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Storage and retrieval of vector optical solitons via double electromagnetically induced transparency
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We propose a scheme to realize storage and retrieval of two-component optical soliton in a coherent atomic
system. The system under consideration is a cold, lifetime-broadened four-level atomic gas with a tripod
configuration working at the condition of double electromagnetically induced transparency. We show that due
to the existence of two dark states, the optical absorption of the probe pulse can be largely reduced. In addition,
the two orthogonal polarization components of the probe pulse with a form of vector optical soliton cannot only
be slowed down substantially but also be stored and retrieved robustly by switching a control laser field off and
on. We also show that it is possible to achieve a memory of N -component optical soliton by using the N dark
states in a (N + 1)-pod system (N > 2). The results reported here may have promise in applications for light
information processing in a weak nonlinear regime.
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I. INTRODUCTION

In recent years, much attention has been paid to the
investigation of light storage and retrieval, which is very crucial
for the realization of optical information processing. One of the
important techniques for realizing light storage and retrieval
is the use of electromagnetically induced transparency (EIT),
which is a quantum interference effect typically occurring in
a three-level atomic system [1]. Due to the existence of a dark
state, a probe laser field can be stored in atoms and retrieved
by manipulating a control laser field [2].

However, nearly all studies up to now on light storage and
retrieval via EIT have been carried out in a linear regime. It is
well known that a linear probe pulse in an EIT system suffers
a spreading and attenuation due to the existence of dispersion,
which may result in a serious distortion for retrieved pulse.
For practical applications of optical memory, it is desirable
to obtain a probe pulse that is robust during its storage and
retrieval (i.e., with a high fidelity). A preliminary analysis
shows that a weak optical soliton pulse can be stored and
retrieved in three-level atomic systems via a single EIT [3,4].

In this article, we propose a scheme to realize the storage
and retrieval of vector optical soliton (VOS) in a cold, lifetime-
broadened four-level atomic system with a tripod configuration
and working under the condition of double electromagnetically
induced transparency (DEIT). We show that due to the
existence of the DEIT and hence two dark states, the optical
absorption of the probe pulse can be largely reduced. In
addition, the two orthogonal polarization components of the
VOS cannot only be slowed down substantially but also be
stored and retrieved robustly by switching a control field off
and on. We further show that it is possible to realize the storage
and retrieval of N -component optical soliton by using the
N dark states in a (N + 1)-pod system (N > 2). The result
reported here provides the possibility of the high-fidelity bit
memory and hence may have promise in applications in light
information processing in a weak nonlinear regime.
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Before preceding, we note that DEIT has been explored in
many previous studies, which showed that two probe fields
can be made transparent by the use of control field [5–10].
Additionally, the storage and retrieval of the two probe fields
in DEIT systems have also been demonstrated experimen-
tally [11–15]. However, our work is different from Refs. [5–
10], where only linear DEIT was investigated. Furthermore,
our work is also at variance with Refs. [11–15], where only the
memory of two probe pulses in the linear propagation regime
was explored. In contrast with these studies, in our work not
only a nonlinear DEIT but also the storage and retrieval of
two solitonic probe pulses in nonlinear propagation regime
are explored.

The article is arranged as follows. In Sec. II, the physical
model under study is described. In Sec. III, a derivation of
coupled NLS equations controlling the evolution of envelopes
of the two polarization components of the probe field is given,
and an ultraslow VOS solution is also presented. In Sec. IV,
storage and retrieval of the VOS are investigated in detail
and a theoretical explanation is also presented. In Sec. V,
the storage and retrieval of N -component optical solitons is
discussed. Finally, the last section contains a summary of the
main results of our work.

II. MODEL

We consider a cold, lifetime-broadened atomic gas with
a tripod-type level configuration, interacting resonantly with
a pulsed probe laser field with two orthogonal circular-
polarized components (with half-Rabi frequency �p1 and �p2,
respectively), and a linear-polarized, strong continuous-wave
control laser field (with half-Rabi frequency �c). The two
polarization components of the probe field drive, respectively,
the transitions from |4〉 ↔ |1〉 and |4〉 ↔ |2〉, while the control
field drives the transitions from |4〉 ↔ |3〉 [see Fig. 1(a)]. A
possible arrangement of experimental apparatus is shown in
Fig. 1(b).

For simplicity, we assume both the probe and control
fields propagate along the z direction. Then the electric
field of the system can be expressed as E = (ε̂+Ep+ +
ε̂−Ep− )exp[i(kpz − ωpt)] + ε̂cEcexp[i(kcz − ωct)] + c.c.
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FIG. 1. (Color online) (a) Energy-level diagram and excitation
scheme of the four-level tripod atomic system. �p1 and �p2 are
the half-Rabi frequencies of two polarization components of the
probe field, which couple, respectively, to the levels |4〉 → |1〉 and
|4〉 → |2〉. The levels |3〉 and |4〉 are coupled by the control field
with half-Rabi frequency �c. �14, �24, and �34 are, respectively, the
spontaneous emission decay rates from |4〉 to |1〉, |4〉 to |2〉, and
|4〉 to |3〉. �4, �3, and �2 are detunings. �13, �31, �23, and �32

are, respectively, the rates of incoherent population transfer between
|3〉 and |1〉, and between |3〉 and |2〉. (b) Possible arrangement of
experimental apparatus. Ec is the control field and Ep− and Ep+ are the
two circular-polarized components of the probe field Ep , respectively.
B is an applied magnetic that induces a Zeeman splitting of the lower
levels.

Here ε̂+ = (x̂ + iŷ)/
√

2 (ε̂− = (x̂ − iŷ/
√

2)) is the probe-field
unit vector of the circular-polarized component with the
envelope Ep+ (Ep− ), which drives the transition |2〉 ↔ |4〉
(|1〉 ↔ |4〉); x̂ (ŷ) is the unit vector along the x (y) direction;
ε̂c is the unit vector of the control field with the envelope
Ec; kp = ωp/c (kc = ωc/c) is the wave number of the probe
(control) field before entering the atomic gas.

The Hamiltonian of the system in the interaction picture is
given by

Hint = −�

⎛
⎝ 4∑

j=1

�j |j 〉〈j | + �p1|4〉〈1| + �p2|4〉〈2|

+�c|4〉〈3| + H.c.

⎞
⎠ , (1)

with �1 = 0, �2 = (E1 − E2)/�, �3 = ωp − ωc − (E3 −
E1)/�, and �4 = ωp − (E4 − E1)/�. Here Ej is the energy
eigenvalue of the level |j 〉 (j = 1,2,3,4); �p1 (�p2) is the
half-Rabi frequency of the Ep− (Ep+ ) component of the probe
field; �c is the half-Rabi frequency of the control field.

The motion of atoms is governed by the Bloch equa-
tion [16],

i�

(
∂

∂t
+ �

)
σ = [Hint,σ ], (2)

where σ is a 4 × 4 density matrix in the interaction picture,
and � is a 4 × 4 relaxation matrix describing the spontaneous
emission and dephasing of the system. The definitions of �α

(α = p1,p2,c) and the explicit expressions of Eq. (2) are
presented in Appendix A.

The evolution of the electric field in the system is controlled
by the Maxwell equation,

∇2E − 1

c2

∂2E
∂t2

= 1

ε0c2

∂2P
∂t2

, (3)

with P = Na{p14σ41 exp[i(kpz − ωpt)] + p24σ42 exp[i(kpz −
ωpt)] + p34σ43 exp[i(kcz − ωct)] + c.c.}. Under a slowly
varying envelope approximation, we obtain the equations for
�α (α = p1,p2,c),

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p1 + κ14σ41 = 0, (4a)

i

(
∂

∂z
+ 1

c

∂

∂t

)
�p2 + κ24σ42 = 0, (4b)

i

(
∂

∂z
+ 1

c

∂

∂t

)
�c + κ34σ43 = 0, (4c)

where κ14 = Naωp|p14|2/(2ε0c�), κ24 = Naωp|p24|2/
(2ε0c�), and κ34 = Naωc|p34|2/(2ε0c�), with Na the atomic
density and c the light speed in vacuum. Note that for simplicity
we have assumed both the probe and control fields have large
beam radius in x and y directions so that the diffraction effect
representing by the term (∂2/∂x2 + ∂2/∂y2)�α are negligible.

III. ULTRASLOW VECTOR OPTICAL SOLITONS

A. Nonlinear envelope equations

We first use the standard method of multiple scales
developed for EIT-like resonant atomic systems [17]
to derive nonlinear envelope equations for the two
orthogonal components of the probe pulse based on the
nonlinearly coupled Maxwell-Bloch (MB) Eqs. (A1)
and (4) by assuming a constant control field. To
this end, we take the asymptotic expansions σjj =
σ

(0)
jj + εσ

(1)
jj + ε2σ

(2)
jj + ε3σ

(3)
jj + · · · (j = 1,2,3,4), σjl =

σ
(0)
j l + εσ

(1)
j l + ε2σ

(2)
j l + ε3σ

(3)
j l + · · · (j = 2,3,4; l = 1,2,3),

and �pl = ε�
(1)
pl + ε2�

(2)
pl + ε3�

(3)
pl + · · · (l = 1,2). Here σ

(0)
jj

is the initial population distribution prepared in the state |j 〉,
σ

(0)
j l is the initial coherence related to the state |j 〉 and the state

|l〉, and ε is a dimensionless small parameter characterizing the
typical amplitude of �p1 and �p2. To obtain a valid expansion
for the nonlinear evolution of the system, all quantities on the
right-hand side of the expansion are considered as functions
of the multiscale variables zl = εlz (l = 0,1,2), and tl = εlt

(l = 0,1) [17].
Substituting the above expansion to the MB Eqs. (A1), (4a),

and (4b) and comparing the coefficients of εl (l = 1,2,3...),
we obtain a set of linear but inhomogeneous equations which
can be solved order by order. At zero order, the solution reads

σ
(0)
11 = J12G2 − J22G1

J12J21 − J11J22
, (5a)

σ
(0)
22 = J21G1 − J11G2

J12J21 − J11J22
, (5b)

σ
(0)
44 = X1 − i�31 − X1σ

(0)
11 − X2σ

(0)
22

X4
, (5c)

σ
(0)
43 = −�c

(
1 − σ

(0)
11 − σ

(0)
22 − 2σ

(0)
44

)
(ω + d43)

, (5d)

where σ
(0)
33 = 1 − σ

(0)
11 − σ

(0)
22 − σ

(0)
44 ; Xj (j = 1,2,4), Gl (l =

1,2), Jjk (j,k = 1,2,j �= k) are given in Appendix B. Note
that the populations in the level |3〉 and |4〉 come from the
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FIG. 2. (Color online) DEIT in the tripod system. Im(K1) (solid
line) and Im(K2)(dashed line) are the absorption spectra of the two
polarization components of the probe pulse as functions of ω. (a) The
case without EIT (�c = 0). (b) The case with DEIT (�c = 30 MHz),
where a transparency window opens for both Im(K1) and Im(K2).

incoherent population transfer (i.e., �31 and �32). We assume
both �31 and �32 are small so that the populations in |3〉 and
|4〉 are negligible.

At the first order, we obtain the solution �
(1)
p1 = F1exp(iθ1)

and �
(1)
p2 = F2exp(iθ2) with θ1(2) = K1(2)(ω)z0 − ωt0 [18] and

F1(2) the envelope function of the slow variables z1, z2, and t1.
K1 and K2 are linear dispersion relations, given by

K1(ω) = ω

c
+ κ14

(ω + d31)
(
σ

(0)
11 − σ

(0)
44

) + �cσ
∗(0)
43

D1(ω)
, (6a)

K2(ω) = ω

c
+ κ24

(ω + d32)
(
σ

(0)
22 − σ

(0)
44

) + �cσ
∗(0)
43

D2(ω)
, (6b)

with Dj (ω) = |�c|2 − (ω + d3j )(ω + d4j ) (j = 1,2). We see
that the linear dispersion relation has two branches, belonging,
respectively, to the two orthogonal polarization components of
the probe field. The explicit expressions of σ

(1)
j l are presented

in Appendix C.
Shown in Fig. 2 are absorption spectra Im(K1) (solid line)

and Im(K2) (dashed line) as functions of ω. Figures 2(a)
and 2(b) are, respectively, for the absence (�c = 0) and the
presence (�c = 30 MHz) of the control field. We see that
when �c = 0 both polarization components of the probe pulse
have large absorption [Fig. 2(a)] (i.e., no EIT); however, in
the presence of �c a transparency window is opened in both
Im(K1) and Im(K2) [Fig. 2(b)]. In this situation, the two
polarization components of the probe pulse may propagate
in the present resonant atomic ensemble with negligible
absorption (i.e., DEIT). The occurrence of the DEIT is due
to the quantum interference effect induced by the control field,
which allows the existence of two dark states (i.e., the upper
state |4〉 is not involved),

|D1〉 = �c|1〉 − �p1|3〉, (7a)

|D2〉 = �c|2〉 − �p2|3〉, (7b)

for the Hamiltonian (1). Note that when plotting Fig. 2, the
model and system parameters given in Appendix A have been
used. In addition, we have taken �3 = �4 = 0, �2 = 2 MHz
(here a larger �2 is chosen for distinguishing the curves in
the figure), Na = 5.51 × 1011cm−3, and hence κ14 ≈ κ24 ≈
1.5 × 1010cm−1s−1.

To study the weak nonlinear effect of the system, we
must go to high-order approximations. At second order,
we obtain i[∂Fl/∂z1 + (1/Vgl)∂Fl/∂t1] = 0 (l = 1,2), with
Vgl = 1/K1l (Kl1 ≡ ∂Kl/∂ω) the group velocity of the lth
polarization component of the probe pulse. The second-order
solution is presented in Appendix D.

With the above result we proceed to the third order. The
divergence-free condition in this order yields the nonlinear
envelope equations for F1 and F2:

i
∂F1

∂z2
− 1

2
K12

∂2F1

∂t2
1

− (W11|F1|2e−2ᾱ1z2

+W12|F2|2e−2ᾱ2z2 )F1 = 0, (8a)

i
∂F2

∂z2
− 1

2
K22

∂2F2

∂t2
1

− (W21|F1|2e−2ᾱ1z2

+W22|F2|2e−2ᾱ2z2 )F2 = 0, (8b)

where ᾱl = ε−2αl = ε−2Im(Kl) is absorption coefficient,
Kl2 = ∂2Kl/∂ω2 is group-velocity dispersion coefficient, and
Wll is a nonlinear coefficient characterizing self-phase modu-
lation (SPM) of the lth polarization component of the probe
field; W12 and W21 are nonlinear coefficients characterizing
cross-phase modulations (CPMs) between the two polarization
components. The explicit expressions of all these quantities are
given in Appendix E.

B. Ultraslow vector optical solitons

We now consider possible VOS solutions of the coupled
nonlinear Eqs. (8a) and (8b). Notice that these equations
have generally complex coefficients. However, due to the
existence of the DEIT the imaginary parts of these complex
coefficients are very small and can be taken as perturbations
(see the example given below). For a transparent physical
analysis, these small imaginary parts are neglected in analytical
calculations but will be included in numerical simulations.

By defining s = z/LD , σ = (t − z/Vg)/τ0, u1 =
(�p1/U0) exp(−iK1z), and u2 = (�p2/U0) exp(−iK2z),
Eqs. (8a) and (8b) are converted into the dimensionless form,

i

(
∂

∂s
+ gA1

)
u1 + igδ

∂u1

∂σ

− gD1

2

∂2u1

∂σ 2
− (g11|u1|2 + g12|u2|2)u1 = 0, (9a)

i

(
∂

∂s
+ gA2

)
u2 − igδ

∂u2

∂σ

− gD2

2

∂2u2

∂σ 2
− (g21|u1|2 + g22|u2|2)u2 = 0, (9b)

with gAl = αlLD (l = 1,2), gδ = sign(δ)LD/Lδ , gD1 =
K12/|K22|, gD2 = sgn(K22), glm = Wlm/|W22| (l,m = 1,2),
δ = (1/Vg1 − 1/Vg2)/2, and Vg = 2Vg1Vg2/(Vg1 + Vg2).
Here LD = τ 2

0 /|K22| is the characteristic dispersion length,
Lδ = τ0/|δ| is the characteristic length for group-velocity
mismatch, and τ0 is the characteristic pulse length. Since our
aim is to obtain VOS solutions, in Eqs. (9a) and (9b) we
have assumed LD = LNL, with LNL = 1/(U 2

0 |W22|) being
characteristic nonlinear length of the system.
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For the system parameters given in Appendix A, and
when selecting �4 = 6.0 × 108 Hz,�3 = 2.0 × 106 Hz,�2 =
1.0 × 104 Hz,�31 ≈ �32 = 100 Hz,�13 ≈ �23 = �3/2, �14 ≈
�24 ≈ �34 = �4/3, κ14 ≈ κ24 = 1.5 × 1010 cm−1s−1, and
�c = 2.4 × 108 Hz, we obtain the numerical values of the
complex coefficients in Eqs. (8a) and (8b) evaluating at ω = 0
(i.e., at the center frequency of the probe field), which are K1 =
(0.26595+i0.00031) cm−1, K2 = (0.26460+i0.00031) cm−1,
K11=(1.35851+i0.00184) × 10−7 cm−1s, K21=(1.35821 +
i0.00183) × 10−7 cm−1s, K12 = (2.90860 + i0.0965) ×
10−15 cm−1s2, K22 = (2.90752 + i0.0964) × 10−15 cm−1s2,
W11 = (2.26869 + i0.07441) × 10−16 cm−1s2, W12 =
(2.22029 + i0.07440) × 10−16 cm−1s2, W21 =
(2.22054 + i0.07427) × 10−16 cm−1s2, and W22 =
(2.26821 + i0.07438) × 10−16 cm−1s2. We see that the imag-
inary parts of these quantities are indeed much smaller than
their relevant real parts, as expected above. The physical
reason of such small imaginary parts comes from the DEIT
effect induced by the control field. Additionally, all four Kerr
coefficients W11, W12, W21, W22 are very large (comparing
with those, e.g., in optical fibers) and have the same order of
magnitude, which is due to the DEIT and the symmetry of the
tripod level configuration (i.e., the detunings of all the lower
levels are taken to be small).

When taking τ0 = 1.0 × 10−7 s, we obtain U0 ≈ 3.58 ×
107 s−1, and LD = 3.43 cm. Furthermore, one has Lδ =
6874 cm, which means that the group velocities of the two
polarization components are matched well. The dimensionless
coefficients read gδ = 0.001, gD1 ≈ 1, gD2 = 1, and g11 ≈
g21 ≈ g12 ≈ g22 ≈ 1. When disregarding the small imaginary

parts of the coefficients, Eqs. (9a) and (9b) become coupled
nonlinear Schrödinger (NLS) equations. A bright-bright VOS
solution is given by

u1 = ν1sech(A0σ + B0s)exp[i(�1σ + ς1s)], (10a)

u2 = ν2sech(A0σ + B0s)exp[i(�2σ + ς2s)], (10b)

if the parameters fulfill the condition g22gD1 = g12gD2.
We have defined �1 = (B0 + gδA0)/(gD1A0), �2 =
(B0 − gδA0)/(gD2A0), ς1 = −�1gδ − gD1(A2

0 − �2
1)/2, ς2 =

�2gδ − gD2(A2
0 − �2

2)/2, and ν2 = [(gD1A
2
0 − g11ν

2
1 )/g12]1/2.

Here ν1, A0, B0 are free parameters.
After returning to the original variables, we obtain

�p1(z,t) = 1

τ0

√∣∣∣∣ W̃12K̃22

W̃11W̃22

∣∣∣∣sech

[
A0

τ0

(
t − z

Ṽg

)
+ B0z

LD

]
eiφ1 ,

(11a)

�p2(z,t) = 1

τ0

√∣∣∣∣A2
0W̃22K̃12

W̃12K̃22

∣∣∣∣ − 1

√∣∣∣∣ K̃22

W̃22

∣∣∣∣
×sech

[
A0

τ0

(
t − z

Ṽg

)
+ B0z

LD

]
eiφ2 . (11b)

One sees that the CPM coefficient W̃12 appears explicitly
in the solution, which is a manifestation of the interaction
between the two polarization components of the VOS.

The probe-field expression corresponding the VOS is given
by

Ep(z,t) =
(

ε̂−
�

|p14|τ0

√∣∣∣∣ W̃12K̃22

W̃11W̃22

∣∣∣∣eiφ1 + ε̂+
�

|p24|τ0

√∣∣∣∣A2
0K̃12W̃22

W̃12K̃22

∣∣∣∣ − 1

√∣∣∣∣ K̃22

W̃22

∣∣∣∣eiφ2

)
sech

[
A0

τ0

(
t − z

Ṽg

)
+ B0z

LD

]
ei(kpz−ωpt−ωt)

+ c.c., (12)

where φ1 = K̃1z + B0|K̃22|(t − z/Ṽg)/(A0K̃12τ0) − (z/LD)
(A4

0K̃
2
12 − B2

0 K̃2
22)/(2A2

0|K̃22|K̃12) and φ2 = K̃2z + B0(t −
z/Ṽg)/(A0τ0) − (z/LD)(A4

0 − B2
0 )/(2A2

0), with A0 and B0

being two free parameters. We see that the envelopes of the
two (circularly) polarized components of the VOS have the
same propagating velocity Ṽg/[1 − B0Ṽgτ0/(A0LD)].

With the above results, we obtain the propagating velocities
of the two polarization components of the VOS,

Ṽs1 = 2.45683 × 10−4 c, (13a)

Ṽs2 = 2.45683 × 10−4 c, (13b)

when taking A0 = 2 and B0 = 1. We see that both Vs1 and
Vs2 are ultraslow and matched. The ultraslow and matched
propagating velocities are very crucial for the simultaneous
memory of the two components of the VOS.

The threshold of the optical power density Pmax for
generating the VOS predicted above can be estimated by using
Poynting’s vector [17]. We have

Pmax ≈ 1.33 × 10−9 W. (14)

Thus, to create the ultraslow optical solitons in the system very
low input power is needed. The reason for such low generation
power of the VOS is due to the giant Kerr nonlinearity (i.e.,
large SPM and CPM coefficients) produced by the DEIT effect.

IV. STORAGE AND RETRIEVAL OF VECTOR
OPTICAL SOLITONS

A. Storage and retrieval of the two polarization
components of the probe field

Fleischhauer and Lukin [19] demonstrated that it is possible
to realize storage and retrieval of a probe optical pulse in a �-
type three-level atomic system. First, by switching on a control
field the probe pulse may propagate in the atomic system
with nearly vanishing absorption. Then by slowly switching
off the control field the probe pulse will disappear and get
stored in the form of atomic coherence. Later on, by switching
on the control field again the probe pulse will reappear. In
recent years, such theoretical prediction has been verified
successfully by a series of beautiful experiments [20–33].

However, the intensity of the probe pulse used in Ref. [19]
and the studies carried out thereafter [20–33] is weak; i.e.,
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FIG. 3. (Color online) Storage and retrieval of two-component optical pulse in different dynamic regimes. Shown in each panel
are profiles of |�p1τ0| (blue solid line) and |�p2τ0| (red dashed line) as functions of z and t for different input light intensity of the
probe pulse. (a) Dispersion-dominant (i.e., linear) regime [�p1(0,t)τ0 = 0.6 sech(t/τ0),�p2(0,t)τ0 = 0.8 sech(t/τ0)]. (b) Soliton regime, where
there is a balance between nonlinearity and dispersion [�p1(0,t)τ0 = 7 sech(t/τ0),�p2(0,t)τ0 = 9.3 sech(t/τ0)]. (c) Nonlinearity-dominant
regime [�p1(0,t)τ0 = 9 sech(t/τ0),�p2(0,t)τ0 = 12 sech(t/τ0)]. The lines from 1 to 6 in each panel correspond to propagation distance z = 0,
3 cm, 6 cm, 9 cm, 12 cm, and 15 cm, respectively. The control field |�cτ0| is shown in the upper part of each panel.

all systems considered in those studies work in a linear
propagation regime. Recently, in Refs. [3,4] a preliminary
analysis has shown the possibility of realizing memory
of a single-component optical soliton in three-level atomic
systems via a single EIT. However, for light information
processing (especially multibit applications) it is necessary
to extend these studies not only to the nonlinear regime
but also for multicomponent optical solitons. In this section,
we demonstrate that it is possible to realize the storage and
retrieval of the VOS by using the four-level tripod-type atomic
system via DEIT.

To this aim, we consider the solution of the MB Eqs. (2)
and (4) by using a particular control field that is adiabatically
changed with time t to realize the function of its turning
on and off. Since in this case analytical solutions of the
MB equations are not available, we must resort to numerical
simulations.

Figure 3 shows the result of a numerical simulation on the
evolution of |�p1τ0| (blue solid line) and |�p2τ0| (red dashed
line) as functions of z and t for different input light intensity
of the probe pulse. In the simulation, the switching-on and the
switching-off of the control field (the green solid line shown

in the upper part of each panel) is modeled by the combination
of two hyperbolic tangent functions with the form,

�c(0,t) = �c0

{
1 − 1

2
tanh

[
t − Toff

Ts

]
+ 1

2
tanh

[
t − Ton

Ts

]}
,

(15)

where Toff and Ton are, respectively, the times of the switching-
off and the switching-on with a switching time approximately
given by Ts . Lines from 1 to 6 in the figure are for the
pulse propagating to z = 0, 3 cm, 6 cm, 9 cm, 12 cm, and
15 cm, respectively. The system parameters are chosen from
a typical cold alkali-metal 87Rb atomic gas with �4/2π ≈
6 MHz, �3/2π ≈ 3.2 kHz, γ41τ0 ≈ γ42τ0 ≈ γ43τ0 ≈ 1.88,
γ31τ0 ≈ γ32τ0 ≈ 10−4, �2τ0 = 0.001, �3τ0 = 0.2, �4τ0 =
60, κ14τ0 ≈ κ24τ0 = 1.5 × 103 cm−1, �c0τ0 = 24, Ts/τ0 =
0.2, Toff/τ0 = 10, Ton/τ0 = 20, with τ0 = 10−7s. Note that
in order to plot clearly the profiles corresponding to different
polarization components of the probe pulse, the peak values
of |�p1τ0| and |�p2τ0| are taken to be different (as a special
case, they can of course take the same value).
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To describe the light pulse memory quantitatively, similar
to Ref. [34] we define memory efficiency ηi as the probability
of retrieving the ith component of the VOS after some storage
time, or equivalently, as the energy ratio between the retrieved
(output) pulse �

output
pi (t) and the input pulse �

input
pi (t):

ηi =
∫ +∞
−∞

∣∣�output
pi (t)

∣∣2
dt∫ +∞

−∞
∣∣�input

pi (t)
∣∣2

dt
. (16)

To characterize the quality of the generation of the pulse shape,
we define an overlap integral J 2

i as [35]

J 2
i =

∣∣ ∫ +∞
−∞ �

output
pi (t)�input

pi (t + t0)dt
∣∣2

∫ +∞
−∞

∣∣�output
pi (t)

∣∣2
dt · ∫ +∞

−∞
∣∣�input

pi (t + t0)
∣∣2

dt
. (17)

Line 1 and line 6 in the figure are taken as the input pulse
�

input
pi (t) and output pulse �

output
pi (t) (i = 1,2), respectively.

Shown in Fig. 3(a) is the result for a weak (i.e., linear)
two-component probe pulse with �p1(0,t)τ0 = 0.6 sech(t/τ0)
and �p2(0,t)τ0 = 0.8 sech(t/τ0). In this dispersion-dominant
regime, storage and retrieval of the two-component probe
pulse are possible, with the memory efficiencies for the two
components of the probe pulse given by η1 ≈ η2 = 0.965. The
values of the overlap integral between the output and input
pulses are J 2

1 ≈ J 2
2 = 0.658. Thus the fidelity of the light

memory is only η1J
2
1 ≈ η2J

2
2 = 0.635, which means that a

large deformation for the retrieved pulse shape occurs and
both components of the probe fields broaden rapidly before
and after the storage. Obviously, such light memory is not
desirable for practical application because light information
will be spoiled after the storage.

Figure 3(b) shows the result for a weak nonlinear two-
component probe pulse with �p1(0,t)τ0 = 7 sech(t/τ0) and
�p2(0,t)τ0 = 9.3 sech(t/τ0). In this case, the system works
in a soliton regime where a balance between dispersion and
nonlinearity is achieved. Before the storage (�c is switched
on), the probe pulse is a VOS with two components, i.e., a
soliton pair; when �c is switched off, the VOS is stored in
the atomic ensemble (i.e., both �p1 and �p2 are vanishing
but the atomic coherences σ13 and σ23 take nonzero values;
see below); then the VOS is retrieved after the storage (when
�c is switched on again). The memory efficiencies for the
two components of the probe pulse are η1 ≈ η2 = 0.961. The
values of the overlap integral between the output and input
pulses is J 2

1 ≈ J 2
2 = 0.932 and the fidelity of the retrieved

pulse is η1J
2
1 ≈ η2J

2
2 = 0.896. We see that the retrieved probe

pulse has nearly the same wave shape as that before the storage
and hence the light memory in this case has high efficiency and
fidelity. This result illustrates clearly that a robust memory of
the VOS can be realized in the present four-level tripod system
via the DEIT.

Shown in Fig. 3(c) is the result for the case of strong
nonlinearity with �p1(0,t)τ0 = 9 sech(t/τ0) and �p2(0,t)τ0 =
12 sech(t/τ0). In this case, the system works in a nonlinearity-
dominant regime and hence a stable VOS is not possible.
From the figure we see indeed that both components of
the probe pulse display significant distortions; especially

some new peaks are generated before and after the storage.
The memory efficiencies for the two components of the probe
pulse are η1 ≈ η2 = 0.942. The values of the overlap integral
between the output and input pulses are J 2

1 ≈ J 2
2 = 0.731 and

hence the fidelity of the retrieved pulse is only η1J
2
1 ≈ η2J

2
2 =

0.689. Thus, similar to the dispersion-dominant regime [i.e.,
Fig. 3(a)], the light memory in this situation has a low fidelity,
which is also not desirable for practical application because
light information will be lost before and after the storage.

B. Behavior of the atomic coherences σ13 and σ23 and the
dynamics of the control field during the light memory

From the result of Fig. 3, we clearly see that comparing with
the dispersion-dominant and nonlinearity-dominant regimes
the soliton regime is desirable for the storage and retrieval
of the two components of the probe pulse (i.e., VOS).
One may ask the question how the VOS is stored into the
atomic ensemble when both the probe and control fields have
vanishing value. In fact, during the storage the probe-field
energy is converted into atomic degrees of freedom, i.e., into
the atomic coherence σ13 and σ23, which have nonvanishing
values even when �c, �p1, and �p2 become zero (see the
theoretical explanation given below).

Illustrated in Fig. 4 is the result of atomic coherences σ13

(blue solid line) and σ23 (red dashed line) for the three different
dynamic regimes as functions of distance z and time t during
the process of the storage and retrieval of the two-component
probe pulse. The initial probe pulse used in the dispersion-
dominant regime [Fig. 4(a)], the soliton regime [Fig. 4(b)],
and the nonlinearity-dominant regime [Fig. 4(c)] are the same
as those used in Figs. 3(a)–3(c), respectively. The lines from
1 to 6 in each panel of the figure correspond to z = 0, 3 cm, 6
cm, 9 cm, 12 cm, and 15 cm, respectively.

From Fig. 4 combined with Fig. 3 we see that, during the
storage and retrieval of the probe pulse, σ13 �= 0 and σ23 �= 0
in the time interval when �c = �p1 = �p2 = 0. Since the
two components of the probe pulse are stored in the form of
atomic coherences when the control field is switched off and is
retained until the control field is switched on again, the atomic
coherences σ13 and σ23 can be taken as the intermediaries for
the storage and retrieval of the two components of the probe
pulse.

Note that in the above discussions on the memory of the
probe pulse, the dynamics of the control field is disregarded.
However, because in the interval of the storage the control field
becomes vanishingly small and its depletion (dynamics) is an
important issue. Shown in Fig. 5 is the result for the depletion
of the control field during the storage and retrieval of the VOS.
Figure 5(a) shows the evolution of |�p1τ0| (blue solid line),
|�p2τ0| (red dashed line), and |�cτ0| (green solid line) as
functions of t and z in the soliton regime. Figure 5(b) shows
the corresponding atomic coherences σ13 and σ23 as functions
of z and t . The lines from 1 to 6 in each panel correspond to
z = 0, 2 cm, 4 cm, 6 cm, 8 cm, and 10 cm, respectively. From
the figure we see that, as expected, the control field |�cτ0| has
indeed small depletion before and after the storage of the VOS.
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FIG. 4. (Color online) Atomic coherences σ13 (blue solid line) and σ23 (red dashed line) in the three different dynamic regimes as functions
of distance z and time t during the process of the storage and retrieval of the two-component probe pulse. Initial probe pulse used in the
dispersion-dominant regime (a), the soliton regime (b), and the nonlinearity-dominant regime (c) are the same as those used in Figs. 3(a)–3(c),
respectively. The lines from 1 to 6 in each panel correspond to z = 0, 3 cm, 6 cm, 9 cm, 12 cm, and 15 cm, respectively.

C. Theoretical explanation

Now we give a simple explanation on the numerical results
of the VOS memory presented above, paying attention mainly
to Figs. 3(b), 4(b), and 5(a).

Because before and after the storage the leading order of
�c is a constant, the theoretical approach presented in Sec. III
is valid. During the storage, �c is switching off and the two
components of the VOS become nearly vanishing. Thus in the

FIG. 5. (Color online) Depletion of the control field during the storage and retrieval of the VOS. (a) Evolution of |�p1τ0| (blue solid line),
|�p2τ0| (red dashed line), and |�cτ0| (green solid line) as functions of t and z in the soliton regime. (b) Corresponding atomic coherences σ13

and σ23 as functions of z and t . The lines from 1 to 6 in each panel correspond to z = 0, 2 cm, 4 cm, 6 cm, 8 cm, and 10 cm, respectively.
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soliton regime the probe pulse can be written as the form,

�p1(z,t) ≈

⎧⎪⎪⎨
⎪⎪⎩

1
τ0

√∣∣ W̃12K̃22

W̃11W̃22

∣∣sech
[

A0
τ0

(
t − z

Ṽg

) + B0z

LD

]
eiφ1 , for t < Toff,

0, for Toff � t � Ton,

1
τ0

√∣∣ W̃12K̃22

W̃11W̃22

∣∣sech
[

A0
τ0

(
t − z

Ṽg

) + B0z

LD

]
ei(φ1+φ0), for t > Ton,

(18)

�p2(z,t) ≈

⎧⎪⎪⎨
⎪⎪⎩

1
τ0

√∣∣A2
0K̃12W̃22

W̃12K̃22

∣∣ − 1
√∣∣ K̃22

W̃22

∣∣sech
[

A0
τ0

(
t − z

Ṽg

) + B0z

LD

]
eiφ2 , for t < Toff,

0, for Toff � t � Ton,

1
τ0

√∣∣A2
0K̃12W̃22

W̃12K̃22

∣∣ − 1
√∣∣ K̃22

W̃22

∣∣sech
[

A0
τ0

(
t − z

Ṽg

) + B0z

LD

]
ei(φ2+φ0), for t > Ton,

(19)

where φ1 = K̃1z + B0|K̃22|(t − z/Ṽg)/(A0K̃12τ0) − (z/LD)
(A4

0K̃
2
12 − B2

0 K̃2
22)/(2A2

0|K̃22|K̃12), φ2 = K̃2z + B0(t −
z/Ṽg)/(A0τ0) − (z/LD)(A4

0 − B2
0 )/(2A2

0), φ0 is a constant
phase factor and A0, B0 are also free parameters. Thus the
result numerically found in Fig. 3(b) can be well explained.

The behavior observed numerically in Fig. 4(b) can be
understood as follows. Before and after the storage of the
VOS, the theoretical approach presented in Sec. III can
be used. By the result given by Eqs. (C1a) and (C1c), we have
σ13 ∼ �∗

p1 and σ23 ∼ �∗
p2. Thus before and after the storage

both σ13 and σ23 have forms similar to solitons because �∗
p1

and �∗
p2 are the components of the VOS.

However, in the interval of the storage of the VOS, the
behavior of σ13 and σ23 cannot be explained by using the
perturbation theory developed in Sec. III because in this
interval �c is a small quantity. To solve this problem, we turn
to consider the Bloch Eq. (2) directly. Since d31σ31, d32σ32,
�p1σ

∗
43, and �p2σ

∗
43 are small, by Eqs. (A1f) and (A1g) we

obtain

σ41 ≈ − i

�∗
c

∂σ31

∂t
, (20a)

σ42 ≈ − i

�∗
c

∂σ32

∂t
. (20b)

In addition, by Eqs. (A1h) and (A1i) we have

σ31 ≈ −�p1

2�c

− 1

�c

(
i

∂

∂t
+ d41

)
σ41, (21a)

σ32 ≈ −�p2

2�c

− 1

�c

(
i

∂

∂t
+ d42

)
σ42. (21b)

Substituting Eq. (20) into Eq. (21) we obtain

σ13 = −1

2

(
�p1

�c

)∗
− 1

|�c|2
(

∂

∂t
+ id∗

41

)
∂σ13

∂t

≈ −1

2

(
�p1

�c

)∗
, (22a)

σ23 = −1

2

(
�p2

�c

)∗
− 1

|�c|2
(

∂

∂t
+ id∗

42

)
∂σ23

∂t

≈ −1

2

(
�p2

�c

)∗
. (22b)

Consequently, σ13 and σ23 are nonzero if the ratios �p1/�c

and �p2/�c can keep finite values. This can be realized by

adiabatically decreasing �c, by which the values of �p1 and
�p2 also become zero with the same rate during the storage.

One can also understand this point from the viewpoint of
dark states. Since our tripod system has two dark states (7a)
and (7b), it starts from these two dark states in the optical
excitation. Notice that the dark states (7a) and (7b) can be
written as the form,

|D1〉 = �c[|1〉 − (�p1/�c)|3〉], (23a)

|D2〉 = �c[|2〉 − (�p2/�c)|3〉], (23b)

thus the system can keep in these two dark states when σ13 and
σ23 have nonzero values during the storage.

We now turn to consider Fig. 5(a). Since the control field
has small depletion before and after the storage of the VOS,
we solve Eq. (4c) by using the perturbation expansion,

�c = �(0)
c + ε�(1)

c + ε2�(2)
c + · · · , (24)

which is valid for the time interval before and after the
VOS storage where the leading order of �c (i.e., �(0)

c ) has
a large value. Substituting the expansion (24) into Eq. (4c)
and solving the equations for �(l)

c (l = 0,1,2,...), we obtain
the following conclusions: (i) �(0)

c is a constant, which
corresponds to the horizontal line in the upper part of Fig. 5(a).
(ii) �(1)

c (t,z) = �(1)
c (t − z/c) describes a small hump close to

the (green solid) horizontal line on the upper part of the figure,
which propagates with velocity c. The concrete form of �(1)

c

relies on the initial condition. (iii) �(2)
c satisfies the equation

i∂�(2)
c /∂z = −κ34σ

(2)
43 . We obtain

�(2)
c ≈ −iκ34

Ṽg

τ0

K̃22

W̃22

(
a

(2)
431 + a

(2)
432

)
tanh

[
1

τ0

(
t − z

Ṽg

)]
,

(25)
which contributes a hole to the horizontal (green solid) line on
the upper part of Fig. 5(a). Physically, the appearance of the
control-field depletion is due to the energy exchange between
the control field and the probe field via the atomic ensemble
as an intermediary.

V. STORAGE AND RETRIEVAL OF N-COMPONENT
OPTICAL SOLITONS

The theoretical approach presented above can be gener-
alized to a (N + 1)-pod system with N independent probe
pulses (N > 2). Figure 6(a) shows the energy-level diagram
and excitation scheme of a (N + 1)-pod atomic system [38].
The N probe pulses (with half-Rabi frequencies �p1, �p2, . . . ,
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FIG. 6. (Color online) (a) Energy-level diagram and excitation scheme of the (N + 1)-pod atomic system. The N probe pulses drive,
respectively, the transitions from |g1〉 ↔ |h〉, |g2〉 ↔ |h〉, |g3〉 ↔ |h〉, . . . , and |gN 〉 ↔ |h〉; one continuous-wave control field drives the
transitions from |h〉 ↔ |e〉. (b) Storage and retrieval of three-component optical soliton in the quadric-pod system. Evolution of |�p1τ0| (blue
line), |�p2τ0| (red line), and |�p3τ0| (green line) as functions of z and t , with �pl(0,t) = 8 sech(t/τ0) (l = 1,2,3). (c) The atomic coherences
σeg1 (blue line), σeg2 (red line), and σeg3 (green line) as functions of distance z and t during the storage and retrieval of the three-component
optical soliton.

and �pN ) drive, respectively, the transitions from |g1〉 ↔ |h〉,
|g2〉 ↔ |h〉, |g3〉 ↔ |h〉, . . . , and |gN 〉 ↔ |h〉; one continuous-
wave control field (with half-Rabi frequency �c) drives the
transitions from |h〉 ↔ |e〉. One can obtain N dark states and
N branches of linear dispersion relation, and hence the system
allows N electromagnetically induced transparency (NEIT).
Based on the NEIT one can derive N coupled NLS equations
and found N coupled soliton solutions, and then discuss the
storage and retrieval of the N -component optical soliton.

For simplicity, we consider here a quadri-pod system
(N = 3). Following a similar procedure developed in Sec. III,
we can obtain three dark states and three branches of the
linear dispersion relation of the system. It is easy to show
that the system admits triple electromagnetically induced
transparency (TEIT) when the control field is strong. That is to
say, when the TEIT occurs each of Im(Kj ) (j = 1,2,3) opens
an EIT transparency window at almost the same position.
Additionally, the envelopes of the three probe pulses travel
with ultraslow group velocities which are matched well due to
the symmetry of the system.

We can also derive the equations for the envelopes Fl of the
half-Rabi frequencies �pl (l = 1,2,3) by using the method of
multiple scales. The result reads

i
∂F1

∂z2
− 1

2
K12

∂2F1

∂t2
1

− (W11|F1|2e−2ᾱ1z2

+W12|F2|2e−2ᾱ2z2 + W13|F3|2e−2ᾱ3z2 )F1 = 0,

i
∂F2

∂z2
− 1

2
K22

∂2F2

∂t2
1

− (W21|F1|2e−2ᾱ1z2

+W22|F2|2e−2ᾱ2z2 + W23|F3|2e−2ᾱ3z2 )F2 = 0,

i
∂F3

∂z2
− 1

2
K32

∂2F3

∂t2
1

− (W31|F1|2e−2ᾱ1z2

+W32|F2|2e−2ᾱ2z2 + W33|F3|2e−2ᾱ3z2 )F3 = 0,

where Kl2 = ∂2Kl/ω
2, ᾱl = ε−2Im(Kl) (l = 1,2,3), Wll (Wjl ;

j �= l) are SPM (CPM) coefficients. Their explicit expressions
are omitted here. We stress that in order to have a significant
interaction between different components the detunings for all
the lower levels should be taken small.

At TEIT condition, imaginary parts of the coefficients in the
above envelope equations are small compared with their real
parts. Thus at leading order these equations can be reduced to
three coupled NLS equations and a three-component soliton
solution can be obtained analytically [36]. All components
in such soliton have nearly the same, ultraslow propagating
velocity and ultralow generation power. Due to the existence
of the three dark states, they can also be stored and retrieved
by adiabatically manipulating the control field.

Figure 6(b) shows the evolution of |�p1τ0| (blue line),
|�p2τ0| (red line), and |�p3τ0| (green line) as functions
of the distance z and time t , with �pl(0,t) = 8 sech(t/τ0)
(l = 1,2,3). The system parameters have been chosen to work
in the soliton regime with a balance between dispersion and
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nonlinearity. We see that all |�plτ0| (l = 1,2,3) evolve first
into a solitonlike pulse before the storage; later on they are
stored in the atomic ensemble with �pl (l = 1,2,3) when �c

is switched off; then they are retrieved when �c is switched
on. The retrieved pulses have nearly the same wave shapes as
those before the storage. We see that it is indeed possible to
realize a robust memory of three-component optical solitons
in the system.

Figure 6(c) shows the result of the atomic coherences σeg1

(blue line), σeg2 (red line), and σeg3 (green line) as functions of
z and t . We see that the atomic coherences have nonzero values
during the storage of the three-component optical soliton.
A similar theoretical explanation on these numerical results
presented here can also be given as done in Sec. IV C.

Note that for the storage and retrieval of the N -component
optical pulses one cannot assign N components with different
polarizations by using a single probe field. The reason is that
a single probe field has only two independent polarizations
(which can be used to realize the vector optical solitons and
their storage and retrieval as analyzed in Secs. III and IV).
In general, for the (N + 1)-pod system one can choose
N different probe fields having different polarizations, as
considered in Refs. [38,39].

VI. SUMMARY

We have proposed a scheme to realize storage and retrieval
of two-component optical solitons in a coherent atomic system.
The system we have considered is a cold, lifetime broadened
four-level atomic gas with a tripod configuration working at the
condition of DEIT. We have shown that due to the existence
of the two dark states, the optical absorption of the probe
pulse can be largely reduced. In addition, the two orthogonal
polarization components of the probe pulse with a form of
VOS cannot only be slowed down substantially but also be
stored and retrieved robustly by switching a control laser
field off and on. We have also shown that it is possible to
achieve a memory of the N -component optical soliton by
using the N dark states in a (N + 1)-pod system (N > 2).
The results reported here may have promise in applications for
high-fidelity light information processing in a weak nonlinear
regime.
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APPENDIX A: DETAILED EXPRESSION OF THE BLOCH EQUATION

Under electric-dipole and rotating-wave approximations, the equations of the motion for the density matrix elements σjl in
the interaction picture are

i

(
∂

∂t
+ �31

)
σ11 − i(�13σ33 + �14σ44) + �∗

p1σ41 − �p1σ
∗
41 = 0, (A1a)

i

(
∂

∂t
+ �32

)
σ22 − i(�23σ33 + �24σ44) + �∗

p2σ42 − �p2σ
∗
42 = 0, (A1b)

i

(
∂

∂t
+ �3

)
σ33 − i�31σ11 − i�32σ22 − i�34σ44 + �∗

cσ43 − �cσ
∗
43 = 0, (A1c)

i

(
∂

∂t
+ �4

)
σ44 + �p1σ

∗
41 + �p2σ

∗
42 + �cσ

∗
43 − �∗

p1σ41 − �∗
p2σ42 − �∗

cσ43 = 0, (A1d)

(
i

∂

∂t
+ d21

)
σ21 + �∗

p2σ41 − �p1σ
∗
42 = 0, (A1e)

(
i

∂

∂t
+ d31

)
σ31 + �∗

cσ41 − �p1σ
∗
43 = 0, (A1f)

(
i

∂

∂t
+ d32

)
σ32 + �∗

cσ42 − �p2σ
∗
43 = 0, (A1g)

(
i

∂

∂t
+ d41

)
σ41 + �p1(σ11 − σ44) + �p2σ21 + �cσ31 = 0, (A1h)

(
i

∂

∂t
+ d42

)
σ42 + �p2(σ22 − σ44) + �p1σ

∗
21 + �cσ32 = 0, (A1i)

(
i

∂

∂t
+ d43

)
σ43 + �c(σ33 − σ44) + �p1σ

∗
31 + �p2σ

∗
32 = 0, (A1j)

where �p1 = (ε̂− · p14)Ep−/� (�p2 = (ε̂+ · p24)Ep+/�) is the half-Rabi frequency of the Ep− (Ep+ ) component of the probe field;
�c = (ε̂c · p34)Ec/� is the half-Rabi frequency of the control field, with pij the electric dipole matrix element associated with
the transition between |j 〉 and |i〉; djl = �j − �l + iγjl , with the population decay rates and coherence decay rates defined,
respectively, by �j = ∑

i<j �ij and γij = (�i + �j )/2 + γ col
ij . �14, �24, and �34 are, respectively, the spontaneous emission
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decay rate from |4〉 to |1〉, |4〉 to |2〉, and |4〉 to |3〉. �13, �31, �23, and �32 are, respectively, the rates of incoherent population
transfer between |3〉 and |1〉, and between |3〉 and |2〉 [16].

The model given above can be easily realized by selecting realistic physical systems. One of them is the D2 line of 87Rb
atomic gas with the energy levels selected as [37]

|1〉 = |52S1/2,F = 1,mF = 1〉, |2〉 = |52S1/2,F = 1,mF = −1〉, (A2)

|3〉 = |52S1/2,F = 2,mF = 0〉, |4〉 = |52P3/2,F = 2,mF = 0〉,
�4/2π ≈ 6.06 MHz, �3/2π = 3200 Hz,

γ41 ≈ γ42 ≈ γ43 ≈ 18.8 MHz, γ31 ≈ γ32 ≈ 1000 Hz. (A3)

APPENDIX B: EXPRESSIONS OF THE COEFFICIENTS
IN EQ. (5)

X1 = i(�3 + �31) + |�c|2
(

1

d43
− 1

d∗
43

)
, (B1a)

X2 = i(�3 + �32) + |�c|2
(

1

d43
− 1

d∗
43

)
, (B1b)

X4 = i(�3 + �34) + 2|�c|2
(

1

d43
− 1

d∗
43

)
, (B1c)

G1 = i�13 + �13 − �14

X4

[
�3 + i|�c|2

(
1

d43
− 1

d∗
43

)]
, (B1d)

G2 = i�23 + �23 − �24

X4

[
�3 + i|�c|2

(
1

d43
− 1

d∗
43

)]
, (B1e)

J11 = i(�31 + �13) − i(�13 − �14)X1

X4
, (B1f)

J12 = i�13 − i(�13 − �14)X2

X4
, (B1g)

J21 = i�23 − i(�23 − �24)X1

X4
, (B1h)

J22 = i(�32 + �23) − i(�23 − �24)X2

X4
. (B1i)

APPENDIX C: THE FIRST-ORDER SOLUTION

σ
(1)
31 = −�∗

c

(
σ

(0)
11 − σ

(0)
44

) + (ω + d41)σ ∗(0)
43

D1
F1e

iθ1 , (C1a)

σ
(1)
41 = (ω + d31)

(
σ

(0)
11 − σ

(0)
44

) + �cσ
∗(0)
43

D1
F1e

iθ1 , (C1b)

σ
(1)
32 = −�∗

c

(
σ

(0)
22 − σ

(0)
44

) + (ω + d42)σ ∗(0)
43

D2
F2e

iθ2 , (C1c)

σ
(1)
42 = (ω + d32)

(
σ

(0)
22 − σ

(0)
44

) + �cσ
∗(0)
43

D2
F2e

iθ2 , (C1d)

with other σ
(1)
j l = 0.

APPENDIX D: THE SECOND-ORDER SOLUTION

σ
(2)
21 = 1

ω + d21

(
σ

∗(1)
42 F1e

iθ1 − σ
(1)
41 F ∗

2 e−iθ∗
2
)
, (D1a)

σ
(2)
31 = i

[
�∗

ca
(1)
41 − (ω + d41)a(1)

31

]
D1

∂

∂t1
F1e

iθ1 , (D1b)

σ
(2)
41 = i

[
�ca

(1)
31 − (ω + d31)a(1)

41

]
D1

∂

∂t1
F1e

iθ1 , (D1c)

σ
(2)
32 = i

[
�∗

ca
(1)
42 − (ω + d42)a(1)

32

]
D2

∂

∂t1
F2e

iθ2 , (D1d)

σ
(2)
42 = i

[
�ca

(1)
32 − (ω + d32)a(1)

42

]
D2

∂

∂t1
F2e

iθ2 , (D1e)

σ
(2)
11 = a

(2)
111|F1|2e−2ᾱ1z2 + a

(2)
112|F2|2e−2ᾱ2z2 , (D1f)

σ
(2)
22 = a

(2)
221|F1|2e−2ᾱ1z2 + a

(2)
222|F2|2e−2ᾱ2z2 , (D1g)

σ
(2)
44 = a

(2)
441|F1|2e−2ᾱ1z2 + a

(2)
442|F2|2e−2ᾱ2z2 , (D1h)

σ
(2)
43 = a

(2)
431|F1|2e−2ᾱ1z2 + a

(2)
432|F2|2e−2ᾱ2z2 , (D1i)

with

a
(2)
111 = J12C1

i(�23−�24)
X4

− J22
[

i(�13−�14)
X4

C1 − A1
]

J21J12 − J11J22
,

a
(2)
112 = J12

[
i(�23−�24)

X4
C2 − B2

] − J22C2
i(�13−�14)

X4

J21J12 − J11J22
,

a
(2)
221 = J21

[
i(�13−�14)

X4
C1 − A1

] − J11C1
i(�23−�24)

X4

J21J12 − J11J22
,

a
(2)
222 = J21C2

i(�13−�14)
X4

− J11
[

i(�23−�24)
X4

C2 − B2
]

J21J12 − J11J22
,

a
(2)
441 = −C1 − X1a

(2)
111 − X2a

(2)
221

X4
,

a
(2)
442 = −C2 − X1a

(2)
112 − X2a

(2)
222

X4
,

a
(2)
431 = 1

(ω + d43)

[
�c

(
a

(2)
111 + a

(2)
221 + 2a

(2)
441

)

+ �c

(
σ

(0)
11 − σ

(0)
44

) + (ω + d∗
41)σ (0)

43

D∗
1

]
,

a
(2)
432 = 1

(ω + d43)

[
�c

(
a

(2)
112 + a

(2)
222 + 2a

(2)
442

)

+ �c

(
σ

(0)
22 − σ

(0)
44

) + (ω + d∗
42)σ (0)

43

D∗
2

]
,
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where

A1 = (ω + d31)
(
σ

(0)
11 − σ

(0)
44

) + �cσ
∗(0)
43

D1
− (ω + d∗

31)
(
σ

(0)
11 − σ

(0)
44

) + �∗
cσ

(0)
43

D∗
1

,

B2 = (ω + d32)
(
σ

(0)
22 − σ

(0)
44

) + �cσ
∗(0)
43

D2
− (ω + d∗

32)
(
σ

(0)
22 − σ

(0)
44

) + �∗
cσ

(0)
43

D∗
2

,

C1 = |�c|2
(
σ

(0)
11 − σ

(0)
44

) + �c(ω + d41)σ ∗(0)
43

D1
− |�c|2

(
σ

(0)
11 − σ

(0)
44

) + �∗
c (ω + d∗

41)σ (0)
43

D∗
1

,

C2 = |�c|2
(
σ

(0)
22 − σ

(0)
44

) + �c(ω + d42)σ ∗(0)
43

D2
− |�c|2

(
σ

(0)
22 − σ

(0)
44

) + �∗
c (ω + d∗

42)σ (0)
43

D∗
2

.

APPENDIX E: EXPLICT EXPRESSIONS OF W jl IN EQ. (8)

W11 = −κ14
(ω + d31)

(
a

(2)
111 − a

(2)
441

) + �ca
∗(2)
431

D1
, (E1a)

W12 = −κ14
(ω + d31)

(
a

(2)
112 − a

(2)
442

) + �ca
∗(2)
432 + (ω + d31)a(2)

21

D1
, (E1b)

W21 = −κ24
(ω + d32)

(
a

(2)
222 − a

(2)
442

) + �ca
∗(2)
432 + (ω + d32)a(2)

21

D2
, (E1c)

W22 = −κ24
(ω + d32)

(
a

(2)
221 − a

(2)
441

) + �ca
∗(2)
431

D2
, (E1d)

where a
(2)
21 = ((ω + d∗

32)σ (0)
22 /D∗

2 − (ω + d∗
31)σ (0)

11 /D∗
1 )/(ω + d21).
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Phys. Rev. A 85, 022318 (2012).

[15] J. Wu, Y. Liu, D.-S. Ding, Z.-Y. Zhou, B.-S. Shi, and G.-C. Guo,
Phys. Rev. A 87, 013845 (2013).

[16] R. W. Boyd, Nonlinear Optics, 3rd ed. (Academic Press,
Elsevier, Waltham, 2008).

[17] G. Huang, L. Deng, and M. G. Payne, Phys. Rev. E 72, 016617
(2005).

[18] The frequency and wave number of the probe field are given by
ωp + ω and kp + K(ω), respectively. Thus ω = 0 corresponds
to the center frequency of the probe field.

[19] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094
(2000).

[20] C. Liu, Z. Dutton, C. Behroozi, and L. Hau, Nature (London)
409, 490 (2001).

[21] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and
M. D. Lukin, Phys. Rev. Lett. 86, 783 (2001).
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