = 64.73%
(ηsJ

2
s = 56.71%), which also is an increase of 14% (12%)

compared with the one in the linear regime. Thus the memory
of the ultraslow optical soliton pair has a better quality
than that of the linear optical pulse pair shown in the last
section due to the suppression of the dispersion by the Kerr
nonlinearity of the system.

V. SUMMARY

In this work, we have proposed a scheme for improving
the memory quality of optical pulse pairs via FWM in a cold,
double-� atomic gas. We have shown that in general both
the probe and Stokes pulses contain a slow-light mode and
a fast-light mode that copropagate in the system simultane-
ously; the existence of the fast-light mode may severely lower
the memory quality of both pulses. By suppressing the fast
mode (and thereby the optical gain induced by the FWM
effect) under a suitable condition, we found that a significant
improvement of the efficiency and fidelity of the memory
of the probe and Stokes pulses is realizable. We have also
shown that the system may support ultraslow optical soliton
pairs through the balance between the dispersion and the Kerr
nonlinearity in the system. The ultraslow, weak-light soliton
pairs can also be stored and retried with better efficiency and
fidelity than that of linear optical pulse pairs.

Our work on the optical memory in the double-� system
can be generalized to many other cases, including the memory
of high-dimensional linear and nonlinear optical pulse pairs
carrying with orbital angular momenta the phase control of the
optical memory, the design of slow-light routers, the exten-
sion to an all-quantum approach, etc. Thus the improvement
scheme for optical pulse pair memory suggested here has
promising applications in all-optical information processing
and transformation.
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APPENDIX A: EXPLICIT EXPRESSIONS OF THE BLOCH EQUATION AND THEIR SIMPLIFIED FORM

The explicit expression of the optical Bloch equation reads [36]

i
∂

∂t
σ11 − i�13σ33 − i�14σ44 + �∗

pσ31 + �∗
c2σ41 − �pσ ∗

31 − �c2σ
∗
41 = 0, (A1a)

i
∂

∂t
σ22 − i�23σ33 − i�24σ44 + �∗

c1σ32 + �∗
s σ42 − �c1σ

∗
32 − �sσ

∗
42 = 0, (A1b)

i

(
∂

∂t
+ �3

)
σ33 + �pσ ∗

31 + �c1σ
∗
32 − �∗

pσ31 − �∗
c1σ32 = 0, (A1c)

i

(
∂

∂t
+ �4

)
σ44 + �c2σ

∗
41 + �sσ

∗
42 − �∗

c2σ41 − �∗
s σ42 = 0, (A1d)

for diagonal matrix elements, and(
i

∂

∂t
+ d21

)
σ21 + �∗

c1σ31 + �∗
s σ41 − �pσ ∗

32 − �c2σ
∗
42 = 0, (A2a)

(
i

∂

∂t
+ d31

)
σ31 + �p(σ11 − σ33) + �c1σ21 − �c2σ

∗
43 = 0, (A2b)

(
i

∂

∂t
+ d32

)
σ32 + �c1(σ22 − σ33) + �pσ ∗

21 − �sσ
∗
43 = 0, (A2c)

(
i

∂

∂t
+ d41

)
σ41 + �c2(σ11 − σ44) + �sσ21 − �pσ43 = 0, (A2d)
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(
i

∂

∂t
+ d42

)
σ42 + �s (σ22 − σ44) + �c2σ

∗
21 − �c1σ43 = 0, (A2e)

(
i

∂

∂t
+ d43

)
σ43 + �c2σ

∗
31 + �sσ

∗
32 − �∗

pσ41 − �∗
c1σ42 = 0, (A2f)

for nondiagonal matrix elements. Here d21 = �2 + iγ21, d31 = �3 + iγ13, d32 = �3 − �2 + iγ23, d41 = �4 + iγ14, d42 =
�4 − �2 + iγ24, d43 = �4 − �3 + iγ34, γij = (�i + �j )/2 + γ

dep
ij , and �j = ∑

i<j �ij , with �ij the spontaneous emission

decay rate and γ
dep
ij the dephasing rate between state |i〉 and state |j 〉 [36].

APPENDIX B: DEFINITIONS OF αi j (ω) AND βi j (ω)

The explicit expression of αij (ω) and βij (ω) in Eq. (5) reads

α11(ω) = ω + d∗
41

|�c2|2 − ω(ω + d∗
41)

,

α21(ω) = −�∗
c2

|�c2|2 − ω(ω + d∗
41)

,

β11(ω) = −�∗
c1

|�c1|2 − (ω + d21)(ω + d31)
,

β21(ω) = ω + d21

|�c1|2 − (ω + d21)(ω + d31)
,

α12(ω) = −�c2

|�c2|2 − ω(ω + d∗
41)

,

α22(ω) = ω

|�c2|2 − ω(ω + d∗
41)

,

β12(ω) = ω + d31

|�c1|2 − (ω + d21)(ω + d31)
,

β22(ω) = −�c1

|�c1|2 − (ω + d21)(ω + d31)
.

(B1)

APPENDIX C: EXPLICIT EXPRESSIONS OF THE COEFFICIENTS IN EQS. (11)

The coefficients in Eqs. (11) are written into a matrix form for simplicity:

W11 = [W ′
11 + W ′

12|G+|2 + W ′
21G+ + W ′

22G+|G+|2], (C1a)

W21 = [2W ′
11 + W ′

12G
∗
+(G+ + G−) + W ′

21(G+ + G−) + W ′
22(G+ + G−)|G+|2], (C1b)

W12 = [2W ′
11 + W ′

12G
∗
−(G+ + G−) + W ′

21(G+ + G−) + W ′
22(G+ + G−)|G−|2], (C1c)

W22 = [W ′
11 + W ′

12|G−|2 + W ′
21G− + W ′

22G−|G−|2], (C1d)

where the expressions for W ′
11, W ′

12, W ′
21, W ′

22 are

W ′
21 = [

α2
11β

∗
11σ

(0)
33 + α11α12β

∗
21σ

(0)
32 + α∗

11β21β22σ
(0)
43 + α∗

21β21β22σ
(0)∗
31

+α12β21β
∗
11σ

(0)
11 + α11β22β

∗
21σ

(0)
41 + α∗

11α12β21σ
(0)
32 + α11α

∗
21β22σ

(0)
33

]
, (C2a)

W ′
12 = [

α12α21β
∗
12σ

(0)
33 + α11α22β

∗
22σ

(0)
32 + α∗

12β12β21σ
(0)
43 + α∗

22β11β22σ
(0)∗
31

+α12β21β
∗
12σ

(0)∗
41 + α11|β22|2σ (0)

44 + |α12|2β21σ
(0)
22 + α11α

∗
22β22σ

(0)∗
32

]
, (C2b)

W ′
22 = [

α12α22β
∗
12σ

(0)
32 + α∗

22β22β12σ
(0)
43 + α12β22β

∗
12σ

(0)
44 + α12α

∗
22β22σ

(0)
22

]
, (C2c)

W ′
11 = [

α2
11β

∗
21σ

(0)
33 + α∗

11β
2
21σ

(0)∗
31 + α11|β21|2σ (0)

11 + |α11|2β21σ
(0)
33

]
. (C2d)
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